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Abstract. This paper describes an approach to improve the performance of sampling-based
multilingual alignment on translation tasks by investigating the distribution of n-grams in the
translation tables. This approach consists in enforcing the alignment of n-grams. The quality
of phrase translation tables output by this approach and that of MGIZA++ is compared in
statistical machine translation tasks. Significant improvements for this approach are reported.
In addition, merging translation tables is shown to outperform state-of-the-art techniques.
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1 Introduction

Phrase translation tables play an important role in the process of building machine translation
systems. The quality of translation table, which identifies the relations between words or phrases
in the source language and those in the target language, is crucial for the quality of the output of
most machine translation systems. Currently, the most widely used state-of-the-art tool to generate
phrase translation tables is GIZA++ (Och and Ney, 2003), which trains the ubiquitous IBM models
(Brown et al., 1993) and the HMM introduced by (Vogel et al., 1996), in combination with the
Moses toolkit (Koehn et al., 2007). MGIZA++, a multi-threaded word aligner based on GIZA++,
is proposed by (Gao and Vogel, 2008).

In this paper, we investigate a different approach to the production of phrase translation tables:
the sampling-based approach (Lardilleux and Lepage, 2009b). This approach is implemented in
a free open-source tool called Anymalign.1 Being in line with the associative alignment trend
illustrated by (Gale and Church, 1991; Melamed, 2000; Moore, 2005), it is much simpler than
the models implemented in MGIZA++, which are in line with the estimating trend illustrated
by (Brown et al., 1991; Och and Ney, 2003; Liang et al., 2006). In addition, it is capable of
aligning multiple languages simultaneously; but we will not use this feature here as we will restrain
ourselves to bilingual experiments in this paper.

In sampling-based alignment, only those sequences of words sharing the exact same distribu-
tion (i.e., they appear exactly in the same sentences of the corpus) are considered for alignment.

? Part of the research presented in this paper has been done under a Japanese grant-in-aid (Kakenhi C, A11515600:
Improvement of alignments and release of multilingual syntactic patterns for statistical and example-based machine
translation).
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The key idea is to make more words share the same distribution by artificially reducing their fre-
quency in multiple random subcorpora obtained by sampling. Indeed, the smaller a subcorpus,
the less frequent its words, and the more likely they are to share the same distribution; hence the
higher the proportion of words aligned in this subcorpus. In practice, the majority of these words
turn out to be hapaxes, that is, words that occur only once in the input corpus. Hapaxes have been
shown to safely align across languages (Lardilleux and Lepage, 2009a).

The subcorpus selection process is guided by a probability distribution which ensures a proper
coverage of the input parallel corpus:

p(k) =
−1

k log(1− k/n)
(to be normalized) (1)

where k denotes the size (number of sentences) of a subcorpus and n the size of the complete input
corpus. Note that this function is very close to 1/k2: it gives much more credit to small subcor-
pora, which happen to be the most productive (Lardilleux and Lepage, 2009b). Once the size of
a subcorpus has been chosen according to this distribution, its sentences are randomly selected
from the complete input corpus according to a uniform distribution. Then, from each subcorpus,
sequences of words that share the same distribution are extracted to constitute alignments along
with the number of times they were aligned.2

Eventually, the list of alignments is turned into a full-fledged translation table, by calculating
various features for each alignment. In the following, we use two translation probabilities and two
lexical weights as proposed by (Koehn et al., 2003), as well as the commonly used phrase penalty,
for a total of five features.

One important feature of the sampling-based alignment method is that it is implemented with
an anytime algorithm: the number of random subcorpora to be processed is not set in advance, so
the alignment process can be interrupted at any moment. Contrary to many approaches, after a
very short amount of time, quality is no more a matter of time, however quantity is: the longer the
aligner runs (i.e. the more subcorpora processed), the more alignments produced, and the more
reliable their associated translation probabilities, as they are calculated on the basis of the number
of time each alignment was obtained. This is possible because high frequency alignments are
quickly output with a fairly good estimation of their translation probabilities. As time goes, their
estimation is refined, while less frequent alignments are output in addition.

Intuitively, since the sampling-based alignment process can be interrupted without sacrificing
the quality of alignments, it should be possible to allot more processing time for n-grams of similar
lengths in both languages and less time to very different lengths. For instance, a source bigram
is much less likely to be aligned with a target 9-gram than with a bigram or a trigram. The
experiments reported in this paper make use of the anytime feature of Anymalign and of the
possibility of allotting time freely.

