
Fast syntactic searching in very large corpora for many languages

Miloš Jakubíček‡†, Adam Kilgarriff†, Diana McCarthy† , Pavel Rychlý‡†

{xjakub, pary}@fi.muni.cz
adam@lexmasterclass.com, diana@dianamccarthy.co.uk

‡Masaryk University, Brno, Czech Republic
†Lexical Computing, Ltd., Brighton, United Kingdom

Abstract. For many linguistic investigations, the first step is to find examples. In the 21st
century, they should all be found, not invented. Thus linguists need flexible tools for finding
even quite rare phenomena. To support linguists well, they need to be fast even where corpora
are very large and queries are complex. We present extensions to the CQL ’Corpus Query
Language’ for intuitive creation of syntactically rich queries, and demonstrate that they can
be computed quickly within our tool even on multi-billion word corpora.

Keywords: corpus search, large corpora, CQL, syntactic search

1 Introduction
It is important for much linguistic research to find datasets relating to hunches and hypotheses.
Linguists and system developers would like to be able to find large numbers of examples quickly
and easily.

Our tool computes the Corpus Query Language (CQL) (Christ and Schulze, 1994) queries
rapidly on large corpora using the Manatee corpus manager system as its backend which is based
on stream processing techniques and has been described in (Rychlý, 2000). We have large (more
than 100 million-word) corpora loaded into the tool and accessible over the web for 25 languages
and the number rises month by month (Reddy et al., 2010). For English, Italian and German we
have very large (more than 1.5 billion-word) corpora, and for English, also a corpus of 5.5 billion
words (Pomikálek et al., 2009).

We have recently augmented the CQL formalism with extensions to the ‘within’ operator and
a new ‘containing’ operator, to better support queries relating to phrase structure. In this paper we
first summarise standard CQL, then describe the extensions to the ‘within’ operator, then introduce
the ‘containing’ operator, and finally indicate computation times for sample queries.

For the same purpose, the ‘meet’ and ‘union’ operators have been extended so that they can be
used at any token position in the query as we describe in this paper.

For the bulk of the paper we assume a corpus which is lemmatised and part-of-speech tagged
(as these processes are fast and available for many languages, and have been applied to most of
our corpora) but not parsed.

2 Related Work
There are numerous other corpus query tools available. Here we give brief references to several
that are either widely used on large corpora or which concentrate on syntactic search.

• the IMS Stuttgart CorpusWorkBench (Christ and Schulze, 1994), limited to 2 billion-words
corpora,

• a system presented in (Davies, 2009) which uses standard relational database technology, not
closely related to syntactic search,

• tools being part of the Tigersearch project (König and Lezius, 2000), currently unmaintained,

• the Gsearch corpus query system (Steffan et al., 2001),

PACLIC 24 Proceedings 741

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286947029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 Core CQL

A CQL query is a pattern which may match a token or series of tokens in the corpus. Each token
is assigned a set of attributes (word form, lemma, part-of-speeech tag etc.) and each corpus might
be assigned a set of structures. Structures may identify any sequence of tokens and are typically
used to mark up documents, paragraphs, sentences, utterances, syntactic phrases of various kinds
and named entities. Zero-length structures can also be used. Structures are marked up in standard
XML, as <structure>, and may carry structure attributes.

Basic CQL queries take the form of a sequence consisting of:

[attribute="value"]

specifications, where attribute is a token attribute and value is a regular expression over the
attribute which might use the standard notation of Kleene star/Kleene plus, repetition, set restric-
tions and various other as defined by the underlying PCRE library (Hazel, 1997). A simple query
searching the corpus for the phrase be looking forward to + gerund is:

[lemma="be"][word="looking"][word="forward"][word="to"][word=".*ing"]
The query matches was looking forward to meeting, am looking forward to participating but not
am looking forward to it.

A single token denoted in the query by [. . .] can contain more restrictions combined using the
logical ‘and’ (&) and ‘or’ (|) operators, so that we can improve the example above by specifiying
that the last position must be a verb:

[word=".*ing" & tag="V.*"]

and hereby prevent matching phrases like looking forward to Beijing.
Not only an attribute value, but a whole position can be subject to regular expressions, en-

abling queries suitable for basic phrase structure matching (e. g. those two flowers, winter flowers,
a flower):

[tag="SPEC.*"]{0,2} [tag="N.*"]+

Structures can be employed in a query using the notion of <str>, </str> or <str/> which
marks the beginning, the end and the whole structure respectively and can contain structure-
attribute constraints.

