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Abstract 

In this paper we present a new method for 
machine learning-based optimization of 
linguist-written Constraint Grammars. The 
effect of rule ordering/sorting, grammar-
sectioning and systematic rule changes is 
discussed and quantitatively evaluated. The 
F-score improvement was 0.41 percentage 
points for a mature (Danish) tagging 
grammar, and 1.36 percentage points for a 
half-size grammar, translating into a 7-15% 
error reduction relative to the performance 
of the untuned grammars.  

1 Introduction 

Constraint Grammar (CG) is a rule-based 
paradigm for Natural Language Parsing (NLP), 
first introduced by Karlsson et al. (1995). Part-
of-speech tagging and syntactic parses are 
achieved by adding, removing, selecting or 
substituting form and function tags on tokens in 
running text. Rules express linguistic contextual 
constraints and are written by hand and applied 
sequentially and iteratively, ordered in batches 
of increasing heuristicity and incrementally 
reducing ambiguity from morphologically 
analyzed input by removing (or changing)  
readings from so-called readings cohorts 
(consisting of all possible readings for a given 
token), - optimally until only one (correct) 
reading remains for each token. The method 
draws robustness from the fact that it is 
reductionist rather than generative - even 
unforeseen or erroneous input can be parsed by 
letting the last reading survive even if there are 
rules that would have removed it in a different 
context. Typical CG rules consist of an operator 
(e.g. REMOVE, SELECT), a target and one or 
more contextual constraints that may be linked 
to each other: 

(a) REMOVE VFIN (-1C ART OR DET) ; 

(b) SELECT VFIN (-1 PERS/NOM) (NOT *1 VFIN) 

Rule (a), for instance, removes a target finite 
verb reading (VFIN) if there is an unambiguous 
(C) article or determiner 1 position to the left (-), 
while rule (b) selects a finite verb reading, if 
there is a personal pronoun in the nominative 
immediately to the left, and no (NOT) other 
finite verb is found anywhere to the right (*1). 

Mature Constraint Grammars can achieve 
very high accuracy, but contain thousands of 
rules and are expensive to build from scratch, 
traditionally requiring extensive lexica and years 
of expert labor. Since grammars are not data-
driven in the statistical sense of the word, 
domain adaptation, for instance for speech (Bick 
2011) or historical texts (Bick 2005), is 
traditionally achieved by extending an existing 
general grammar for the language in question, 
and by using specialized lexica or two-level text 
normalization. However, due to its innate 
complexity, the general underlying grammar as 
a whole has properties that do not easily lend 
themselves to manual modification. Changes 
and extensions will usually be made at the level 
of individual rules, not rule interactions or rule 
regrouping. Thus, with  thousands of 
interacting rules, it is difficult for a human 
grammarian to exactly predict the effect of rule 
placement, i.e. if a rule is run earlier or later in 
the sequence. In particular, rules with so-called 
C-conditions (asking for unambiguous context), 
may profit from another, earlier rule acting on 
the context tokens involved in the C-condition. 
Feed-back from corpus runs will pinpoint rules 
that make errors, and even allow to trace the 
effect on other rules applied later on the same 
sentence, but such debugging is cumbersome 
and will not provide information on missed-out 
positive, rather than negative, rule interaction. 
The question is therefore, whether a hand-
corrected gold corpus and machine-learning 
techniques could be used to improve 
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performance by data-driven rule ordering or rule 
adaptation, applied to existing, manual 
grammars. The method would not only allow to 
optimize general-purpose grammars, but also to 
adapt a grammar in the face of domain variation 
without actually changing or adding any rules 
manually. Of course the technique will only 
work if a compatible gold-annotation corpus 
exists for the target domain, but even creating 
manually-revised training data from scratch for 
the task at hand, may be warranted if it then 
allows using an existing unmaintained or "black 
box" grammar. Other areas where ML rule 
tuning of existing grammars may be of use, is 
cross-language porting of grammars between 
closely related languages, and so-called bare-
bones Constraint Grammars (Bick 2012), where 
grammars have to cope with heuristically 
analyzed input and correspondingly skewed 
ambiguity patterns. In such grammars, linguistic 
intuition may not adequately reflect input-
specific disambiguation needs, and profit from 
data-driven tuning. 

2 Prior research 

To date, little work on CG rule tuning has been 
published. A notable exception is the µ-TBL 
system proposed in (Lager 1999), a 
transformation-based learner working with 4 
different rule operators, and supporting not only 
traditional Brill-taggers but also Constraint 
Grammars. The system could be seeded with 
simple CG rule templates with conditions on 
numbered context positions, but for complexity 
reasons it did not support more advanced CG 
rules with unbounded, sentence-wide contexts, 
barrier conditions or linked contexts, all of 
which are common in hand-written Constraint 
Grammars. Therefore, while capable of building 
automatic grammars from rule templates and 
modeling them on a gold corpus, the system was 
not applicable to existing, linguist-designed CGs.  

