
Parallel Suffix Arrays for Corpus Exploration?

Johannes Goller

Macmillan Limited
Chiyoda Building, 2-37 Ichigayatamachi,

Shinjuku-ku, Tokyo, 162-0843 Japan
jogojapan@gmail.com

Abstract. This paper describes how recently developed techniques for suffix array construc-
tion and compression can be expanded to bring a new data structure, called parallel suffix
array, into existence, which is suitable as an in-memory representation of large annotated
corpora, enabling complex queries and fast extractions of the context of matching substrings.
It is also shown how parallel suffix arrays are superior to existing corpus search engines, in
particular when sequential queries and corpora that are hard to tokenize are involved.

Keywords: Corpus search engine, suffix array, search engine for linguists

1 Introduction

Corpus search engines (CSE) are in high demand for a number of reasons: (a) They help corpus
linguists to obtain statistics and usage information for words, and they do this with much higher
accuracy and flexibility than web search engines (cf. Kilgarriff, 2007); (b) they enable the im-
plementation of automated or interactive linguistic tests, for example to verify whether certain
generalized syntactic constructions, e.g. represented by finite state grammars, do or do not occur
in large corpus samples; (c) if sufficiently powerful, they transform an annotated text corpus into
a tool for data mining (cf. Ananiadou, 2009).

CSEs accomplish these things in two steps: First, an index is constructed from annotated text,
then queries are either manually inputted by users or generated by a separate process; the corpus
search engine returns all matching substrings it finds for each query, either in random order, or
sorted or grouped by user-defined criteria. It may also identify duplicate results and provide a
frequency list of distinct matches. Existing CSEs differ from each other in several ways: (a)
The kind of annotations they can process, (b) the complexity of queries, e.g. keyword search as
opposed to regular expressions, (c) the data structures used inside the index. The choice of the
data structure is significant, as it has a strong influence on how large the index grows in memory
and how fast it can process queries. Fast query processing is important, esp. when large sets of
auto-created query variations are processed, or when a multi-user system is designed to process
many queries in parallel.

Section 2 gives an overview of existing CSEs. Their underlying indexes are all based on tra-
ditional relational databases or inverted file techniques. Section 3 describes parallel suffix arrays,
a new data structure with very good theoretical performance for many types of complex queries,
in many respects superior to existing data structures. Section 4 shows how the data structure can
be expanded to a powerful CSE which will be called sufex. The final sections report on results of
performance tests with a practical implementation of sufex and conclude with a brief discussion
of its advantages and disadvantages.

? At the time when this article was prepared, the author worked at the Centrum für Informations- und Sprachverar-
beitung, Ludwig-Maximilians-Universität München, Germany.

Copyright 2010 by Johannes Goller

PACLIC 24 Proceedings 731

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286947044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Existing corpus search engines

The simplest method of corpus search is to search the text linearly, for example using finite state
tools like “grep”. If the text contains annotations, e.g. in XML, and is very large, using such
tools involves writing complicated regular expressions and is time-consuming. Somewhat more
advanced are concordance-building environments such as “Wordsmith”1 and user interfaces for
finite state matchers, such as “Unitex”2. The query response time of these systems depends directly
on the size of the text and may range from several minutes to several hours for corpora with
millions of words.

An approach that uses a real index and provides much faster access is to fit the corpus and
all annotations into a relational database, as described by Mark Davies (Davies, 2004; Davies,
2003) and available as an online search tool for various large corpora with POS-annotations3. The
relational databases store k-grams such that there is a separate data column for every individ-
ual token (k columns in total), and the POS-tag of every token in a separate column (another k
columns). Queries representing sequences of surface tokens and POS-tags, up to k in length, can
be performed as SQL queries against the database. The search engine returns (a) the frequency
of the k-grams that matched, and (b) the surface string itself, which can be used for a subsequent
search on a full-text index of the surface string to retrieve match contexts. Although a detailed
performance analysis is not available, practical tests of the online tool show response times in
the subsecond to 2 seconds range on a 100-million-token corpus, including network delays and
display time. The disadvantage of the approach, however, is obviously that it is limited to sequen-
tial queries of up to k tokens in length (“k-slots-queries”). It does not enable regular expressions
(except within each slot) or gap-filling techniques (see 4.2), and it requires tokenized input.