This paper is organized as follows: Section 2 describes a preliminary experiment on the
sampling-based alignment approach implemented in Anymalign baseline and provides the ex-
perimental results from which the problem is defined. In Section 3, we propose a variant in order
to improve its performance on statistical machine translation tasks. Section 4 introduces standard
normal distribution of time to bias the distribution of n-grams in phrase translation tables. Sec-
tion 5 describes the effects of pruning on the translation quality. Section 6 presents the merge of
two aligners’ phrase translation tables. Finally, in Section 7, conclusions and possible directions
for future work are presented.

2 Contrary to the widely used terminology where it denotes a set of links between the source and target words of
a sentence pair, we call “alignment” a (source, target) phrase pair, i.e., it corresponds to an entry in the so-called
[phrase] translation tables.
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2 Preliminary Experiment
In order to measure the performance of the sampling-based alignment approach implemented in
Anymalign in statistical machine translation tasks, we conducted a preliminary experiment and
compared with the standard alignment setting: symmetric alignments obtained from MGIZA++.
Although Anymalign and MGIZA++ are both capable of parallel processing, for fair comparison
in time, we run them as single processes in all our experiments.

2.1 Experimental Setup
A sample of the French-English parts of the Europarl parallel corpus was used for training, tun-
ing and testing. A detailed description of the data used in the experiments is given in Table 1.
The training corpus is made of 100k sentences. The development set contains 500 sentences, and
1,000 sentences were used for testing. To perform the experiments, a standard statistical machine
translation system was built for each different alignment setting, using the Moses decoder (Koehn
et al., 2007), MERT (Minimum Error Rate Training) to tune the parameters of translation ta-
bles (Och, 2003), and the SRI Language Modeling toolkit (Stolcke, 2002) to build the target
language model.

As for the evaluation of translations, four standard automatic evaluation metrics were used:
mWER (Nießen et al., 2000), BLEU (Papineni et al., 2002), NIST (Doddington, 2002), and
TER (Snover et al., 2006).

Table 1: Statistics on the French-English parallel corpus used for the training, development, and test sets.

French English
Train sentences 100,000 100,000

words 3,986,438 2,824,579
words/sentence 38 27

Dev sentences 500 500
words 18,120 13,261
words/sentence 36 26

Test sentences 1,000 1,000
words 38,936 27,965
words/sentence 37 27

2.2 Problem Definition
In a first setting, we evaluated the quality of translations output by the Moses decoder using the
phrase table obtained by making MGIZA++’s alignments symmetric in a second setting. This
phrase table was simply replaced by that produced by Anymalign. Since Anymalign can be
stopped at any time, for a fair comparison it was run for the same amount of time as MGIZA++:
seven hours in total. The experimental results are shown in Table 2.

Table 2: Evaluation results on a statistical machine translation task using phrase tables obtained from
MGIZA++ and Anymalign (baseline).

mWER BLEU NIST TER
MGIZA++ 0.5714 0.2742 6.6747 0.6170
Anymalign 0.6186 0.2285 6.0764 0.6634

In order to investigate the differences between MGIZA++ and Anymalign phrase translation ta-
bles, we analyzed the distribution of n-grams of both aligners, The distributions are shown in
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Table 7 (a) and Table 7 (b). In Anymalign’s phrase translation table, the number of alignments is 8
times that of 1 × 1 n-grams in MGIZA++ translation table, or twice the number of 1 × 2 n-grams
or 2 × 1 n-grams in MGIZA++ translation table. Along the diagonal (m × m n-grams), the num-
ber of alignments in Anymalign table is more than 10 times less than in MGIZA++ table. This
confirms the results given in (Lardilleux et al., 2009) that the sampling-based approach excels in
aligning unigrams, which makes it better at multilingual lexicon induction than, e.g., MGIZA++.
However, its phrase tables do not reach the performance of symmetric alignments from MGIZA++
on translation tasks. This basically comes from the fact that Anymalign does not align enough long
n-grams (Lardilleux et al., 2009).

3 Anymalign1-N

3.1 Enforcing Alignment of N-grams

To solve the above-mentioned problem, we propose a method to force the sampling-based ap-
proach to align more n-grams.