That automatic rule tuning can capture 
systematic differences between data sets, was 
shown by Rögnvaldsson (2002), who compared 
English and Icelandic µ-TBL grammars seeded 
with the same templates, finding that the system 
prioritized right context and longer-distance 
context templates more for English than 
Icelandic. For hand-written grammars, rather 
than template expression, a similar tuning effect 
can be expected by prioritizing/deprioritizing 
certain rule or context types by moving them to 
higher or lower rule sections, respectively, or by 

inactivating certain rules entirely.  
Lindberg & Eineborg (1998) conducted a 

performance evaluation with a CG-learning 
Progol system on Swedish data from the 
Stockholm-Umeå corpus. With 7000 induced 
REMOVE rules, their system achieved a recall 
of 98%. An F-Score was not given, but since 
residual ambiguity was 1.13 readings per word 
(i.e. a precision of 98/113=86.7%), it can be 
estimated at 92%. Also, the lexicon was built 
from the corpus, so performance can be 
expected to be lower on lexically independent 
data.  

Though all three of the above reports show 
that machine learning can be applied to CG-
style grammars, none of them addresses the 
tuning of human-written, complete grammars 
rather than lists of rule templates1. In this paper, 
we will argue that the latter is possible, too, and 
that it can lead to better results than both 
automatic and human grammars seen in 
isolation. 

3 Grammar Tuning Experiments 

As target grammar for our experiments we 
chose the morphological disambiguation module 
of the Danish DanGram2 system and the CG3 
Constraint Grammar compiler 3 . For most 
languages, manually revised CG corpora are 
small and used only for internal development 
purposes, but because Constraint Grammar was 
used in the construction of the 400.000 word 
Danish Arboretum treebank (Bick 2003), part of 
the data (70.800 tokens) was  still accessible in 
CG-input format and could be aligned to the 
finished treebank, making it possible to 
automatically mark the correct reading lines in 
the input cohorts. Of course the current 
DanGram system has evolved and is quite 
different from the one used 10 years ago to help 
with treebank construction, a circumstance 

1 One author, Padró (1996), using CG-reminiscent 
constraints made up of close PoS contexts, 
envisioned a combination of automatically learned 
and linguistically learned rules for his relaxation 
labelling algorithm, but did not report any actual 
work on human-built grammars. 
2 An description of the system, and an online 
interface can be found at: 
http://beta.visl.sdu.dk/visl/da/parsing/automatic/parse
.php 
3 The CG3 compiler is developed by GrammarSoft 
ApS and supported by the University of Southern 
Denmark. It is open source and can be downloaded at 
http://beta.visl.sdu.dk/cg3.html 
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affecting both tokenization (name fusing and 
other multiple-word expressions), primary tags 
and secondary tags. Primary tags are tags 
intended to be disambiguated and evaluated, and 
differences in e.g. which kind of nouns are 
regarded as proper nouns, may therefore affect 
evaluation. But even secondary tags may have 
an adverse effect on performance. Secondary 
tags  are lexicon-provided tags, e.g. valency 
and semantic tags not themselves intended for 
disambiguation, but used by the grammar to 
contextually assign primary tags. Most 
importantly, the gold corpus derived from the 
treebank does not contain semantic tags, while 
current DanGram rules rely on them for 
disambiguation. However, this is not relevant to 
the experiments we will be discussing in this 
paper - any accuracy figures are not intended to 
grade the performance of DanGram as such, but 
only to demonstrate possible performance 
improvements triggered by our grammar tuning. 
For this purpose, a certain amount of errors in 
the base system is desirable rather than 
problematic. In fact, for one of the experiments 
we intentionally degraded the base grammar by 
removing every second rule from it. 

3.1 Training process and evaluation set-up 

The available revised CG corpus was split 
randomly into 10 equal sections, reserving in 
turn each section as test data, and using the 
remaining 9 jointly as training data, a method 
known as 10-fold cross-validation. 

For training, grammar changes (first of all, 
rule movements) were applied based on a 
performance rating of a run with the unchanged 
grammar (0-iteration) on the training data 4 . 
After a test run, the resulting, changed grammar-
1 was then itself applied to the training data, and 
a further round of changes introduced based on 
the updated performance. At first, we repeated 
these steps until results from the test runs 
stabilized in a narrow F-score band. Though 
with certain parameter combinations this might 
take dozens of rounds, and though secondary, 
relative  performance peaks were observed, we 
never actually found absolute maximum values 
beyond the 3rd iteration for either recall or 
precision. Therefore, most later runs were 
limited to 3 iterations in order to save 
processing time. 