The most advanced corpus search methods currently available make use of inverted file indexes,
i.e. the data structures that web search engines are based on (Witten et al., 1999). The earliest
documented example of this approach appears to be the “Corpus Query System” (Christ, 1994),
which maps each token and each tag that occurs in the text to a list of the positions at which it
was found, and performs lookups in these position lists to find query matches. This is essentially
an inverted file architecture; it was upgraded several times and is currently known as the IMS
Workbench4. Another CSE using inverted files is the “Linguist’s Search Engine” (LSE) of the
WebCorp project (Renouf et al., 2007). The system is still being tested, and there are no detailed
reports on its performance. A third system, which has been available as open-source software for
many years, is “Manatee” (Rychlý, 2000; Rychlý, 2007) and its (non-open-source) extension, the
“SketchEngine” (Kilgarriff et al., 2004), of which an online demo exists5.

Inverted-file based systems usually process simple queries in less than a second, even on very
large corpora, and enable sequential queries and OR-queries of any length and including POS-tags
or other elements that refer to pre-defined token-related annotations of the corpus. Like systems
using the k-gram based approach described above, inverted-file based systems also require the
corpus to be tokenized before they can index it.

The main advantages of the new approach described below are: (a) It does not require the text
to be tokenized. Also annotations beginning or ending in the middle of tokens or spanning across
multiple tokens are supported; (b) the system enables the full power of regular expressions and
offers very good performance for gap-filling techniques (see in 4.2). The main disadvantage is its
memory consumption; this and other pros and cons of the new approach are discussed in section 6.

1 http://www.lexically.net/wordsmith/
2 http://www-igm.univ-mlv.fr/˜unitex/
3 http://corpus.byu.edu/bnc/
4 http://bulba.sdsu.edu/technical-manual.ps
5 http://sketchengine.co.uk/

732 Workshop on Advanced Corpus Solutions

3 Parallel suffix arrays
3.1 Plain suffix arrays
A suffix array is any representation of the lexicographically sorted list of all suffixes of a text,
where suffix is defined as any substring beginning somewhere in the text and ending at the end
of the text, i.e. there are n suffixes in a text of length n. In the context of corpus search systems,
the text is the concatenation of all documents and all sentences of the entire corpus, which means
billions of characters in the case of a corpus like the BNC6.

1 2 3 4 5 6 7 8 9

a b x a b d a e $

lcp=

a
b
d
a
e
$

a
b
x
a
b
d
a
e
$

a
e
$

b
d
a
e
$

b
x
a
b
d
a
e
$

d
a
e
$

e
$
x
a
b
d
a
e
$

T=
SA= 9 4 1 7 5 2 6 8 3

x $ d a a b a bebwt=
0 0 2 1 0 1 0 0 0

$

Figure 1: Suffix array SA for the string T =abxabdae$, along with auxiliary data structures bwt,
lcp and “brackets” indicating the match ranges for substrings ab, a and b.

Rather than storing copies of all the substrings, the suffix array is usually represented as a list of
n integers, each indicating the starting position of a suffix. An example of this is shown in fig. 1:
The suffix array itself consists only of the integer list SA; the lower part of fig. 1 shows the strings
corresponding to each position, written vertically. Suffix arrays have an important property related
to substring searches: Given a text T , its suffix array SA and a search pattern P , the set of starting
positions of matches for P in T forms a continuous range in SA, as each match is the initial part
of a suffix of T . Because of the lexicographical sorting, these suffixes must be adjacent to each
other in the suffix array. For example, the set of matches for substring ab in fig. 1 is the range
[2; 3] of SA (corresponding to positions 4 and 1 of T). This shall be called the range property of
suffix arrays.