Consider that we have a parallel input corpus, i.e., a list of (source, target) sentence pairs,
for instance, in French and English. Groups of characters that are separated by spaces in these
sentences are considered as words. Single words are referred to as unigrams, and sequences of
two and three words are called bigrams and trigrams, respectively.

Theoretically, since the sampling-based alignment method excels at aligning unigrams, we
could improve it by making it align bigrams, trigrams, or even longer n-grams as if they were
unigrams. We do this by replacing spaces between words by underscore symbols and reduplicating
words as many times as needed, which allows to make bigrams, trigrams, and longer n-grams
appear as unigrams. Table 3 depicts the way of forcing n-grams into unigrams.

Similar works on the idea of enlarging n-grams have been reported in (Ma et al., 2007), in
which ”word packing” is used to obtain 1-to-n alignments based on co-occurrence frequencies,
and (Henrı́quez Q. et al., 2010), in which collocation segmentation is performed on bilingual
corpus to extract n-to-m alignments.

Table 3: Transforming n-grams into unigrams by inserting underscores and reduplicating words for both
the French part and English part of the input parallel corpus.

n French English
1 le debat est clos . the debate is closed .
2 le debat debat est est clos clos . the debate debate is is closed closed .
3 le debat est debat est clos est clos . the debate is debate is closed is closed .
4 le debat est clos debat est clos . the debate is closed debate is closed .
5 le debat est clos . the debate is closed .

3.2 Phrase Translation Subtables

It it thus possible to use various parallel corpora, with different segmentation schemes in the
source and target parts. We refer to a parallel corpus where source n-grams and target m-grams
are assimilated to unigrams as an unigramized n-m corpus. These corpora are then used as input
to Anymalign to produce phrase translation subtables, as shown in Table 4. Practically, we call
Anymalign1-N the process of running Anymalign with all possible unigramized n-m corpora, with
n and m both ranging from 1 to a given N. In total, Anymalign is thus run N× N times. All phrase
translation subtables are finally merged together into one large translation table, where translation
probabilities are re-estimated given the complete set of alignments.
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Table 4: List of n-gram translation subtables (TT) generated from the training corpus. These subtables are
then merged together into a single translation table.

Target

So
ur

ce

unigrams bigrams trigrams · · · N-grams
unigrams TT 1 × 1 TT 1 × 2 TT 1 × 3 · · · TT 1 × N
bigrams TT 2 × 1 TT 2 × 2 TT 2 × 3 · · · TT 2 × N
trigrams TT 3 × 1 TT 3 × 2 TT 3 × 3 · · · TT 3 × N
· · · · · · · · · · · · · · · · · ·

N-grams TT N × 1 TT N × 2 TT N × 3 · · · TT N × N

Although Anymalign is capable of directly producing alignments of sequences of words, we
use it with a simple filter3 so that it only produces (typographic) unigrams in output, i.e., n-grams
and m-grams assimilated to unigrams in the input corpus. This choice was made because it is
useless to produce alignment of sequences of words, since we are only interested in phrases in the
subsequent machine translation tasks. Those phrases are already contained in our (typographic)
unigrams: all we need to do to get the original segmentation is to remove underscores from the
alignments.

3.3 Evaluation Results with Equal Time Configuration
The same experimental process (i.e., replacing the translation table) as in the preliminary exper-
iment was carried out on Anymalign1-N with equal time distribution, which is, uniformly dis-
tributed time among subtables. For a fair comparison, the same amount of time was given: seven
hours in total. The results are shown in Table 6. On the whole, MGIZA++ significantly outper-
forms Anymalign, by more than 4 BLEU points. The proposed approach, Anymalign1-N, pro-
duces better results than Anymalign in its basic version, with the best increase with Anymalign1-3
or Anymalign1-4 (+1.3 BP).

The comparison of Table 7 (c) (see last page) and Table 7 (a) shows that Anymalign1-N delivers
too many alignments outside of the diagonal (m × m n-grams) and still not enough along the
diagonal. Consequently, this number of alignments should be lowered. A way of doing so is by
giving less time for alignments outside of the diagonal.