4 This unchanged run also served as the baseline for our 
experiments (cp. dR, dP and dF in the tables). 

3.2 Exploiting section structure 

Constraint Grammar allows for section-
grouping of rules, where the rules in each 
section will be iterated, gradually removing 
ambiguity from the input, until none of the rules 
in the section can find any further fully satisfied 
context matches. After that, the next batch of 
rules is run, and the first set repeated, and so on. 
For 6 sections, this means running them as 1, 1-
2, 1-3, 1-4, 1-5, 1-6. CG grammarians use 
sectionizing to prioritize safe rules, and defer 
heuristic rules, so one obvious machine learning 
technique is to move rules to neighbouring 
sections according to how well they perform, 
our basic set-up being a so-called PDK-run 
(Promoting, Demoting, Killing): 

 if a rule does not make errors or if its 
error percentage is lower than a pre-set 
threshold, promote the rule 1 section 
up5 

 if a rule makes more wrong changes 
than correct changes, kill it altogether 

 in all other cases, demote the rule 1 
section down 

 
The table below lists results (Recall, Precision 
and F-score) for this basic method for all 
subsections of the corpus, with a rule error 
threshold of 0.25 (i.e. at most 1 error for every 4 
times the rule was used). Apart from 
considerable cross-data variation in terms of 
recall improvement (dR), precision 
improvement (dP) and F-score improvement 
(dF), it can be seen that recall profits more from 
this setup than precision, with the best run for 
the former adding 0.8 percentage points and the 
worst run for the latter losing 0.09 percentage 
points.  
 
 R dR P dP F dF 

part 1 98.11 0.22 94.6 -0.07 96.30 0.07 

part 2 97.90 0.42 94.21 0.04 96.78 0.23 

part 3 98.26 0.51 94.56 -0.06 96.37 0.25 

part 4 97.80 0.36 93.08 -0.09 95.38 0.13 

part 5 97.78 0.59 92.94 0.09 95.30 0.33 

part 6 97.72 0.48 93.74 0.16 95.69 0.31 

part 7 97.89 0.40 94.78 0.04 96.31 0.21 

5 First section rules can also be promoted, the effect 
being that they go to the head of the first section, 
bypassing the other rules in the section. 
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part 8 97.07 0.67 94.30 0.19 96.15 0.42 

part 9 97.99 0.63 94.63 0.20 96.28 0.41 

part 10 97.69 0.80 93.52 0.28 95.56 0.53 

average 97.92 0.51 94.03 0.08 95.94 0.29 
 
Table 1: Break-down of 10-fold cross-validation for 

a simple PDK run 
 
Changing the error threshold up or down (table 
2, 10-part average), decreased performance6: 
 
average R dR P dP F dF 

th=0.10 97.88 0.471 94.00 0.045 95.90 0.250 

th=0.25 97.92 0.509 94.03 0.082 95.93 0.288 

th=0.40 97.88 0.475 94.00 0.047 95.90 0.253 
 
Table 2: Effect  of changed rule error threshold (th) 

for a simple PDK run 
 
We expected that iterative runs would correct 
initial detrimental role movements, while 
leaving beneficial ones in place, but for almost 
all parameter settings, further iterations did 
more harm than good. We tried to dampen this 
effect by reducing the rule error threshold with 
each iteration (dividing it by the number of 
iterations), but the measure did not reverse the 
general falling tendency of the iterated 
performance curve. In fact, the curve had a 
steeper decline, possibly because the falling 
threshold prevented the grammar from reversing 
bad rule movements. 
 
run 0 1 2 3 4 5 

th=0.25 96.12 96.36 96.21 96.18 96.13 96.20 

th=*1/it 96.12 96.36 96.06 95.33 95.47 95.55 

Table 3: F-scores for test chunk 3, per iteration 
 
Suspecting, that hand-annotation errors in the 
gold corpus might cause iteration decreases by 
overtraining, we changed all rule-error counts 
by -1, among other effects permitting promoting 
of single-error rules, but this was overall 
detrimental7.  
In order to isolate the  relative contributions of 
promoting, demoting and rule killing, these 

6 Further continuous 0.05 step variation was performed, 
but followed the general tendency and were left out in table 
2. 
7 There was only one of the 10 sets, where error 
count reducing  had a slight positive effect.  

were also run in isolation: 
 
 R dR P dP F dF 

promote 97.41 0.005 94.18 0.232 95.77 0.123 

demote 97.41 0.015 94.21 0.259 95.77 0.127 

kill 97.85 0.440 93.97 0.021 95.87 0.227 
 

Table 4: Individual contribution of P, D and K 
 
The results show that killing bad rules is by far 
the most effective of the three steps 8 . 
Interestingly, the three methods  have different 
effects on recall and precision. Thus, killing bad 
rules prioritizes recall, simply by preventing the 
rules from removing correct readings. The effect 
of promoting and demoting almost exclusively 
affected precision, with demoting having a 
somewhat bigger effect. It should also be noted 
that though killing bad rules is quite effective, 
this does not hold for the "less bad than good" 
demoting category (see definition in 3.1), since 
killing demotable rules, too (PKK, i.e. promote-
kill-kill, table 5), while marginally increasing 
recall, had an adverse effect on overall 
performance, as compared with a full PDK run. 
On the other hand, killing cannot be replaced by 
demoting, either: In a test run where bad>good 
rules were not killed, but instead simply 
demoted (PDD1) or - preferably - moved to the 
last section (PDD6), the expected slight increase 
in precision gain was more than offset by a 
larger decrease in recall gain. Finally, the third 
factor, promoting, can be shown to be essential, 
too, since removing it altogether (DK) is 
detrimental to performance. 
 
