
ML-Tuned Constraint Grammars

Eckhard Bick
Institute of Language and Communication
University of Southern Denmark, Odense

eckhard.bick@mail.dk

Abstract

In this paper we present a new method for
machine learning-based optimization of
linguist-written Constraint Grammars. The
effect of rule ordering/sorting, grammar-
sectioning and systematic rule changes is
discussed and quantitatively evaluated. The
F-score improvement was 0.41 percentage
points for a mature (Danish) tagging
grammar, and 1.36 percentage points for a
half-size grammar, translating into a 7-15%
error reduction relative to the performance
of the untuned grammars.

1 Introduction

Constraint Grammar (CG) is a rule-based
paradigm for Natural Language Parsing (NLP),
first introduced by Karlsson et al. (1995). Part-
of-speech tagging and syntactic parses are
achieved by adding, removing, selecting or
substituting form and function tags on tokens in
running text. Rules express linguistic contextual
constraints and are written by hand and applied
sequentially and iteratively, ordered in batches
of increasing heuristicity and incrementally
reducing ambiguity from morphologically
analyzed input by removing (or changing)
readings from so-called readings cohorts
(consisting of all possible readings for a given
token), - optimally until only one (correct)
reading remains for each token. The method
draws robustness from the fact that it is
reductionist rather than generative - even
unforeseen or erroneous input can be parsed by
letting the last reading survive even if there are
rules that would have removed it in a different
context. Typical CG rules consist of an operator
(e.g. REMOVE, SELECT), a target and one or
more contextual constraints that may be linked
to each other:

(a) REMOVE VFIN (-1C ART OR DET) ;

(b) SELECT VFIN (-1 PERS/NOM) (NOT *1 VFIN)

Rule (a), for instance, removes a target finite
verb reading (VFIN) if there is an unambiguous
(C) article or determiner 1 position to the left (-),
while rule (b) selects a finite verb reading, if
there is a personal pronoun in the nominative
immediately to the left, and no (NOT) other
finite verb is found anywhere to the right (*1).

Mature Constraint Grammars can achieve
very high accuracy, but contain thousands of
rules and are expensive to build from scratch,
traditionally requiring extensive lexica and years
of expert labor. Since grammars are not data-
driven in the statistical sense of the word,
domain adaptation, for instance for speech (Bick
2011) or historical texts (Bick 2005), is
traditionally achieved by extending an existing
general grammar for the language in question,
and by using specialized lexica or two-level text
normalization. However, due to its innate
complexity, the general underlying grammar as
a whole has properties that do not easily lend
themselves to manual modification. Changes
and extensions will usually be made at the level
of individual rules, not rule interactions or rule
regrouping. Thus, with thousands of
interacting rules, it is difficult for a human
grammarian to exactly predict the effect of rule
placement, i.e. if a rule is run earlier or later in
the sequence. In particular, rules with so-called
C-conditions (asking for unambiguous context),
may profit from another, earlier rule acting on
the context tokens involved in the C-condition.
Feed-back from corpus runs will pinpoint rules
that make errors, and even allow to trace the
effect on other rules applied later on the same
sentence, but such debugging is cumbersome
and will not provide information on missed-out
positive, rather than negative, rule interaction.
The question is therefore, whether a hand-
corrected gold corpus and machine-learning
techniques could be used to improve

PACLIC-27

440
Copyright 2013 by Eckhard Bick

27th Pacific Asia Conference on Language, Information, and Computation pages 440－449

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286947211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

performance by data-driven rule ordering or rule
adaptation, applied to existing, manual
grammars. The method would not only allow to
optimize general-purpose grammars, but also to
adapt a grammar in the face of domain variation
without actually changing or adding any rules
manually. Of course the technique will only
work if a compatible gold-annotation corpus
exists for the target domain, but even creating
manually-revised training data from scratch for
the task at hand, may be warranted if it then
allows using an existing unmaintained or "black
box" grammar. Other areas where ML rule
tuning of existing grammars may be of use, is
cross-language porting of grammars between
closely related languages, and so-called bare-
bones Constraint Grammars (Bick 2012), where
grammars have to cope with heuristically
analyzed input and correspondingly skewed
ambiguity patterns. In such grammars, linguistic
intuition may not adequately reflect input-
specific disambiguation needs, and profit from
data-driven tuning.

2 Prior research

To date, little work on CG rule tuning has been
published. A notable exception is the µ-TBL
system proposed in (Lager 1999), a
transformation-based learner working with 4
different rule operators, and supporting not only
traditional Brill-taggers but also Constraint
Grammars. The system could be seeded with
simple CG rule templates with conditions on
numbered context positions, but for complexity
reasons it did not support more advanced CG
rules with unbounded, sentence-wide contexts,
barrier conditions or linked contexts, all of
which are common in hand-written Constraint
Grammars. Therefore, while capable of building
automatic grammars from rule templates and
modeling them on a gold corpus, the system was
not applicable to existing, linguist-designed CGs.