4 Time Distribution among Subtables
In order to increase the number of phrase pairs along the diagonal of the translation table matrix
and decrease this number outside the diagonal (Table 4), we distribute the total alignment time
among translation subtables according to the standard normal distribution:

φ(n,m) =
1√
2π

e−
1
2 (n−m)2

(2)

The alignment time allotted to the subtable between source n-grams and target m-grams will
thus be proportional to φ(n,m). Table 5 shows an example of alignment times allotted to each
subtable up to 4-grams, for a total processing time of 7 hours.

4.1 Evaluation Results with Standard Normal Time Distribution
We performed a third evaluation using the standard normal distribution of time, as in previous
experiments, again with a total amount of processing time (7 hours).

The comparison between MGIZA++, Anymalign in its standard use, and Anymalign1-N with
standard normal time distribution is shown in Table 6. Anymalign1-4 shows the best performance

3 Option -N 1 in the program.
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Table 5: Alignment time in seconds allotted to each unigramized parallel corpus of Anymalign1-4. The
sum of the figures in all cells amounts to seven hours (25,200 seconds).

Target

So
ur

ce

unigrams bigrams trigrams 4-grams
unigrams 3,072 1,863 416 34
bigrams 1,863 3,072 1,863 416
trigrams 416 1,863 3,072 1,863
4-grams 34 416 1,863 3,072

in terms of mWER and BLEU scores, while Anymalign1-3 gets the best results for the two other
evaluation metrics. There is an increase in BLEU scores for almost all Anymalign1-N, from
Anymalign1-3 to Anymalign1-10, when compared with the translation qualities of Anymalign1-
N with equal time distribution. The greatest increase in BLEU is obtained for Anymalign1-10
(almost +2 BP). Anymalign1-4 shows the best translation qualities among all other settings, but
gets a less significant improvement (+0.2 BP).

Again, we investigated the number of entries in Anymalign1-N run with this normal time dis-
tribution. We compare the number of entries in Table 7 in Anymalign1-4 with (c) equal time
distribution and (d) standard normal time distribution (see last page). The number of phrase pairs
on the diagonal roughly doubled when using standard normal time distribution. We can see a
significant increase in the number of phrase pairs of similar lengths, while the number of phrase
pairs with different lengths tends to decrease slightly. This means that the standard normal time
distribution allowed us to produce much more numerous useful alignments (a priori, phrase pairs
with similar lengths), while maintaining the noise (phrase pairs with different lengths) to a low
level, which is a neat advantage over the original method.

5 Translation Table Pruning

Until now, we were concerned with the shape of phrase translation tables in standard configura-
tions. However, (Johnson et al., 2007) have shown that substantially pruning the phrase translation
tables can lead to slight but consistent improvements in translation quality.

They use Fisher’s exact significance test to eliminate a substantial number of phrase pairs.
The significance of the association between a (source, target) phrase pair is evaluated and their
probability of co-occurrence in the corpus is calculated. The hypergeometric distribution is used
to compute the observed probability of joint occurrence C(s̃, t̃), with s̃ a source phrase and t̃ a
target phrase:

ph(C(s̃, t̃)) =

(
C(s̃)

C(s̃,t̃)

)(
N−C(s̃)

C(t̃)−C(s̃,t̃)

)

(
N

C(t̃)

) (3)

Here, N is the number of sentences in the input parallel corpus. The p-value is calculated as:

p-value(C(s̃, t̃)) =
∞

∑
k=C(s̃,t̃)

ph(k) (4)

Any phrase pair with a p-value greater than a given threshold will thus be filtered out. In
practice, this mainly removes phrase pairs with different frequencies. A special case happens
when a source phrase and a target phrase, hence the resulting phrase pair as well, occur only once
in the corpus (called a 1-1-1 phrase pair in (Johnson et al., 2007)). By considering a p-value of
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α = log(N), α +ε (where ε is very small) is the smallest threshold that results in none of the 1-1-1
phrase pairs being included, while α − ε is the largest threshold that results in those pairs being
included.

We investigate the impact of pruning on Anymalign’s translation tables in terms of n-gram
distribution and final translation quality.

5.1 Evaluation Results with Pruning

In a fourth set of experiments, we thus compare the phrase translation tables of MGIZA++, and
Anymalign1-N (standard normal time distribution), after applying this pruning. The α − ε filter
was used.