Hence, when looking for nouns at the very beginning of a closed set of documents determined
some attribute, we can formulate the query in the following way

<doc id="dialect10"> [tag="N.*"]

Finally, any position can be assigned a numeric identifier constrained by a global condition at
the end of the query:

1:[word=".*"] 2:[word=".*"] & 1.tag = 2.tag

which will match any two consecutive words with the same value for the tag attribute.

4 within and containing queries

The CQL as described by (Christ and Schulze, 1994) has established a within <structure>
query limiting the search within the boundaries of structure. This ensured that when matching e. g.
noun phrases using a query of the following form:

[tag="N.*"]+ within <s/>

the matched sequence will never cross the sentence boundary delimited by structure s (which
could be e. g. a sentence and takes this meaning in examples given in this paper).

742 Workshop on Advanced Corpus Solutions

In our recent development, we have extended the within query so that the argument can be
any subquery of the CQL language. This represents a substantial extension as it makes it possible
to contruct complex nested queries matching e. g. for any subpart of a bigger sequence, let it be
a structure or an embedding of a sequence into another one. It also makes many queries much
easier to craft, speeding up the linguist’s work and more closely linking theory to query.

within allows us to match any constituent of a phrase structure rule:

PP → P NP
⇓

[tag="P.*"]
within [tag="P.*"] [tag="N.*"]+

As a dual option to the within query, a new containing operator has been introduced. It
has the same syntax but returns not the embedded, but the embedding sequence. In this respect it
allows us to match a phrase structure:

PP → P NP
⇓

[tag="P.*"] [tag="N.*"]+
containing [tag="P.*"]

It may be nested, even together with the within operator, enabling truly complex queries
which are still computed efficiently.

Some of the notable examples of queries which might be created using the extended within
and new containing operator entail1:

4.1 particles
Verb particles can be split up from the verb and thus matching them requires involving queries
similar to:

[tag="PR.*"] within [tag="V.*"] [tag="AT0"]? [tag="AJ0"]*
[tag="(PR.?|N.*)"] [tag="PR.*"] within <s/>

4.2 relative clauses
Relative clauses introduced by that can be distinguished from that used in a specifier position by
following query:

[lemma="that"] within [tag="AT0"]* [tag="AJ0"] [tag="N.*"]
[]{0,20} [tag="V.*"] within <s/>

4.3 idioms
Searching for idioms (Bušta, 2008) is especially complex in free word order languages where
verbal idioms consist of several parts spread more or less arbitrarily over the whole sentence, as
can be demonstrated on the case of the Czech idiom

hnout někomu žlučí – “to get somebody’s goat”
word-by-word translated as:
hnout “move” [V, infinitiv]

1 if not specified otherwise, the BNC tagset (Burnard, 1995) is assumed as given on
https://trac.sketchengine.co.uk/wiki/tagsets/bnc.

PACLIC 24 Proceedings 743

někomu “somebody” [N, dativ]
žlučí “bile” [N, instrumental].

A unique solution to this problem lies in using a nested containing query:

<s/> containing [lemma="hnout"] containing [tag=".*c3.*"]
containing [word="žlučí"]

4.4 phrasal verbs
We can match phrasal verbs by querying:
(a) [tag="PR.*"] within [tag="V.*"] [tag!="V.+"] [tag="PR.*"]

or, depending on the desired match, in the dual way:
(b) [tag="V.*"] [tag!="V.+"] [tag="PR.*"] containing [tag="PR.*"]

5 meet and union queries
A completely separate query type with the semantics inspired by functional programming
paradigm is represented by so called meet and union queries. A meet query takes the form of

(meet [attribute=value] [attribute=value] -N +M)

and matches words satisfied by the attribute=value restriction on the first position if and
only if there is a token satisfying the costraints given on the second position in a -N to +M context.

The result of two meet queries can be combined using the union operator:

(union (meet ...) (meet ...))