That automatic rule tuning can capture
systematic differences between data sets, was
shown by Rögnvaldsson (2002), who compared
English and Icelandic µ-TBL grammars seeded
with the same templates, finding that the system
prioritized right context and longer-distance
context templates more for English than
Icelandic. For hand-written grammars, rather
than template expression, a similar tuning effect
can be expected by prioritizing/deprioritizing
certain rule or context types by moving them to
higher or lower rule sections, respectively, or by

inactivating certain rules entirely.
Lindberg & Eineborg (1998) conducted a

performance evaluation with a CG-learning
Progol system on Swedish data from the
Stockholm-Umeå corpus. With 7000 induced
REMOVE rules, their system achieved a recall
of 98%. An F-Score was not given, but since
residual ambiguity was 1.13 readings per word
(i.e. a precision of 98/113=86.7%), it can be
estimated at 92%. Also, the lexicon was built
from the corpus, so performance can be
expected to be lower on lexically independent
data.

Though all three of the above reports show
that machine learning can be applied to CG-
style grammars, none of them addresses the
tuning of human-written, complete grammars
rather than lists of rule templates1. In this paper,
we will argue that the latter is possible, too, and
that it can lead to better results than both
automatic and human grammars seen in
isolation.

3 Grammar Tuning Experiments

As target grammar for our experiments we
chose the morphological disambiguation module
of the Danish DanGram2 system and the CG3
Constraint Grammar compiler 3 . For most
languages, manually revised CG corpora are
small and used only for internal development
purposes, but because Constraint Grammar was
used in the construction of the 400.000 word
Danish Arboretum treebank (Bick 2003), part of
the data (70.800 tokens) was still accessible in
CG-input format and could be aligned to the
finished treebank, making it possible to
automatically mark the correct reading lines in
the input cohorts. Of course the current
DanGram system has evolved and is quite
different from the one used 10 years ago to help
with treebank construction, a circumstance

1 One author, Padró (1996), using CG-reminiscent
constraints made up of close PoS contexts,
envisioned a combination of automatically learned
and linguistically learned rules for his relaxation
labelling algorithm, but did not report any actual
work on human-built grammars.
2 An description of the system, and an online
interface can be found at:
http://beta.visl.sdu.dk/visl/da/parsing/automatic/parse
.php
3 The CG3 compiler is developed by GrammarSoft
ApS and supported by the University of Southern
Denmark. It is open source and can be downloaded at
http://beta.visl.sdu.dk/cg3.html

PACLIC-27

441

affecting both tokenization (name fusing and
other multiple-word expressions), primary tags
and secondary tags. Primary tags are tags
intended to be disambiguated and evaluated, and
differences in e.g. which kind of nouns are
regarded as proper nouns, may therefore affect
evaluation. But even secondary tags may have
an adverse effect on performance. Secondary
tags are lexicon-provided tags, e.g. valency
and semantic tags not themselves intended for
disambiguation, but used by the grammar to
contextually assign primary tags. Most
importantly, the gold corpus derived from the
treebank does not contain semantic tags, while
current DanGram rules rely on them for
disambiguation. However, this is not relevant to
the experiments we will be discussing in this
paper - any accuracy figures are not intended to
grade the performance of DanGram as such, but
only to demonstrate possible performance
improvements triggered by our grammar tuning.
For this purpose, a certain amount of errors in
the base system is desirable rather than
problematic. In fact, for one of the experiments
we intentionally degraded the base grammar by
removing every second rule from it.

3.1 Training process and evaluation set-up

The available revised CG corpus was split
randomly into 10 equal sections, reserving in
turn each section as test data, and using the
remaining 9 jointly as training data, a method
known as 10-fold cross-validation.

For training, grammar changes (first of all,
rule movements) were applied based on a
performance rating of a run with the unchanged
grammar (0-iteration) on the training data 4 .
After a test run, the resulting, changed grammar-
1 was then itself applied to the training data, and
a further round of changes introduced based on
the updated performance. At first, we repeated
these steps until results from the test runs
stabilized in a narrow F-score band. Though
with certain parameter combinations this might
take dozens of rounds, and though secondary,
relative performance peaks were observed, we
never actually found absolute maximum values
beyond the 3rd iteration for either recall or
precision. Therefore, most later runs were
limited to 3 iterations in order to save
processing time.