For a long time, suffix arrays were not considered suitable for large-scale search problems,
because no fast construction, retrieval or compression methods were available, so they were ex-
tremely hard to construct and use. During the past ten years, however, major progress was made
in finding better construction and search algorithms: (a) Linear Construction: In 2003, three
groups independently found methods to construct the suffix array in O(n) time (Kim et al., 2003;
Ko and Aluru, 2003; Kärkkäinen and Sanders, 2003); (b) BW-Search: a new and better search
procedure (Ferragina and Manzini, 2000), based on a new auxiliary data structure, the bwt (Bur-
rows Wheeler Transform); (c) Wavelet trees: a new data structure which enables efficient access
to certain properties of bwt (Grossi et al., 2003) and increases the speed of BW-search; (d) Vari-
ous compression techniques for SA, which enable more space-efficient storage; for an overview,
see (Navarro and Mäkinen, 2007).

As a result of these improvements, it is possible to identify the match range for any pattern
P , m characters in length, in O(m) time7 if BW-search and wavelet trees, but only weak com-
pression are used. These new developments still have not solved the problem that searching the

6 The British National Corpus, 100 million words, see http://www.natcorp.ox.ac.uk/
7 Strictly speaking, the time is bound by O(m(1+log |Σ|/ log log n)), where |Σ| is the size of the alphabet. However

that is asymptotically equivalent to O(m) when the alphabet is as much smaller than the text as it is the case for
large-scale natural-language corpus search. See (Navarro and Mäkinen, 2007), p. 42 for details.

PACLIC 24 Proceedings 733

SA (and bwt) requires frequent random access to large data structures, hence these must be stored
in memory, while disk access would cause inacceptable delays. But since servers equipped with
more than 100 GB of main memory have become available, it is reasonable to resonsider suffix
arrays, and to increase their potential by adding features required for CSEs: annotation support
and pattern matching. The following sections describe how that can be done.

3.2 Parallel suffix arrays
The first step is to allow annotations to enter the index. Suppose a text T ∈ Σ∗ of length n is
given, and one layer of r annotations

A = ((a1, p1, `1), (a2, p2, `2), . . . , (ar, pr, `r))

such that each annotation (ai, pi, `i) consists of a label ai ∈ Σ∗, a starting position pi < n and a
length `i. pi indicates where in T the substring annotated with ai starts, `i indicates the number of
T -characters it covers. For example, given

T = is but a dream within a dream

and POS-annotations V, Conj etc., the annotation layer might look like this:

A = ((V, 1, 2), (Conj, 4, 3), (Det, 8, 1), (N, 10, 5),
(Prep, 16, 6), (Det, 23, 1), (N, 25, 5)) .

Although in this example the annotations each relate to one word of the text, they could as well
start and end in the middle of words or span across several words. However, I do, at this point,
assume that annotations are non-overlapping. There are two ways to bring these annotations into
the index for T :

Method 1: Single-integer annotations. Three steps need to be performed: (1) Each distinct
annotation label is mapped to a unique integer (e.g. using a hash table), that is, a new annotation
alphabet Λ is created, in which each annotation is represented as one integer. (2) An extra integer
is introduced in Λ, below represented by ∅, which is used as a dummy annotation for all areas
of T that are not covered by any element of A (in the example above, this applies to the space
characters between words). (3) A is replaced by a string A′ ∈ Λ∗ containing the new annotation
symbols in the order of the T -positions they refer to, and a bitvector BT↔A of length n indicating
the starting positions of annotations relative to T . The example above now becomes:

A′ =1∅2∅3∅4∅5∅3∅4
BT↔A =10110011110000110000011110000 ,

where V has been mapped to 1, Conj to 2, and so forth. The next step is to construct a suffix
array SAA′ from the Λ-string A′, along with bwt and wavelet trees. That enables fast searches
for sequences consisting solely of annotations. It will later be shown how the bitvector is used to
accomplish searches for mixed queries, i.e. queries containing both T -sequences andA-sequences.

Method 2: Complex annotations. Sometimes annotations are themselves complex and one
would like to be able to search inside them, rather than mapping them to atomic integers. This is
accomplished by appending a new character] /∈ Σ to every label ai as a separation mark, and then
concatenating all labels to a new string A′:

A′ = V]Conj]Det]N]Prep]Det]N]

In addition, two bitvectorsBT↔A andBA↔A are defined, the former in the same way as in method
1, while the latter is of length |A′| and has a 1 wherever a new annotation starts in A′:

BA↔A = 101000010001010000100010

734 Workshop on Advanced Corpus Solutions

Again, a suffix array SAA′ for A′ enables searching for substrings of annotations as well as se-
quences of annotations. The]-symbols prevent undesired matches across annotation-boundaries.