Evaluation results on machine translation tasks with pruned translation tables are given in Ta-
ble 6. The phrase table size reduction brings gains in BLEU scores. Among all Anymalign1-N,
Anymalign1-4 once again gets the highest BLEU score of 0.2511 and shows the best performance
in all evaluation metrics.

As an example, the number of entries in Anymalign1-4’s translation table, after pruning, is
shown in Table 7 (e). The largest difference when compared with the non-pruned translation table
(Table 7 (d)) is visible in the cell corresponding to 1-1 entries: a substantial decrease of almost
200,000 entries is observed, which corresponds to a reduction of 76%. As a consequence, the most
numerous entries are now 2-2 phrase pairs, which account for 19% of the total number of phrase
pairs. On the whole, 54% of entries were filtered out from Anymalign1-4’s translation table.

6 Merging translation tables

In order to check exactly how different the translation table of MGIZA++ and that of Anyma-
lign are, we performed an additional set of experiments in which MGIZA++’s translation table is
merged with that of Anymalign baseline and we used the union of the two translation tables. As
for the feature scores in the translation tables for the intersection part of both aligners, i.e., entries
in two translation tables share the same phrase pairs but with different feature scores, we adopted
parameters computed either by MGIZA++ or by Anymalign for evaluation.

Evaluation results on machine translation tasks with merged translation tables are given in
Table 6. This setting outperforms MGIZA++ on BLEU scores. The translation table with Any-
malign parameters for the intersection part is slightly behind the translation table with MGIZA++
parameters. This may indicate that the feature scores in Anymalign translation table need to be
revised.

7 Conclusions and Future Work

We have presented a method to improve the translation quality of the sampling-based subsentential
alignment approach for statistical machine translation tasks. Our approach is based on adapting
the number of n-grams by investigating their distribution in phrase translation tables. Furthermore,
we inspected the influence of pruning the translation tables, a technique described in (Johnson et
al., 2007), and merging the translation tables from two aligners (i.e., Anymalign and MGIZA++).
Adapting the number of n-grams leads to significantly better evaluation results than the original
approach. Merging two translation tables outperforms MGIZA++ alone. As for future work, we
plan to modify the computation of the feature scores in Anymalign’s phrase translation tables to
make them closer to those of MGIZA++.
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Table 6: Evaluation results.

mWER BLEU NIST TER
MGIZA++ 0.5714 0.2742 6.6747 0.6170
Anymalign 0.6186 0.2285 6.0764 0.6634

Anymalign1-N equal time distribution std.norm.distribution pruning
mWER BLEU NIST TER mWER BLEU NIST TER mWER BLEU NIST TER

Anymalign1-1 0.6818 0.1984 5.6353 0.7188 0.6818 0.1984 5.6353 0.7188 0.6871 0.1953 5.6042 0.7258
Anymalign1-2 0.6121 0.2406 6.2789 0.6536 0.6121 0.2404 6.2674 0.6535 0.6102 0.2425 6.3093 0.6515
Anymalign1-3 0.6075 0.2403 6.3009 0.6507 0.6079 0.2441 6.2928 0.6517 0.6117 0.2413 6.2501 0.6561
Anymalign1-4 0.6142 0.2423 6.2087 0.6583 0.6071 0.2442 6.2844 0.6526 0.5978 0.2511 6.3985 0.6435
Anymalign1-5 0.6099 0.2376 6.2331 0.6551 0.6134 0.2436 6.2426 0.6548 0.6076 0.2457 6.3120 0.6504
Anymalign1-6 0.6193 0.2349 6.1574 0.6634 0.6165 0.2403 6.1595 0.6589 0.6104 0.2459 6.2687 0.6545
Anymalign1-7 0.6157 0.2371 6.2107 0.6559 0.6136 0.2405 6.2124 0.6564 0.6079 0.2419 6.2569 0.6516
Anymalign1-8 0.6353 0.2253 5.9777 0.6794 0.6151 0.2366 6.1639 0.6597 0.6060 0.2446 6.2986 0.6496
Anymalign1-9 0.6279 0.2296 6.0261 0.6722 0.6136 0.2402 6.1928 0.6564 0.6078 0.2461 6.2974 0.6493
Anymalign1-10 0.6475 0.2182 5.8534 0.6886 0.6192 0.2361 6.1803 0.6587 0.6076 0.2459 6.3079 0.6490

Merge mWER BLEU NIST TER
Anymalign param. 0.5671 0.2747 6.7101 0.6128
MGIZA++ param. 0.5685 0.2754 6.7060 0.6142
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Henrı́quez Q., A. Carlos, R. Marta Costa-jussà, Vidas Daudaravicius, E. Rafael Banchs, and
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Table 7: Distribution of phrase pairs in translation tables.