4 This unchanged run also served as the baseline for our
experiments (cp. dR, dP and dF in the tables).

3.2 Exploiting section structure

Constraint Grammar allows for section-
grouping of rules, where the rules in each
section will be iterated, gradually removing
ambiguity from the input, until none of the rules
in the section can find any further fully satisfied
context matches. After that, the next batch of
rules is run, and the first set repeated, and so on.
For 6 sections, this means running them as 1, 1-
2, 1-3, 1-4, 1-5, 1-6. CG grammarians use
sectionizing to prioritize safe rules, and defer
heuristic rules, so one obvious machine learning
technique is to move rules to neighbouring
sections according to how well they perform,
our basic set-up being a so-called PDK-run
(Promoting, Demoting, Killing):

 if a rule does not make errors or if its
error percentage is lower than a pre-set
threshold, promote the rule 1 section
up5

 if a rule makes more wrong changes
than correct changes, kill it altogether

 in all other cases, demote the rule 1
section down

The table below lists results (Recall, Precision
and F-score) for this basic method for all
subsections of the corpus, with a rule error
threshold of 0.25 (i.e. at most 1 error for every 4
times the rule was used). Apart from
considerable cross-data variation in terms of
recall improvement (dR), precision
improvement (dP) and F-score improvement
(dF), it can be seen that recall profits more from
this setup than precision, with the best run for
the former adding 0.8 percentage points and the
worst run for the latter losing 0.09 percentage
points.

 R dR P dP F dF

part 1 98.11 0.22 94.6 -0.07 96.30 0.07

part 2 97.90 0.42 94.21 0.04 96.78 0.23

part 3 98.26 0.51 94.56 -0.06 96.37 0.25

part 4 97.80 0.36 93.08 -0.09 95.38 0.13

part 5 97.78 0.59 92.94 0.09 95.30 0.33

part 6 97.72 0.48 93.74 0.16 95.69 0.31

part 7 97.89 0.40 94.78 0.04 96.31 0.21

5 First section rules can also be promoted, the effect
being that they go to the head of the first section,
bypassing the other rules in the section.

PACLIC-27

442

part 8 97.07 0.67 94.30 0.19 96.15 0.42

part 9 97.99 0.63 94.63 0.20 96.28 0.41

part 10 97.69 0.80 93.52 0.28 95.56 0.53

average 97.92 0.51 94.03 0.08 95.94 0.29

Table 1: Break-down of 10-fold cross-validation for

a simple PDK run

Changing the error threshold up or down (table
2, 10-part average), decreased performance6:

average R dR P dP F dF

th=0.10 97.88 0.471 94.00 0.045 95.90 0.250

th=0.25 97.92 0.509 94.03 0.082 95.93 0.288

th=0.40 97.88 0.475 94.00 0.047 95.90 0.253

Table 2: Effect of changed rule error threshold (th)

for a simple PDK run

We expected that iterative runs would correct
initial detrimental role movements, while
leaving beneficial ones in place, but for almost
all parameter settings, further iterations did
more harm than good. We tried to dampen this
effect by reducing the rule error threshold with
each iteration (dividing it by the number of
iterations), but the measure did not reverse the
general falling tendency of the iterated
performance curve. In fact, the curve had a
steeper decline, possibly because the falling
threshold prevented the grammar from reversing
bad rule movements.

run 0 1 2 3 4 5

th=0.25 96.12 96.36 96.21 96.18 96.13 96.20

th=*1/it 96.12 96.36 96.06 95.33 95.47 95.55

Table 3: F-scores for test chunk 3, per iteration

Suspecting, that hand-annotation errors in the
gold corpus might cause iteration decreases by
overtraining, we changed all rule-error counts
by -1, among other effects permitting promoting
of single-error rules, but this was overall
detrimental7.
In order to isolate the relative contributions of
promoting, demoting and rule killing, these

6 Further continuous 0.05 step variation was performed,
but followed the general tendency and were left out in table
2.
7 There was only one of the 10 sets, where error
count reducing had a slight positive effect.

were also run in isolation:

 R dR P dP F dF

promote 97.41 0.005 94.18 0.232 95.77 0.123

demote 97.41 0.015 94.21 0.259 95.77 0.127

kill 97.85 0.440 93.97 0.021 95.87 0.227

Table 4: Individual contribution of P, D and K

The results show that killing bad rules is by far
the most effective of the three steps 8 .
Interestingly, the three methods have different
effects on recall and precision. Thus, killing bad
rules prioritizes recall, simply by preventing the
rules from removing correct readings. The effect
of promoting and demoting almost exclusively
affected precision, with demoting having a
somewhat bigger effect. It should also be noted
that though killing bad rules is quite effective,
this does not hold for the "less bad than good"
demoting category (see definition in 3.1), since
killing demotable rules, too (PKK, i.e. promote-
kill-kill, table 5), while marginally increasing
recall, had an adverse effect on overall
performance, as compared with a full PDK run.
On the other hand, killing cannot be replaced by
demoting, either: In a test run where bad>good
rules were not killed, but instead simply
demoted (PDD1) or - preferably - moved to the
last section (PDD6), the expected slight increase
in precision gain was more than offset by a
larger decrease in recall gain. Finally, the third
factor, promoting, can be shown to be essential,
too, since removing it altogether (DK) is
detrimental to performance.