 R dR P dP F dF 

PDK 97.92 0.509 94.03 0.082 95.93 0.288 

PKK 98.02 0.611 93.86 -0.193 95.84 0.193 

PDD1 97.52 0.115 94.31 0.355 95.89 0.239 

PDD6 97.52 0.107 94.32 0.373 95.89 0.245 

DK 97.91 0.504 94.00 0.051 95.92 0.269 
 

Table 5: Killing instead of demoting (PKK), and 
demoting (PDD) instead of killing 

8 Killed rules might be an area where human 
intervention might be of interest, in part because 
rules that do more bad than good, probably do not 
belong even in an untuned grammar, and in part, 
because a human would be able to improve the rule 
by adding NOT contexts etc, rather than killing it 
altogether. 
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3.3 Sorting rules 

Another way of re-ordering rules is sorting all 
rules rather than moving individual rules. As a 
sorting parameter we calculated the worth W of 
a given rules as 

W(rule) =  G(rule)
a 

/ (G(rule) + B(rule)) 
 
where G (=good) is the number of instances 
where the rule removed a wrong reading, and B 
(=bad) the number of instances where the rule 
removed a correct reading 9 . The exponent a 
defaults to 1, but can be set higher if one wants 
to put extra weight on the rule being used at all. 
 
The most radical solution would be to sort all 
rules in one go, then introduce section 
boundaries in (six) equal intervals to prevent 
heuristic rules from being used in too early a 
pass (exploiting the 1, 1-2, 1-3 ... rule batching 
property of CG compilers). However, this 
sorting & resectioning algorithm produced poor 
results when used on its own - only when the 
original human sectionizing information was 
factored in by dividing  rule worth by section 
number, was some improvement achieved (0.1 
percentage points).  A third option investigated 
was ordering rules one section at a time, which 
didn't help much, but was assumed to be easier 
to combine with rule movements in one and the 
same run. 
 
 R dR P dP F dF 

resec-
tioning 

97.41 0.005 93.95 0.007 95.65 0.007 

resect.+ 
/section 
weighti. 

97.51 0.103 94.05 0.106 95.74 0.104 

sort by 
section  

97.44 0.033 93.98 0.031 95.67 0.031 

Table 6: sorting-only performance 
 
Putting extra weight on rule use, i.e. increasing 
the a exponent variable, did not increase 
performance, cp. the results below (with sorting 
performed section-wise after rule movement): 
 
average R dR P dP F dF 

9 What is counted here, are actual instances.  
Counting rule actions in isolation, i.e. what the rule 
would have done had it been the first to be applied, 
was also evaluated, but had a negative effect on 
almost all test subsets for both P, R and F. 

10/10 

a=1 97.72 0.312 94.00 0.058 95.81 0.173 

a=1.2 97.58 0.171 93.96 0.019 95.73 0.094 
 

Table 7: Effect of used-rule weighting 

3.4 Rule relaxation and rule strictening 

The third optimization tool, after rule movement 
and sorting, was rule relaxation, the rationale 
being that some (human) rules might be over-
cautious not only in the sense that they are 
placed in too heuristic a rule section, but also in 
having too cautious context conditions. A 
typical CG rule uses contexts like the following: 
 

1. (-1C ART) 
2. (-1 ART) 
3. (*1C VFIN BARRIER CLB) 
4. (*1 VFIN BARRIER CLB) 
5. (*1 VFIN CBARRIER CLB)  

 
Rule 1 looks for an article immediately to the 
right, while rule 3 looks for a finite verb (VFIN) 
anywhere to the right (*1) but with clause 
boundaries (CLB) as a search-blocking barrier. 
In both rules the 'C' means cautious, and the 
compiler will instantiate the context in question 
only if it is unambiguous. Hence, a verb like 'to 
house' or 'to run' that can also be a noun, can act 
as context once another rule has removed the 
noun reading. Without the C (examples 2 and 4), 
rules with these contexts do not have to wait for 
such disambiguation, and will thus apply earlier, 
the expected overall effect being first of all 
improved precision, and possibly recall, 
especially if the change indirectly facilitates 
other rules, too. BARRIER conditions work in 
the opposite way, they are less cautious, if only 
fully disambiguated words can instantiate 
them10. 

To explore the effect of rule relaxation, well-
performing rules with C-contexts were 
duplicated 11  at the end of the grammar after 
stripping them of any such C-markers.  
 