How the bitvectors are used for mixed T /A′ queries. Both the bitvector of method 1 and
the bitvectors of method 2 need to undergo an indexation process, during which a rank index and
a select index are generated for each bitvector, defined as follows: Let B be a bitvector and b its
length, then rankB and selectB are functions such that

rankB(i) = the total number of 1s in B[1..i]
selectB(j) = i s.t. there are j 1s in B[1..i] .

Using techniques described by (Jacobson, 1989), it is possible to construct, in O(b) time, data
structures that implement these functions, such that a lookup can be performed in O(1) time and
no more than b + o(b) bits of space are consumed in total (including the bitvector itself). In the
case of single-integer annotations (method 1), rankBT↔A and selectBT↔A are constructed; in
the case of complex annotations, these and rankBA↔A and selectBA↔A are constructed. In
addition, in both cases the inverse suffix arrays for T and A′ must be computed and stored in
memory: Given a suffix array SA, its inverse is defined as

invSA[j] := i s.t. SA[i] = j.

The array invSA can be generated from SA in linear time.
To see how these data structures work together, consider a mixed query σλ, where σ ∈ Σ∗ is a

substring match against T and λ is a substring match against the annotations. We first assume that
method 1 was used, hence that λ ∈ Λ∗ is a sequence of annotations mapped to integers. The next
step is to search the suffix arrays and determine the match ranges (lσ, rσ) for σ in SAT and (lλ, rλ)
for λ in SAA′ . Clearly, the number of occurrences of σ in T is occσ = rσ − lσ, the number of
matches for λ is occλ = rλ− lλ. We must now check, for each σ-match, whether it is followed by
a λ-match. Let lσ ≤ x < rσ one of the σ-matches. It begins at position p = SAT [x] of T and it is
|σ| characters in length. Hence it is followed by a λ-match, if and only if an A-annotation starts at
p+ |σ| and that annotation corresponds to a λ-match in A′, which is the case iff the corresponding
position in A′ is a suffix in the match range (lλ, rλ). We therefore verify:

A-element starts at p: BT↔A[p] = 1
Position in A′: p′ := rankBT↔A(p+ |σ|)

Is p′ a λ-match: lλ ≤ invSAA[p′] < rλ

If SA and invSA are available for random access, all of the above can be tested inO(1) time, hence
it takes O(occσ) time to compute the set of σλ-matches from the two individual match ranges.
Moreover, the procedure works in the reverse direction, too, starting from the λ-matches and
determining those among them that are preceded by a σ-match (using select instead of rank;
the time consumption becomes O(occλ)). Hence it is possible to choose the matching direction
according to whichever part of the query has fewer matches, i.e. let occµ := min(occσ, occλ),
then the match combination can be computed in O(occµ) time.

This is different when inverted files are used instead of suffix arrays, because they do not
have the match range property. Verifying whether the position following a given match for σ is
in the position list for λ requires a binary search of that list (O(log occλ) time), rather than a
mere range check. Let occM := max(occσ, occλ), then the match combination generally takes
O(occµ log occM) time if inverted files are used.

This result can be extended to general sequential queries σ1λ1 · · ·σmλm of any length m: The
match combination time depends only on the least frequent (i.e. most specific) element if suffix

PACLIC 24 Proceedings 735

arrays are used, but it depends on the frequency of all elements if inverted files are used. In other
words, suffix arrays have a least-frequency property for match combinations.

Moreover, it is possible to define gaps of fixed length (measured in terms of number of T -
characters, or alternatively, as number of A-annotations) between the individual elements, e.g. a
query like σA:3

./ λ, indicating a distance of 3 arbitrarily A-annotated elements between σ and λ,
can be evaluated in the same asymptotic time (because the length ` of the three wildcard elements
following σ can be computed for each match candidate using rank and select, and then added
to the candidate position p+ |σ|+ ` before making the match range check for λ).