 R dR P dP F dF

PDK 97.92 0.509 94.03 0.082 95.93 0.288

PKK 98.02 0.611 93.86 -0.193 95.84 0.193

PDD1 97.52 0.115 94.31 0.355 95.89 0.239

PDD6 97.52 0.107 94.32 0.373 95.89 0.245

DK 97.91 0.504 94.00 0.051 95.92 0.269

Table 5: Killing instead of demoting (PKK), and
demoting (PDD) instead of killing

8 Killed rules might be an area where human
intervention might be of interest, in part because
rules that do more bad than good, probably do not
belong even in an untuned grammar, and in part,
because a human would be able to improve the rule
by adding NOT contexts etc, rather than killing it
altogether.

PACLIC-27

443

3.3 Sorting rules

Another way of re-ordering rules is sorting all
rules rather than moving individual rules. As a
sorting parameter we calculated the worth W of
a given rules as

W(rule) = G(rule)
a

/ (G(rule) + B(rule))

where G (=good) is the number of instances
where the rule removed a wrong reading, and B
(=bad) the number of instances where the rule
removed a correct reading 9 . The exponent a
defaults to 1, but can be set higher if one wants
to put extra weight on the rule being used at all.

The most radical solution would be to sort all
rules in one go, then introduce section
boundaries in (six) equal intervals to prevent
heuristic rules from being used in too early a
pass (exploiting the 1, 1-2, 1-3 ... rule batching
property of CG compilers). However, this
sorting & resectioning algorithm produced poor
results when used on its own - only when the
original human sectionizing information was
factored in by dividing rule worth by section
number, was some improvement achieved (0.1
percentage points). A third option investigated
was ordering rules one section at a time, which
didn't help much, but was assumed to be easier
to combine with rule movements in one and the
same run.

 R dR P dP F dF

resec-
tioning

97.41 0.005 93.95 0.007 95.65 0.007

resect.+
/section
weighti.

97.51 0.103 94.05 0.106 95.74 0.104

sort by
section

97.44 0.033 93.98 0.031 95.67 0.031

Table 6: sorting-only performance

Putting extra weight on rule use, i.e. increasing
the a exponent variable, did not increase
performance, cp. the results below (with sorting
performed section-wise after rule movement):

average R dR P dP F dF

9 What is counted here, are actual instances.
Counting rule actions in isolation, i.e. what the rule
would have done had it been the first to be applied,
was also evaluated, but had a negative effect on
almost all test subsets for both P, R and F.

10/10

a=1 97.72 0.312 94.00 0.058 95.81 0.173

a=1.2 97.58 0.171 93.96 0.019 95.73 0.094

Table 7: Effect of used-rule weighting

3.4 Rule relaxation and rule strictening

The third optimization tool, after rule movement
and sorting, was rule relaxation, the rationale
being that some (human) rules might be over-
cautious not only in the sense that they are
placed in too heuristic a rule section, but also in
having too cautious context conditions. A
typical CG rule uses contexts like the following:

1. (-1C ART)
2. (-1 ART)
3. (*1C VFIN BARRIER CLB)
4. (*1 VFIN BARRIER CLB)
5. (*1 VFIN CBARRIER CLB)

Rule 1 looks for an article immediately to the
right, while rule 3 looks for a finite verb (VFIN)
anywhere to the right (*1) but with clause
boundaries (CLB) as a search-blocking barrier.
In both rules the 'C' means cautious, and the
compiler will instantiate the context in question
only if it is unambiguous. Hence, a verb like 'to
house' or 'to run' that can also be a noun, can act
as context once another rule has removed the
noun reading. Without the C (examples 2 and 4),
rules with these contexts do not have to wait for
such disambiguation, and will thus apply earlier,
the expected overall effect being first of all
improved precision, and possibly recall,
especially if the change indirectly facilitates
other rules, too. BARRIER conditions work in
the opposite way, they are less cautious, if only
fully disambiguated words can instantiate
them10.

To explore the effect of rule relaxation, well-
performing rules with C-contexts were
duplicated 11 at the end of the grammar after
stripping them of any such C-markers.

10 The same holds, in principle, for NOT contexts,
but since these are mostly introduced as exceptions,
their very nature is to make a rule more cautious, and
most CGs will not contain examples where NOT and
C are combined.
11 The original rules were still promoted - in their
original forms, on top of relaxation. Blocking the
originals of relaxed-duplicated rules from promoting
decreased performance.

PACLIC-27

444

for rules
with:

R dR P dP F dF

PDK 97.92 0.509 94.03 0.082 95.93 0.288

PDK r<1 97.86 0.456 94.13 0.180 95.95 0.311

PDK r<5 97.85 0.441 94.18 0.230 95.97 0.330

PDKR 97.85 0.442 94.25 0.302 95.65 0.370

Table 8: C-relaxation (added rules) instead of (pDKr),
or on top of promotion (PDKr)

As can be seen, performance was clearly higher
than for role movement alone, (PDKr). Setting
the "well-performing"-threshold at either < 1 or
< 5 errors for the rule in question, made almost
no difference for recall, but showed a slight
precision bias in favour of the latter. On the
whole, the success of C-relaxation resides in its
precision gain, which more than outweighed a
moderate loss in recall.
 We also experimented with relaxing such
rules in situ, rather than duplicating them at the
end of the grammar, but without positve effects.
Similarly, no positive effect was measured when
relaxing BARRIER contexts into CBARRIERs,
or with combinations of C- and BARRIER-
relaxation. Finally, adding in-section sorting to
the C-relaxation was tried, but did not have a
systematic positive effect either.