10 The same holds, in principle, for NOT contexts, 
but since these are mostly introduced as exceptions, 
their very nature is to make a rule more cautious, and 
most CGs will not contain examples where NOT and 
C are combined. 
11 The original rules were still promoted - in their 
original forms, on top of relaxation. Blocking  the 
originals of relaxed-duplicated rules from promoting 
decreased performance.  
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for rules 
with: 

R dR P dP F dF 

PDK 97.92 0.509 94.03 0.082 95.93 0.288 

PDK r<1  97.86 0.456 94.13 0.180 95.95 0.311 

PDK r<5  97.85 0.441 94.18 0.230 95.97 0.330 

PDKR 97.85 0.442 94.25 0.302 95.65 0.370 
 

Table 8: C-relaxation (added rules) instead of (pDKr), 
or on top of promotion (PDKr) 

 
As can be seen, performance was clearly higher 
than for role movement alone, (PDKr). Setting 
the "well-performing"-threshold at either < 1 or 
< 5 errors for the rule in question, made almost 
no difference for recall, but showed a slight 
precision bias in favour of the latter. On the 
whole, the success of C-relaxation resides in its 
precision gain, which more than outweighed a 
moderate loss in recall. 
   We also experimented with relaxing such 
rules in situ, rather than duplicating them at the 
end of the grammar, but without positve effects. 
Similarly, no positive effect was measured when 
relaxing BARRIER contexts into CBARRIERs, 
or with combinations of C- and BARRIER-
relaxation. Finally, adding in-section sorting to  
the C-relaxation was tried, but did not have a 
systematic positive effect either. 

Of course, the opposite of rule relaxation, 
something we here will call "rule strictening" 
might also be able to contribute to performance, 
improving recall by making bad rules more 
cautious, waiting for unambiguous context. In 
this vein, we tried to add C conditions to all 
rules slated for demoting12. However, for most 
runs there was no overall F-score improvent 
over the corresponding non-stricting runs, 
independently of whether C-strictening was 
performed in situ or in combination with 
demoting. The only exception was PDKR(s), 
where stricting worked as a counter-balance to 
the threshold-less relaxation. As expected, recall 
and precision were very unequally affected by 
this method, and as a recall-increasing method, 
C-strictening did improve performance. 
 
 R dR P dP F dF 

PDKR 97.85 0.442 94.25 0.302 95.65 0.370 

PDKRs 97.88 0.475 94.25 0.297 96.03 0.383 

12 Stricting instead of killing was also tried, but 
without success. 

PDK 97.92 0.509 94.03 0.082 95.93 0.288 

PDKs 97.98 0,571 93.95 -0.053 95.89 0.246 

PDKs 
in situ 

97.95 0.538 93.86 -0.086 95.86 0.213 

PDKr5  97.85 0.441 94.18 0.230 95.97 0.330 

PDKr5s 97.89 0.486 94.12 0.168 95.97 0.321 
 

Table 9: PDK rule-moving  
with C-relaxation (r) and strictening (s) 

 
Combining the best stricting option with 
ordinary PDK and C-relaxation produced a 
better F-score than either method on its own, 
and presented a reasonable compromise on 
recall and precision . 

3.5 PDK & rule-sorting combinations 

We tested a number of further combinations of 
rule movement, sorting and rule 
relaxation/stricting, finding that sorting cannot 
be successfully combined with either simple 
rule movement (PDK, table 10) or 
relaxation/stricting-enhanced rule movements 
(PDKrs, table 11), performance being lower 
than for rule movement alone. If sorting is used, 
it should be used with the existing sectioning 
(sort-s) rather than resectioning (sort-S).  
 
for rules 
with: 

R dR P dP F dF 

PDK 97.92 0.509 94.03 0.082 95.93 0.288 

sortPDK 97.73 0.323 93.96 0.014 95.80 0.162 

PDKsort 97.72 0.312 94.00 0.058 95.81 0.173 

sort-S + 
PDK 

97.56 0.154 93.94 0.000 95.71 0.074 

PDK 
+ sort-S 

97.41 0.006 93.96 0.012 95.65 0.009 

 
Table 10: Effect of combining PDK and sorting, 

without and sort-resectioning (sort-S) 
 

Sorting before PDK movements preserves recall 
better and adapts itself better to new sectioning, 
but the overall result is best for sorting after 
PDK (boldface in table 10). The only measure 
that could be improved by sorting, was precision 
in the case of sorting after a PDKr combination 
(bold in table 11). This effect is strongest (0.209) 
when resectioning is part of the sorting process 
(sort-S). 
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 R dR P dP F dF 