The property also holds when complex annotations and method 2 are used, at least when
searching for prefixes of annotations, rather than arbitrary substrings of them. The distance
calculations must then be made using the rank/select indexes for BT↔A to map positions between
T and A, and those for BA↔A to compute the string length of annotations in A′. If arbitrary
substring matching in annotations is required, the match process is delayed by a factor related to
the length of λ, as every position inside the annotation must be checked for being a possible match.

I decided to name these data structures and methods parallel suffix arrays, because they are
based on the idea to consider T and A′ as parallel (and to connect them through indexed bitvec-
tors). Further generalization of this idea leads to a complete CSE which I will call sufex8.

4 Sufex

4.1 General patterns

Multiple annotation layers It is straight-forward to add further layers of annotation, e.g. semantic
or morphological information, constituent classes etc. Each layer A1, A2, . . . is represented by an
annotation string A′i, a bitvector BT↔Ai , and BAi↔Ai if it is complex. Direct mappings between
layers Ai, Aj are unnecessary, as they can be emulated using BT↔Ai and BT↔Aj . Hence, total
space consumption of the index grows in an additive manner as layers are added.

Branching queries When defining queries to a CSE it is important to be able to state alternatives
to parts of the query. For example, one element of a larger query may be an expression that is
supposed to either match a word annotated as verb, or alternatively, a form of “to be”, followed
by a participle (to indicate a verb in passive voice). Generally speaking, a query operator for
alternatives, such as ⊕(e1, e2, . . . , em) , is required, defined to return the set of substrings of T
that match one of the subexpressions ei. In traditional inverted-file based systems this is usually
written as e1 OR e2 · · · OR em. If all ei are distinct Σ-strings, the individual match sets for
each ei are disjoint, and computing the final result set is simply a matter of concatenating them.

But if some of the ei refer to annotations or are themselves non-atomic, i.e. sequences or ⊕-
expressions, the individual match sets might not be disjoint, causing the end result to contain
duplicate matches, which makes it difficult to read and might cause frequency counts to be wrong.
Hence, duplicate elements must be detected and removed from the individual match sets. This
can be done either by creating a searchable result set representation, such as a hash table or tree,
and inserting each of the matches unless it has been inserted before; or, it can be done by creating
a simpler, non-searchable result list and checking for each match for any ei whether it is also a
match for one of the other ej , j < i. Both these methods are available when inverted files are
used instead of suffix arrays, too, but if the second method is used, suffix arrays have an advantage
because the member check for the ej , if it is atomic, involves only an O(1) range check, whereas
it would be logarithmic for an inverted file.

8 For suffix-array based index.

736 Workshop on Advanced Corpus Solutions

Sequences of complex elements In section 3, the least-frequency property was established for
sequential queries, consisting of atomic elements and fixed-length-gaps, i.e. expressions like

e1
Q1:x1
./ e2

Q2:x2
./ · · ·

Qm−1:xm−1

./ em ,

where ei ∈ Σ∗,Λ∗; Qi ∈ {Σ,Λ}; xi integers. To reach the full power of regular expressions, it is
important that such queries can also be processed if the ei are themselves complex, i.e. sequences
or branching elements. This is indeed possible; the query then becomes a graph, and determining
the least-frequent element, at which the matching should start, becomes a non-trivial problem.
The number of matches of a sequence or branching subelement cannot be calculated accurately
before the entire matching process has finished, but an upper bound can be determined: For a
sequence, it is the frequency of its least-frequent subelement, for a branching element it is the
sum of the frequencies of its branches. Based on this, it is possible to recursively determine
the approximately best atomic subelement of the graph for the match combination process to
begin. Once it has begun, the least-frequency property takes full effect during the processing of
sequential substructures, and the range property accelerates the duplicate-checks where branching
substructures are involved, as described above. Both is not the case with inverted files, hence the
theoretical performance of sufex is, generally, superior even for the most complex query structures.