(a) Distribution of phrase pairs in MGIZA++’s translation table.

Target

So
ur

ce

unigrams bigrams trigrams 4-grams 5-grams 6-grams 7-grams total
unigrams 89,788 44,941 10,700 2,388 486 133 52 148,488
bigrams 61,007 288,394 86,978 20,372 5,142 1,163 344 463,400
trigrams 19,235 149,971 373,991 105,449 27,534 7,414 1,857 685,451
4-grams 5,070 47,848 193,677 335,837 106,467 31,011 9,261 729,171
5-grams 1,209 13,984 73,068 193,260 270,615 98,895 32,349 683,380
6-grams 332 3,856 24,333 87,244 177,554 214,189 88,700 596,208
7-grams 113 1,103 7,768 33,278 91,355 157,653 171,049 462,319

total 176,754 550,097 770,515 777,828 679,153 510,458 303,612 3,768,417

(b) Distribution of phrase pairs in Anymalign’s translation table (baseline).

Target

So
ur

ce

unigrams bigrams trigrams 4-grams 5-grams 6-grams 7-grams · · · total
unigrams 791,099 105,961 9,139 1,125 233 72 37 · · · 1,012,473
bigrams 104,633 21,602 4,035 919 290 100 44 · · · 226,176
trigrams 10,665 4,361 2,570 1,163 553 240 96 · · · 92,268
4-grams 1,698 1,309 1,492 1,782 1,158 573 267 · · · 61,562
5-grams 378 526 905 1,476 1,732 1,206 642 · · · 47,139
6-grams 110 226 467 958 1,559 1,694 1,245 · · · 40,174
7-grams 40 86 238 536 1,054 1,588 1,666 · · · 35,753
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

total 1,022,594 230,400 86,830 55,534 42,891 37,246 34,531 · · · 1,371,865

(c) Anymalign1-4 with equal time for each n×m n-grams alignments.

Target

So
ur

ce

unigrams bigrams trigrams 4-grams 5-grams 6-grams 7-grams total
unigrams 171,077 118,848 39,253 13,327 0 0 0 342,505
bigrams 119,953 142,721 67,872 24,908 0 0 0 355,454
trigrams 45,154 75,607 86,181 42,748 0 0 0 249,690
4-grams 15,514 30,146 54,017 60,101 0 0 0 159,778
5-grams 0 0 0 0 0 0 0 0
6-grams 0 0 0 0 0 0 0 0
7-grams 0 0 0 0 0 0 0 0

total 351,698 367,322 247,323 141,084 0 0 0 1,107,427

(d) Anymalign1-4 with standard normal time distribution.

Target

So
ur

ce

unigrams bigrams trigrams 4-grams 5-grams 6-grams 7-grams total
unigrams 255,443 132,779 13,803 469 0 0 0 402,494
bigrams 134,458 217,500 75,441 8,612 0 0 0 436,011
trigrams 15,025 86,973 142,091 48,568 0 0 0 292,657
4-grams 635 10,516 61,741 98,961 0 0 0 171,853
5-grams 0 0 0 0 0 0 0 0
6-grams 0 0 0 0 0 0 0 0
7-grams 0 0 0 0 0 0 0 0

total 405,561 447,768 293,076 156,610 0 0 0 1,303,015

(e) Distribution of phrase pairs in Anymalign1-4’s translation table (after pruning).

Target

So
ur

ce

unigrams bigrams trigrams 4-grams 5-grams 6-grams 7-grams total
unigrams 60,297 59,099 8,819 328 0 0 0 128,543
bigrams 58,232 110,415 51,557 6,954 0 0 0 227,158
trigrams 9,777 58,604 69,431 28,046 0 0 0 165,858
4-grams 474 8,586 31,209 31,666 0 0 0 71,935
5-grams 0 0 0 0 0 0 0 0
6-grams 0 0 0 0 0 0 0 0
7-grams 0 0 0 0 0 0 0 0

total 128,780 236,704 161,016 66,994 0 0 0 593,494159