PDKrs 97.89 0.486 94.12 0.168 95.97 0.321 

PDKrs 
+ sort 

97.85 0.444 94.07 0.117 95.92 0.274 

sort + 
PDKrs 

97.79 0.382 94.03 0.087 95.87 0.227 

PDKrs 
+ sort-S 

97.47 0.064 94.15 0.209 95.78 0.137 

sort-S + 
PDKrs 

97.67 0.260 94.10 0.155 95.85 0.205 

 
Table 11: Effect of combining PDKr/s and sorting 

 
One interesting combinatorial factor is 
sectionizing, i.e. the creation of different or 
additional sections breaks in the grammar. We 
have already seen that sort-sectionizing (sort-S) 
cannot compete with the original human 
sectionizing, at least not with the rule sorting 
algorithm used in this experiment. However, 
sort-s is sensitive to sectionizing, too, if it is 
performed in connection with rule movements. 
To test this scenario, we introduced new start- 
and end-sections for rules moved to the top or 
bottom of the grammar, affecting especially 
error-free rules (top)  and C-relaxed rules 
(bottom). The added sectioning did improve 
performance, but only marginally, and with no 
added positive effect from sorting. A more 
marked effect was seen when combining total 
C-relaxation with top/bottom-sectioning. With 
stricting this combination achieved the largest 
F-score gain of all runs (0.407 percentage 
points), without stricting the largest precision 
gain (0.318). 
 
 R dR P dP F dF 

PDK 97.92 0.509 94.03 0.082 95.93 0.288 

PDKr5s 97.89 0.486 94.12 0.168 95.97 0.321 

PDKr5  97.85 0.441 94.18 0.230 95.97 0.330 

PDKrSta 97.90 0.489 94.16 0.202 95.99 0.340 

PDKrsS 97.93 0.518 94.11 0.162 95.98 0.337 

PDKrS 97.89 0.480 94.18 0.227 96.00 0.349 

PDKRS 97.89 0.486 94.27 0.318 96.05 0.399 

PDKRsS 97.92 0.518 94.25 0.304 96.05 0.407 

PDKRsS 
+sort 

97.88 0.475 94.21 0.262 96.01 0.364 

 
Table 12: PDKrs and PDKRs with new separate 
sections for moved start & end rules (PDKrsS) 

3.6 Robustness 

It is possible to overtrain a machine learning 
model by allowing it to adapt too much to its 
training data.  When tuning a grammar to an 
annotated text corpus the risk is that rare, but 
possible human annotation errors will help to 
kill or demote a rule with very few use instances, 
or prevent a more frequent rule from being 
promoted as error-free. We were able to 
document this effect by comparing "corpus-
true" runs with runs where all rule-error counts 
had been decreased by 1. The latter made the 
grammar tuning more robust, and led to 
performance improvements independently of 
other parameter settings, and was factored in for 
all results discussed in the previous sections. 

Another problem is that when a large 
grammar is run on a relatively small one-domain 
training corpus, less than half 13 the rules will 
actually be used in any given run - which does 
not mean, of course that the rule will not be 
needed in the test corpus run. We therefore 
added a minimum value of 0.1 to the "good use" 
counter of such rules to prevent them from 
being weighted down as unused 14 . A 
corresponding minimum counter could have 
been added to the rule's error count, too, but 
given that on average rules trigger much more 
correct actions than errors, and assuming that 
the human grammarian made the rule for a 
reason, a small good-rule bias seems acceptable. 

Finally, we had to make a decision on 
whether to score a rule's performance only on 
the instances where the rule was actually used, 
or whether to count instances, too, where the 
rule would have been used, if other rules had not 
already completely disambiguated the word in 
question. It is an important robustness feature of 
CG compilers that - with default settings - they 
do not allow a rule to remove the last reading of 
a given word, making parses robust in the face 
of unorthodox language use or outright 
grammatical errors. This robustness effect 
seemed to carry over into our tuned grammars - 
so when we tried to include 'would-discard-last-
reading' counts into the rule weighting, 
performance decreased. The likely explanation 

13 For the 10 training corpus combinations used hear, 
the initial percentage of used rules was 46-47%, and 
considerably lower for the changed grammars in later 
iterations. 
14 Depending on the weighting algorithm, non-zero 
values are necessary anyway, on order to prevent 
"division-by-zero" program breakdowns. 
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is that rules are designed with a certain section 
placement in mind, so demoting  rules from 
their current section because they would have 
made errors at the top of the grammar, does not 
make sense15.  

3.7 Grammar Efficiency 

In a CG setup, grammar efficiency depends on 
three main parameters: First, and most 
obviously, it depends on the size of the grammar, 
and - even more - on the size of the rules 
actually used on a given corpus16. Secondly, the 
order of rules is also important. Thus, running 
efficient rules first, will increase speed, i.e. 
SELECT rules before REMOTE rules, short 
rules before long rules, high-gain/high-
frequency rules before rare rules. Thirdly, a 
large number of sections can lead to a geometric 
growth in rule repetitions, and lead to a 
conssiderable slow down, since even if a 
repeated rule remains unused, it needs to run at 
least some negative target or context checks 
before it knows that it doesn't apply. In this light 
it is of interest, if grammar tuning has a side 
effect on any of these efficiency parameters. 
Since we have shown that neither re-sectioning 
nor used-rule weighting has a positive effect on 
perfomance, and since the relative proportion of 
SELECT17 rules (SEL% in table 13) remained 
fairly constant, tuning is neutral with regard to 
the second and third parameters. 
 