Iteration The final operation required for regular expressions is the iteration operator, which is
denoted by ~(e) for any atomic or complex expression e. It corresponds to a sequence

e
T :0
./e

T :0
./ · · · T :0

./e

of undetermined length. Since all its elements are identical, the least-frequency property is pre-
served, even if the matching simply starts on the left end, or alternatively on the right end, and
continues as long as new matches are found. Therefore, iteration elements can itself become part
of complex queries, and the three operations Q:x

./ , ⊕ and ~ establish a query language with the
power of regular expressions, over an annotated text with any number of annotation layers.

4.2 Gap-filling

In order to analyse linguistic patterns in specific contexts, it is desirable that not only substrings
matching the entire query are identified, but that selected parts of the query, especially matches
for gaps or annotation elements, can be extracted and separately returned as frequency lists. For
example, if one wants to investigate the syntactic environment of “discussion”, i.e. usages like
“discussion on”, “discussion with” etc., one might issue a query such as

discussion
T :0
./ <Prep><Det>︸ ︷︷ ︸

(∗)

T :0
./<N>

and then obtain a frequency list of the content that matched the query part marked by (∗). The
sufex matching process is particularly well-suited for this purpose: Firstly, it is easy to keep track
of the beginnings and ends of the desired subexpressions during the matching; secondly, frequency
lists are easy to generate: Given starting positions p1, p2 of two matches for the subexpression, a
comparison of invSA[p1] and invSA[p2] in O(1) time suffices to determine their lexicographic
order. Moreover, if the lcp-array has been generated, duplicate checks can be performed in O(1)
time, too (as described by Goller, 2010).

PACLIC 24 Proceedings 737

4.3 Look-betweens and negation

Another feature related to gaps is the ability to define some of their content partially. For example,
Sufex enables queries of the three types below:

(a) e1
Q:x:y
./ e2 (b) e1

Q:x:y
./ [?e3]e2 (c) e1

Q:x:y
./ [!e3]e2

(a) represents a gap of length x ≤ ` ≤ y elements of the annotation level Q; (b) specifies that
somewhere inside the gap there must be a match for e3 (positive look-between); (c) means there
must be no match for e3 in the gap (negative look-between). Without going into further detail, it
should be noted that these types of queries can be readily incorporated into the matching process.

Table 1: Construction times for a sufex with three annotation layers and texts of various sizes. A
thread number of “10/14” means that 10 threads were used during SA construction, but 14 for the
construction of WVT. Time durations are in the format h:mm.

Corpus #chars
(millions)

Size Λlem Threads SAT WVTT SAPOS WVTPOS SAlem WVTlem SAcPOS WVTcPOS

S8 589 61,394 10/14 1:00 1:08 0:26 0:23 0:25 3:56 0:53 0:40
Reuters 958 93,018 10/14 2:06 1:42 0:45 0:34 0:44 5:48 1:31 1:02
Prod22 1,206 86,433 10/14 2:15 2:14 0:57 0:42 0:47 7:12 3:00 2:10
S5-8 1,966 72,036 10 3:17 3:48 1:30 1:13 1:27 11:46 3:03 2:03

5 Sufex in practice

5.1 Construction

Sufex was implemented as a C++ program which takes as input a configuration file stating the
number and types of annotation layers, and a file containing the text T with annotations in XML.
In all tests reported here, three annotation layers were indexed: APOS (POS-annotations); Alem
(baseforms of words, mapped to a 32-bit single-integer alphabet Λlem); AcPOS (POS along with
morphological information; implemented as complex annotations).

The index construction is performed by first establishing the parallel layers and bitvectors and
then creating SAQ, invSAQ and the wavelet tree WVTQ for each layerQ ∈ {T,APOS, Alem, AcPOS}.
For the construction of SAQ, a multi-threaded version of the DC-algorithm (Kärkkäinen et al.,
2006) is used, invSAQ is computed in a trivial way in one pass over SAQ, and for WVTQ the multi-
threaded construction method described by (Goller, 2010) is used. All these steps take less than 15
min each even for corpora with billions of characters, except the constructions of SAQ and WVTQ.
The running times for the latter two are given in table 1.