Of course, the opposite of rule relaxation,
something we here will call "rule strictening"
might also be able to contribute to performance,
improving recall by making bad rules more
cautious, waiting for unambiguous context. In
this vein, we tried to add C conditions to all
rules slated for demoting12. However, for most
runs there was no overall F-score improvent
over the corresponding non-stricting runs,
independently of whether C-strictening was
performed in situ or in combination with
demoting. The only exception was PDKR(s),
where stricting worked as a counter-balance to
the threshold-less relaxation. As expected, recall
and precision were very unequally affected by
this method, and as a recall-increasing method,
C-strictening did improve performance.

 R dR P dP F dF

PDKR 97.85 0.442 94.25 0.302 95.65 0.370

PDKRs 97.88 0.475 94.25 0.297 96.03 0.383

12 Stricting instead of killing was also tried, but
without success.

PDK 97.92 0.509 94.03 0.082 95.93 0.288

PDKs 97.98 0,571 93.95 -0.053 95.89 0.246

PDKs
in situ

97.95 0.538 93.86 -0.086 95.86 0.213

PDKr5 97.85 0.441 94.18 0.230 95.97 0.330

PDKr5s 97.89 0.486 94.12 0.168 95.97 0.321

Table 9: PDK rule-moving
with C-relaxation (r) and strictening (s)

Combining the best stricting option with
ordinary PDK and C-relaxation produced a
better F-score than either method on its own,
and presented a reasonable compromise on
recall and precision .

3.5 PDK & rule-sorting combinations

We tested a number of further combinations of
rule movement, sorting and rule
relaxation/stricting, finding that sorting cannot
be successfully combined with either simple
rule movement (PDK, table 10) or
relaxation/stricting-enhanced rule movements
(PDKrs, table 11), performance being lower
than for rule movement alone. If sorting is used,
it should be used with the existing sectioning
(sort-s) rather than resectioning (sort-S).

for rules
with:

R dR P dP F dF

PDK 97.92 0.509 94.03 0.082 95.93 0.288

sortPDK 97.73 0.323 93.96 0.014 95.80 0.162

PDKsort 97.72 0.312 94.00 0.058 95.81 0.173

sort-S +
PDK

97.56 0.154 93.94 0.000 95.71 0.074

PDK
+ sort-S

97.41 0.006 93.96 0.012 95.65 0.009

Table 10: Effect of combining PDK and sorting,

without and sort-resectioning (sort-S)

Sorting before PDK movements preserves recall
better and adapts itself better to new sectioning,
but the overall result is best for sorting after
PDK (boldface in table 10). The only measure
that could be improved by sorting, was precision
in the case of sorting after a PDKr combination
(bold in table 11). This effect is strongest (0.209)
when resectioning is part of the sorting process
(sort-S).

PACLIC-27

445

 R dR P dP F dF

PDKrs 97.89 0.486 94.12 0.168 95.97 0.321

PDKrs
+ sort

97.85 0.444 94.07 0.117 95.92 0.274

sort +
PDKrs

97.79 0.382 94.03 0.087 95.87 0.227

PDKrs
+ sort-S

97.47 0.064 94.15 0.209 95.78 0.137

sort-S +
PDKrs

97.67 0.260 94.10 0.155 95.85 0.205

Table 11: Effect of combining PDKr/s and sorting

One interesting combinatorial factor is
sectionizing, i.e. the creation of different or
additional sections breaks in the grammar. We
have already seen that sort-sectionizing (sort-S)
cannot compete with the original human
sectionizing, at least not with the rule sorting
algorithm used in this experiment. However,
sort-s is sensitive to sectionizing, too, if it is
performed in connection with rule movements.
To test this scenario, we introduced new start-
and end-sections for rules moved to the top or
bottom of the grammar, affecting especially
error-free rules (top) and C-relaxed rules
(bottom). The added sectioning did improve
performance, but only marginally, and with no
added positive effect from sorting. A more
marked effect was seen when combining total
C-relaxation with top/bottom-sectioning. With
stricting this combination achieved the largest
F-score gain of all runs (0.407 percentage
points), without stricting the largest precision
gain (0.318).