 rules used killed promote 

(use) 
demote 
(use) 

SEL
% 

0 4840 2278 - - - 38.5 

1 4734 2157 105 4581-45% 153-51% 38.2 

2 4724 2163 9 3676-49% 90-73% 37.8 

3 4701 2051 22 2273-46% 97-57% 37.3 

4 4687 2135 13 2984-50% 100-60% 37.5 

15 More specifically, it would make sense only in 
one scenario - section-less sorting of all rules, which  
proved to be an unsuccessful strategy for other 
reasons. 
16 Of course, independently of rule number, the 
disambiguation load of a corpus remains the same, 
and hence the number of times some rule removes a 
reading. However, fewer rules used means that 
superfluous rules could be removed from grammar, 
rather than trying to match their targets and contexts 
in vain. 
17 A SELECT rule is more efficient, because it can 
resolve a 3-way ambiguity in one go, while it will 
take 2 REMOVE rules to achieve the same. 

5 4678 1987 8 2008-49% 87-61% 36.3 
 

Table 13: PDK rule use statistics, 
for 10-3 training corpus (Fmax=96.36 at iteration 1) 

 
There was, however, a falling tendency in the 
number of used rules with increasing iterations, 
in part due to rule-pruning by killing, but 
probably also to the promotion of safe rules that 
could then "take work" from later rules.  For 
the first 2 iterations, where optimal performance 
usually occured, this amounts to 6-7% fewer 
rules. 

The better-performing PDKRsS method led to 
a much smaller reduction in active rules (2-3%, 
table 14),  because of the added relaxed rules 
that contributed to improved precision by 
cleaning up ambiguity after ordinary rules. Also, 
for the same reason, the  absolute number of 
rules increased considerably, and because even 
unused rules have to be checked at least for their 
target condition, there actually was a 9% 
increase in CPU usage.  
 
 rules used killed promote 

(use %) 
demote 
(use %) 

SEL
% 

0 4840 2278 - - - 38.5 

1 7625 2232 105 4581-45% 153-35% 38.0 

2 7715 2204 21 3676-46% 84-43% 38.0 

3 7821 2209 21 7481-29% 44-43% 38.0 

4 7831 2217 9 7608-29% 52-44% 37.7 

5 7837 2194 12 7722-28% 47-30% 38.0 
 

Table 14: PDKRsS rule use statistics, 
for 10-3 training corpus (Fmax=96.43, iteration 3) 

3.8 Smaller-scale grammars  

In this paper, we have so far discussed the effect 
of tuning on full-size, mature Constraint 
Grammars, determining which parameters are 
most likely to have a positive effect.  In 
quantitative terms, however, the improvement 
potential of a smaller-scale, immature grammar 
is much bigger. We therefore created an 
artificially reduced grammar by removing every 
second rule from the original grammar, on 
which we ran the PDK+relaxation/stricting 
setup that had performed best on the full 
grammar, with optional pre- and postsorting.  
 
 R dR P dP F dF 

original 97.41 - 93.95 - 95.65 - 
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grammar  

untuned 
1/2 gr. 

97.48 . 85.55 - 91.12 - 

PDKr1s 97.59 0.113 86.23 0.474 91.44 0.318 

PDKr1sS 97.48 0.222 85.88 0.327 91.41 0.282 

PDKr5s 97.56 0.083 86.26 0.708 91.56 0.436 

PDKr5sS 97.73 0.247 86.19 0.638 91.59 0.469 

PDKRs 97.52 0.045 87.84 2.289 92.43 1.303 

DKr1s 97.57 0.095 86.00 0.449 91.12 0.295 

DKr5s 97.52 0.040 86.45 0.906 91.65 0.529 

DKR 97.54 0.066 87.90 2.345 92.47 1.343 

DKRs 97.52 0.037 87.96 2.417 92.42 1.369 

DKRsS 97.92 0.441 85.36 -0.185 91.21 0.086 

DKRs 
+ sort  

97.54 0.062 87.87 2.330 92.45 1.329 

 
Table 15: Effects on half-sized grammar 

 
Like for the original grammar, PDK performed 
best without sorting. However, a number of 
performance differences can be noted. First, 
performance maxima were achieved later, often 
on the third iteration rather than the first, as was 
common for the original grammar. Second, as 
might be expected, F-scores improved 4 x more 
in absolute, and 2 x more in relative terms, than 
for the full grammar. More surprisingly, the gain 
is entirely due to precision gains, with a small 
fall in recall for most runs18. This can probably 
be explained by the fact that a Constraint 
Grammar is in its essence reductionist - it 
reduces ambiguity. Inactivating part of the rules, 
will simply leave more ambiguity (i.e. lower 
precision), but not necessarily have a 
corresponding influence on recall, since recall 
depends more on the quality of the individual 
rule. Given this dominating importance of 
precision, we tried to create a precision bias by 
inactivating the recall-favoring choices of 
stricting (PDKr) and rule-killing (PDr), but for 
the incomplete grammar reducing recall did not 
automatically mean increased precision, and 
these combinations did not work. Surprisingly, 
and contrary to what was expected from the full-
grammar runs, the most beneficial measure was 
to inactivate promoting (DKrs), and to create 
maximally many relaxed rules (DKRs), by 
removing the relaxation threshold, allowing all 