All tests were carried out on a large server with 4 AMD-Opteron CPUs (16 cores in total) and
128 GB of main memory. When the entire index is in RAM, total memory consumption was found
to be approx. (0.06 · N)/1024 MB for a corpus of N characters with the three annotation layers
described above. Hence, on a 32-bit server with about 3 GB of memory available for use by sufex,
a corpus of ≈ 52 million characters (≈ 7 million words) can be processed efficiently9.

5.2 Query processing

Table 2 shows the processing times of several example queries. It demonstrates very clearly the
effects of the least-frequency property: Queries that contain at least one relatively rare element,
such as a specific word or lemma, are processed in much less than a second, whereas a query with
atomic elements that are all very frequent takes much longer.

9 Note that during index construction, memory consumption is lower, because while one annotation layer is created,
the others need not be present in memory.

738 Workshop on Advanced Corpus Solutions

Table 2: Query processing times for the S5-8 corpus (approx. 2 billion characters), including search
(identifying the set of matching positions) and extraction (extracting matching strings), but not the
actual printing of the results on screen. #..#-elements refer to Alem, 〈..〉 to APOS, $..$ to AcPOS.
Subqueries enclosed in [..] are marked for separate extraction and frequency counting (gap-filling).
Processing times are given in milliseconds.

Query #results Search time Extraction time
millions 5,857 106 200
thousands of 7,526 74 399
#thousand# of 7,696 168 343
discussion〈IN〉〈NN〉 1,296 213 80
discussion$pr$$n$ 1,894 372 118
discussion[$pr$$n$] 1,894 530 111

#preparation#
APOS:0:2
./ 〈IN〉T :0

./ ⊕ (〈NN〉, 〈NNS〉) 752 191 28

〈JJ〉〈NN〉〈NN〉
APOS:0:2
./ 〈IN〉T :0

./ ⊕ (〈NN〉, 〈NNS〉) 13,229 4,065 621

〈NN〉〈NN〉
APOS:0:2
./ 〈IN〉T :0

./ ⊕ (〈NN〉, 〈NNS〉) 129,723 36,711 5,178

When comparing these numbers to those of web search engines, it is important to remember
that web search engines are designed to return only the N best results, typically N ≈ 2000. For
the purpose of linguistic investigations, the user is generally interested in retrieving the complete
result set, even if it means waiting for several minutes. But if necessary, partial result set retrieval
could be implemented in sufex, and it would result in a significant reduction of response times.

6 Conclusion
Clearly sufex is able to process large annotated corpora and enable excellent query response times,
which are generally in the subsecond range even for complex queries with many annotation el-
ements, as long as the query contains at least one specific subelement. In this respect, sufex
is superior to inverted file-based CSEs. Another important advantage is that neither annotation
boundaries nor query elements need to be related to any kind of pretokenization of T . Note that
this is useful not only when searching inside words, but also when searching for sequences of
words or annotations: As long as they are all on the same layer, they can be searched for directly
in SA, and no match combination process is required.

Drawbacks of the approach include: (a) Annotations must be defined as layers. Overlapping
annotations are only possible if located on different layers. (b) High performance is only possible
if the main data structures are loaded into RAM. This means that, at the present time, sufex-
based CSEs for corpora with hundreds of millions of tokens require a relatively high, but not
unrealistic, hardware investment. However, given its performance and flexibility, sufex is well-
suited for projects involving larger user-groups and joint research efforts of multiple institutions,
which makes the availability of the necessary hardware budget more likely.

Sufex’ gap-filling capabilities (4.2) allow it to be used not only interactively by linguists, but
also by automated bootstrapping processes. For example, given a set S of words or patterns of
interest, submitting a query gLsgR for each s ∈ S, where gL and gR are “gap-like” wildcard
expressions for the left and right context, and having sufex generate frequency lists of the content
found for gL and gR, makes it possible to iteratively refine a set of contexts, which in turn can
be used to find further elements belonging to S. While such bootstrapping has already been used
in many areas of NLP research, sufex improves it in two ways: (a) Contexts can be defined as
complex expressions, including annotation symbols, rather than mere windows of N words; (b)
Sufex is an index and provides answers within milliseconds (the more specific the queries become
in the process, the faster the retrieval, due to the least-frequency property). It therefore has the
potential to greatly facilitate the further development of such bootstrapping methods.