 R dR P dP F dF

PDK 97.92 0.509 94.03 0.082 95.93 0.288

PDKr5s 97.89 0.486 94.12 0.168 95.97 0.321

PDKr5 97.85 0.441 94.18 0.230 95.97 0.330

PDKrSta 97.90 0.489 94.16 0.202 95.99 0.340

PDKrsS 97.93 0.518 94.11 0.162 95.98 0.337

PDKrS 97.89 0.480 94.18 0.227 96.00 0.349

PDKRS 97.89 0.486 94.27 0.318 96.05 0.399

PDKRsS 97.92 0.518 94.25 0.304 96.05 0.407

PDKRsS
+sort

97.88 0.475 94.21 0.262 96.01 0.364

Table 12: PDKrs and PDKRs with new separate
sections for moved start & end rules (PDKrsS)

3.6 Robustness

It is possible to overtrain a machine learning
model by allowing it to adapt too much to its
training data. When tuning a grammar to an
annotated text corpus the risk is that rare, but
possible human annotation errors will help to
kill or demote a rule with very few use instances,
or prevent a more frequent rule from being
promoted as error-free. We were able to
document this effect by comparing "corpus-
true" runs with runs where all rule-error counts
had been decreased by 1. The latter made the
grammar tuning more robust, and led to
performance improvements independently of
other parameter settings, and was factored in for
all results discussed in the previous sections.

Another problem is that when a large
grammar is run on a relatively small one-domain
training corpus, less than half 13 the rules will
actually be used in any given run - which does
not mean, of course that the rule will not be
needed in the test corpus run. We therefore
added a minimum value of 0.1 to the "good use"
counter of such rules to prevent them from
being weighted down as unused 14 . A
corresponding minimum counter could have
been added to the rule's error count, too, but
given that on average rules trigger much more
correct actions than errors, and assuming that
the human grammarian made the rule for a
reason, a small good-rule bias seems acceptable.

Finally, we had to make a decision on
whether to score a rule's performance only on
the instances where the rule was actually used,
or whether to count instances, too, where the
rule would have been used, if other rules had not
already completely disambiguated the word in
question. It is an important robustness feature of
CG compilers that - with default settings - they
do not allow a rule to remove the last reading of
a given word, making parses robust in the face
of unorthodox language use or outright
grammatical errors. This robustness effect
seemed to carry over into our tuned grammars -
so when we tried to include 'would-discard-last-
reading' counts into the rule weighting,
performance decreased. The likely explanation

13 For the 10 training corpus combinations used hear,
the initial percentage of used rules was 46-47%, and
considerably lower for the changed grammars in later
iterations.
14 Depending on the weighting algorithm, non-zero
values are necessary anyway, on order to prevent
"division-by-zero" program breakdowns.

PACLIC-27

446

is that rules are designed with a certain section
placement in mind, so demoting rules from
their current section because they would have
made errors at the top of the grammar, does not
make sense15.

3.7 Grammar Efficiency

In a CG setup, grammar efficiency depends on
three main parameters: First, and most
obviously, it depends on the size of the grammar,
and - even more - on the size of the rules
actually used on a given corpus16. Secondly, the
order of rules is also important. Thus, running
efficient rules first, will increase speed, i.e.
SELECT rules before REMOTE rules, short
rules before long rules, high-gain/high-
frequency rules before rare rules. Thirdly, a
large number of sections can lead to a geometric
growth in rule repetitions, and lead to a
conssiderable slow down, since even if a
repeated rule remains unused, it needs to run at
least some negative target or context checks
before it knows that it doesn't apply. In this light
it is of interest, if grammar tuning has a side
effect on any of these efficiency parameters.
Since we have shown that neither re-sectioning
nor used-rule weighting has a positive effect on
perfomance, and since the relative proportion of
SELECT17 rules (SEL% in table 13) remained
fairly constant, tuning is neutral with regard to
the second and third parameters.

 rules used killed promote

(use)
demote
(use)

SEL
%

0 4840 2278 - - - 38.5

1 4734 2157 105 4581-45% 153-51% 38.2

2 4724 2163 9 3676-49% 90-73% 37.8

3 4701 2051 22 2273-46% 97-57% 37.3

4 4687 2135 13 2984-50% 100-60% 37.5

15 More specifically, it would make sense only in
one scenario - section-less sorting of all rules, which
proved to be an unsuccessful strategy for other
reasons.
16 Of course, independently of rule number, the
disambiguation load of a corpus remains the same,
and hence the number of times some rule removes a
reading. However, fewer rules used means that
superfluous rules could be removed from grammar,
rather than trying to match their targets and contexts
in vain.
17 A SELECT rule is more efficient, because it can
resolve a 3-way ambiguity in one go, while it will
take 2 REMOVE rules to achieve the same.

5 4678 1987 8 2008-49% 87-61% 36.3

Table 13: PDK rule use statistics,
for 10-3 training corpus (Fmax=96.36 at iteration 1)

There was, however, a falling tendency in the
number of used rules with increasing iterations,
in part due to rule-pruning by killing, but
probably also to the promotion of safe rules that
could then "take work" from later rules. For
the first 2 iterations, where optimal performance
usually occured, this amounts to 6-7% fewer
rules.