18 The only recall-preserving combination was DKr, 
i.e. without promoting and without stricting. 

rules with C-conditions to relax as long as their 
original versions did more good than bad. 
Adding new top/bottom-sections produced the 
highest recall gains (0.441 for DKRsS), but 
these did not translate into corresponding F-
score gains. 

The iteration profile for the succesful DKR 
run  does not show the falling oscillation curve 
for F-scores seen for PDK runs  (table 16). 
Rather, there is a shallow-top maximum 
stretching over serveral iterations, and than a 
slow fall-off with late oscillation. In terms of 
efficiency, the iteration pattern is also quite flat, 
with a fairly constant SELECT-rule percentage, 
and a slowly falling number of used rules, with 
relaxed-duplicated rules compensating for the 
disappearance of killed rules and demoted rules. 
 
 rules used killed demote 

(use) 
SEL% F-score 

0 2420 1383 - - 37.7 91.55 

1 3011 1670 66 100-93% 35.9 92.70 

2 3821 1661 40 120-77% 36.2 92.73 

3 3012 1639 23 94-83% 36.3 92.74 

4 3936 1630 8 83-82% 36.6 92.75 

5 3936 1624 5 73-74% 36.5 92.71 
 

Table 16: DKR rule use statistics, 
for 10-3 training corpus on reduced grammar 

4 Conclusion 

In this paper, we have proposed and investigated 
various machine learning options to increase the 
performance of linguist-written Constraint 
Grammars, using 10-fold cross-validation on a 
gold-standard corpus to evaluate which methods 
and parameters had a positive effect. We 
showed that by error-rate-triggered rule-
reordering alone (promoting, demoting and 
killing rules),  an F-score improvement of 0.29 
could be achieved. With an F-score around 96% 
this corresponds roughly to a 7.5 % lower error 
rate in relative terms. However, we found that a 
careful balance had to be struck for individual 
rule movements, with a demoting threshold of 
0.25% errors being the most effective, and that 
general performance-driven rule sorting was less 
effective than threshold-based individual 
movements. Likewise, the original human 
grammar sectioning and rule order is important 
and could not be improved by adding new 
sectioning, or even by in-section rule sorting. 
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Apart from rule movements, rule changes 
were explored as a means of grammar 
optimization, by either increasing (for well-
performing rules) or decreasing (for badly 
performing rules) the amount of permitted 
ambiguity in rule contexts. Thus, removing C 
(unambiguity) conditions was beneficial for 
precision, while adding C-conditions ("stricting") 
improved recall. Finally, section-delimiting of 
moved top- and bottom rules also helped. 
Altogether, the best combination of these 
methods achieved an average F-score 
improvement of 0.41 percentage points (10 
percent fewer errors in relative terms). For a 
randomly reduced, half-size grammar, F-score 
gains are about three times as high - 1.36 
percentage points or 15% in relative terms, an 
important difference being that for the mature 
grammar recall improvement contributed more 
than recall, while gains in the reduced grammar 
were overwhelmingly based on precision. 

Obviously, the grammar tuning achieved with 
the methods presented here does not represent 
an upper ceiling for performance increases. First, 
with more processing power, rule movements 
could be evaluated against the training corpus 
individually and in all possible permutations, 
rather than in-batch, eliminating the risk of 
negative rule-interaction from other 
simultaneously moved rules 19 . Second, multi-
iteration runs showed an oscillating performance 
curve finally settling into a narrow band below 
the first maximum (usually achieved already in 
iteration 1 or 2, and never after 3). This raises 
the question of local/relative maxima, and 
should be further examined by making changes 
in smaller steps. Finally, while large scale rule 
reordering is difficult to perform for a human, 
the opposite is true of rule killing and rule 
changes such as adding or removing C-
conditions. Rather than kill a rule outright or 
change all C-conditions in a given rule, a 
linguist would change or add individual context 
conditions to make the rule perform better, 
observing the effect on relevant sentences rather 
than indirectly through global test corpus 
performance measures. Future research should 
therefore explore possible trade-off gains 
resulting from the interaction between machine-
learned and human-revised grammar changes. 

19 With over 4,000 rules and a 3-iteration training 
run taking 30 minutes for most parameter 
combinations, this was not possible in our current 
set-up. 
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