PACLIC 24 Proceedings 739

References
Ananiadou, S. (2009). Text mining for biomedicine. In Prince, V. and Roche, M., editors, In-

formation Retrieval in Biomedicine: Natural Language Processing for Knowledge Integration,
pages 1–10. Information Science Reference - Imprint of: IGI Publishing, Hershey, PA.

Christ, O. (1994). A modular and flexible architecture for an integrated corpus query system.
In Proceedings of COMPLEX’94, 3rd Conference on Computational Lexicography and Text
Research, July 7-10, pages 23–32, Budapest, Hungary.

Davies, M. (2003). Relational n-gram databases as a basis for unlimited annotation on large
corpora. In Proc. of Workshop on Shallow Processing of Large Corpora, March 27, pages
23–33, Lancaster, UK.

Davies, M. (2004). A match made in corpus heaven: the bnc and wordnet in relational database
form. In 25th Conference of the International Computer Archive of Modern and Medieval
English.

Ferragina, P. and Manzini, G. (2000). Opportunistic data structures with applications. Technical
report, University of Pisa, TR-00-03.

Goller, J. (2010). Exploring text corpora using index structures. PhD thesis. To appear, Centrum
für Informations- und Sprachverarbeitung, Ludwig-Maximilians-Universität München.

Grossi, R., Gupta, A., and Vitter, J. S. (2003). High-order entropy-compressed text indexes. In
SODA ’03: Proceedings of the 14th annual ACM-SIAM symposium on discrete algorithms,
pages 841–850, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

Jacobson, G. (1989). Space-efficient static trees and graphs. In Proc. of the 30th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 549–554.

Kärkkäinen, J. and Sanders, P. (2003). Simple linear work suffix array construction. In Proc. 13th
International Conference on Automata, Languages and Programming. Springer.

Kärkkäinen, J., Sanders, P., and Burkhardt, S. (2006). Linear work suffix array construction. J.
ACM, 53(6):918–936.

Kilgarriff, A. (2007). Googleology is bad science. Comput. Linguist., 33(1):147–151.
Kilgarriff, A., Rychlý, P., Smrz, P., and Tugwell, D. (2004). The sketch engine. In Williams,

G. and Vessier, S., editors, Proceedings of the Eleventh EURALEX International Congress,
France. Faculté des Lettres et des Sciences Humaines, Université de Bretagne Sud.

Kim, D. K., Sim, J. S., Park, H., and Park, K. (2003). Linear-time construction of suffix arrays. In
Proc. 14th Ann. Symposium on Combinatorial Pattern Matching, Berlin / Heidelberg. Springer.

Ko, P. and Aluru, S. (2003). Space efficient linear time construction of suffix arrays. In Proc. 14th
Annual Symposium on Combinatorial Pattern Matching, Berlin / Heidelberg. Springer.

Navarro, G. and Mäkinen, V. (2007). Compressed full-text indexes. ACM Comput. Surv., 39(1):2.
Renouf, A., Kehoe, A., and Banerjee, J. (2007). Webcorp: an integrated system for web text

search. In Nesselhauf, C., Hundt, M., and Biewer, C., editors, Corpus Linguistics and the Web.
Rodopi, Amsterdam.

Rychlý, P. (2000). Korpusové manažery a jejich efektivnı́ implementace (engl.: Corpus Managers
and their Effective Implementation). PhD thesis. Faculty of Informatics, Masaryk University,
Brno, Czech Republic, www.fi.muni.cz/˜pary/disert.ps.

Rychlý, P. (2007). Manatee/bonito – a modular corpus manager. In Sojka, P. and Horák, A.,
editors, First Workshop on Recent Advances in Slavonic Natural Language Processing 2007,
Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic.

Witten, I. H., Moffat, A., and Bell, T. C. (1999). Managing Gigabytes: Compressing and Indexing
Documents and Images. Morgan Kaufmann Publishers, San Francisco, CA.

740 Workshop on Advanced Corpus Solutions