The better-performing PDKRsS method led to
a much smaller reduction in active rules (2-3%,
table 14), because of the added relaxed rules
that contributed to improved precision by
cleaning up ambiguity after ordinary rules. Also,
for the same reason, the absolute number of
rules increased considerably, and because even
unused rules have to be checked at least for their
target condition, there actually was a 9%
increase in CPU usage.

 rules used killed promote

(use %)
demote
(use %)

SEL
%

0 4840 2278 - - - 38.5

1 7625 2232 105 4581-45% 153-35% 38.0

2 7715 2204 21 3676-46% 84-43% 38.0

3 7821 2209 21 7481-29% 44-43% 38.0

4 7831 2217 9 7608-29% 52-44% 37.7

5 7837 2194 12 7722-28% 47-30% 38.0

Table 14: PDKRsS rule use statistics,
for 10-3 training corpus (Fmax=96.43, iteration 3)

3.8 Smaller-scale grammars

In this paper, we have so far discussed the effect
of tuning on full-size, mature Constraint
Grammars, determining which parameters are
most likely to have a positive effect. In
quantitative terms, however, the improvement
potential of a smaller-scale, immature grammar
is much bigger. We therefore created an
artificially reduced grammar by removing every
second rule from the original grammar, on
which we ran the PDK+relaxation/stricting
setup that had performed best on the full
grammar, with optional pre- and postsorting.

 R dR P dP F dF

original 97.41 - 93.95 - 95.65 -

PACLIC-27

447

grammar

untuned
1/2 gr.

97.48 . 85.55 - 91.12 -

PDKr1s 97.59 0.113 86.23 0.474 91.44 0.318

PDKr1sS 97.48 0.222 85.88 0.327 91.41 0.282

PDKr5s 97.56 0.083 86.26 0.708 91.56 0.436

PDKr5sS 97.73 0.247 86.19 0.638 91.59 0.469

PDKRs 97.52 0.045 87.84 2.289 92.43 1.303

DKr1s 97.57 0.095 86.00 0.449 91.12 0.295

DKr5s 97.52 0.040 86.45 0.906 91.65 0.529

DKR 97.54 0.066 87.90 2.345 92.47 1.343

DKRs 97.52 0.037 87.96 2.417 92.42 1.369

DKRsS 97.92 0.441 85.36 -0.185 91.21 0.086

DKRs
+ sort

97.54 0.062 87.87 2.330 92.45 1.329

Table 15: Effects on half-sized grammar

Like for the original grammar, PDK performed
best without sorting. However, a number of
performance differences can be noted. First,
performance maxima were achieved later, often
on the third iteration rather than the first, as was
common for the original grammar. Second, as
might be expected, F-scores improved 4 x more
in absolute, and 2 x more in relative terms, than
for the full grammar. More surprisingly, the gain
is entirely due to precision gains, with a small
fall in recall for most runs18. This can probably
be explained by the fact that a Constraint
Grammar is in its essence reductionist - it
reduces ambiguity. Inactivating part of the rules,
will simply leave more ambiguity (i.e. lower
precision), but not necessarily have a
corresponding influence on recall, since recall
depends more on the quality of the individual
rule. Given this dominating importance of
precision, we tried to create a precision bias by
inactivating the recall-favoring choices of
stricting (PDKr) and rule-killing (PDr), but for
the incomplete grammar reducing recall did not
automatically mean increased precision, and
these combinations did not work. Surprisingly,
and contrary to what was expected from the full-
grammar runs, the most beneficial measure was
to inactivate promoting (DKrs), and to create
maximally many relaxed rules (DKRs), by
removing the relaxation threshold, allowing all

18 The only recall-preserving combination was DKr,
i.e. without promoting and without stricting.

rules with C-conditions to relax as long as their
original versions did more good than bad.
Adding new top/bottom-sections produced the
highest recall gains (0.441 for DKRsS), but
these did not translate into corresponding F-
score gains.

The iteration profile for the succesful DKR
run does not show the falling oscillation curve
for F-scores seen for PDK runs (table 16).
Rather, there is a shallow-top maximum
stretching over serveral iterations, and than a
slow fall-off with late oscillation. In terms of
efficiency, the iteration pattern is also quite flat,
with a fairly constant SELECT-rule percentage,
and a slowly falling number of used rules, with
relaxed-duplicated rules compensating for the
disappearance of killed rules and demoted rules.

 rules used killed demote

(use)
SEL% F-score

0 2420 1383 - - 37.7 91.55

1 3011 1670 66 100-93% 35.9 92.70

2 3821 1661 40 120-77% 36.2 92.73

3 3012 1639 23 94-83% 36.3 92.74

4 3936 1630 8 83-82% 36.6 92.75

5 3936 1624 5 73-74% 36.5 92.71

Table 16: DKR rule use statistics,
for 10-3 training corpus on reduced grammar

4 Conclusion

In this paper, we have proposed and investigated
various machine learning options to increase the
performance of linguist-written Constraint
Grammars, using 10-fold cross-validation on a
gold-standard corpus to evaluate which methods
and parameters had a positive effect. We
showed that by error-rate-triggered rule-
reordering alone (promoting, demoting and
killing rules), an F-score improvement of 0.29
could be achieved. With an F-score around 96%
this corresponds roughly to a 7.5 % lower error
rate in relative terms. However, we found that a
careful balance had to be struck for individual
rule movements, with a demoting threshold of
0.25% errors being the most effective, and that
general performance-driven rule sorting was less
effective than threshold-based individual
movements. Likewise, the original human
grammar sectioning and rule order is important
and could not be improved by adding new
sectioning, or even by in-section rule sorting.

PACLIC-27

448

Apart from rule movements, rule changes
were explored as a means of grammar
optimization, by either increasing (for well-
performing rules) or decreasing (for badly
performing rules) the amount of permitted
ambiguity in rule contexts. Thus, removing C
(unambiguity) conditions was beneficial for
precision, while adding C-conditions ("stricting")
improved recall. Finally, section-delimiting of
moved top- and bottom rules also helped.
Altogether, the best combination of these
methods achieved an average F-score
improvement of 0.41 percentage points (10
percent fewer errors in relative terms). For a
randomly reduced, half-size grammar, F-score
gains are about three times as high - 1.36
percentage points or 15% in relative terms, an
important difference being that for the mature
grammar recall improvement contributed more
than recall, while gains in the reduced grammar
were overwhelmingly based on precision.

Obviously, the grammar tuning achieved with
the methods presented here does not represent
an upper ceiling for performance increases. First,
with more processing power, rule movements
could be evaluated against the training corpus
individually and in all possible permutations,
rather than in-batch, eliminating the risk of
negative rule-interaction from other
simultaneously moved rules 19 . Second, multi-
iteration runs showed an oscillating performance
curve finally settling into a narrow band below
the first maximum (usually achieved already in
iteration 1 or 2, and never after 3). This raises
the question of local/relative maxima, and
should be further examined by making changes
in smaller steps. Finally, while large scale rule
reordering is difficult to perform for a human,
the opposite is true of rule killing and rule
changes such as adding or removing C-
conditions. Rather than kill a rule outright or
change all C-conditions in a given rule, a
linguist would change or add individual context
conditions to make the rule perform better,
observing the effect on relevant sentences rather
than indirectly through global test corpus
performance measures. Future research should
therefore explore possible trade-off gains
resulting from the interaction between machine-
learned and human-revised grammar changes.

19 With over 4,000 rules and a 3-iteration training
run taking 30 minutes for most parameter
combinations, this was not possible in our current
set-up.

References

Eckhard Bick, Heliana Mello, A. Panunzi and
Tommaso Raso. 2012. The Annotation of the C-
ORAL-Brasil through the Implementation of the
Palavras Parser. In: Calzolari, Nicoletta et al.
(eds.), Proceedings LREC2012 (Istanbul, May 23-
25). pp. 3382-3386. ISBN 978-2-9517408-7-7

Eckhard Bick. 2011. A Barebones Constraint
Grammar, In: Helena Hong Gao & Minghui Dong
(eds), Proceedings of the 25th Pacific Asia
Conference on Language, Information and
Computation (Singapore, 16-18 December, 2011).
pp. 226-235, ISBN 978-4-905166-02-3

Eckhard Bick & Marcelo Módolo. 2005. Letters and
Editorials: A grammatically annotated corpus of
19th century Brazilian Portuguese. In: Claus
Pusch & Johannes Kabatek & Wolfgang Raible
(eds.) Romance Corpus Linguistics II: Corpora
and Historical Linguistics (Proceedings of the 2nd
Freiburg Workshop on Romance Corpus
Linguistics, Sept. 2003). pp. 271-280. Tübingen:
Gunther Narr Verlag.

Eckhard Bick. 2003. Arboretum, a Hybrid Treebank
for Danish, in: Joakim Nivre & Erhard Hinrich
(eds.), Proceedings of TLT 2003 (2nd Workshop
on Treebanks and Linguistic Theory, Växjö,
November 14-15, 2003), pp.9-20. Växjö
University Press

Fred Karlsson, Atro Voutilainen, Juha Heikkilä and
Arto Anttila. 1995. Constraint Grammar: A
Language-Independent System for Parsing
Unrestricted Text. Natural Language Processing,
No 4. Mouton de Gruyter, Berlin and New York

Torbjörn Lager. 1999. The µ-TBL System: Logic
Programming Tools for Transformation-Based
Learning. In: Proceedings of CoNLL'99, Bergen.

Nikolaj Lindberg, Martin Eineborg. 1998. Learning
Constraint Grammar-style Disambiguation Rules
using Inductive Logic Programming. COLING-
ACL 1998: 775-779

Lluís Padró. 1996.. POS Tagging Using Relaxation
Labelling. In: Proceedings of the 16th
International Conference on Computational
Linguistics, COLING (Copenhagen, Denmark). pp.
877--882.

Eirikur Rögnvaldsson. 2002. The Icelandic µ-TBL
Experiment: µ-TBL Rules for Icelandic Compared
to English Rules. Retrieved 2013-05-12 from
[http://hi.academia.edu/EirikurRognvaldsson/Pape
rs]

PACLIC-27

449