Given this, one can match all occurrences of give in context of up together with drop in the context
of out using the following query:

(union
(meet [lemma="give"] [word="up"] -10 10)
(meet [lemma="drop"] [word="out"] -5 5)

)
Note that the union operator might be nested as well.

Formerly, a CQL query was either an ordinary query (as described in Section 3) or a sin-
gle (but possibly nested) meet/union query – their mixing was not allowed. We extended
the CQL formalism in a way that enables a meet/union query to be placed at any posi-
tion in the standard query syntax. Thus, we can exploit both the extended meet/union and
within/containing queries to make a contextual search for e. g. all sentences where the
verb have occurs in a −5 to +5 context of a pronoun and concurrently some noun occurs in a −3
to +3 context of the adjective blue:

<s/>
containing (meet [lemma="have"] [tag="P.*"] -5 5)
containing (meet [tag="N.*"] [lemma="blue"])

6 Parsed Corpora
Our larger corpora do not currently contain phrase structure or similar markup, and for this reason
the paper focuses on queries which do not assume it. However we plan to add some varieties,
in particular for named entities and for base noun phrases. (Full parsing is appealing until the
logistics are considered: there are currently no parsers that can parse a billion words without
a very large amount of time and effort.)

Base-np markup integrated with the new operators will make the linguist’s life easier for many
queries.

744 Workshop on Advanced Corpus Solutions

Table 1: Query performance evaluation – corpora legend: ◦ BNC (110M tokens), • BiWeC (version with
9.5G tokens), ∗ Czes (1.2G tokens)

query # of results time (m:s)
◦ [lemma="time"] 179,321 0.07
◦ [lemma="t.*"] 14,660,881 3.12
◦ Ex. 4.1 (particles) 1,219,973 33.36
• Ex. 4.1 (particles) 97,671,485 32:26.48
◦ Ex. 4.2 (relclauses) 510,829 1:7.44
• Ex. 4.2 (relclauses) 36,080,966 79:38.33
∗ Ex. 4.3 (idioms) 66 1:6.86
◦ Ex. 4.4a (phrasal verbs) 1,257,327 6.54
• Ex. 4.4a (phrasal verbs) 88,494,217 8:2.37
◦ Ex. 4.4b (phrasal verbs) 1,241,575 6.23
• Ex. 4.4b (phrasal verbs) 81,159,268 8:14.69
◦ Ex. 5 (meet/union) 3 8.47
• Ex. 5 (meet/union) 1457 7:13.12

7 Evaluation of performance

Extending the Corpus Query Language would be useless if evaluating complex within and
containing queries would become infeasible. However, our measurements confirm the pow-
erful efficiency of the underlying corpus manager Manatee. The results are summarized in Table
1: we first provide performance evaluation for some basic queries and the for those listed in pre-
viously given examples. All measurements were done in a command-line interface on an AMD
Opteron 2.4 GHz machine, BNC (Burnard, 1995) and BiWeC (Pomikálek et al., 2009) corpora
were used for querying except for Example 3 where the Czech corpus CZES (Horák et al., 2009)
was used.

Figure 1: User interface of the system: query dialogue

PACLIC 24 Proceedings 745

Figure 2: User interface of the system: concordance results

8 Conclusions and future work

In this paper we have presented an extension to the Corpus Query Language (CQL) which
makes it possible to perform fast syntactic searches in very large corpora using the within and
containing or meet and union operator.

These new enhancements enrich the current corpus management system and provide lexicog-
raphers with new ways how to utilize their tagged but unparsed corpora.

In the coming years we plan to implement further extensions to the CQL based on the needs of
our users and our future research in the field of corpus management systems and databases.

Acknowledgments

This work has been partly supported by the Ministry of Education of CR within the Center of
basic research LC536 and in the National Research Programme II project 2C06009 and by the
Czech Science Foundation under the projects P401/10/0792 and 407/07/0679. The research lead-
ing to these results has received funding from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement Nr. 248307.

References

Burnard, L., editor (1995). Users Reference Guide for the British National Corpus. Oxford
University Computing Service.

Bušta, J. (2008). Computing idioms frequency in text corpora. In Proceedings of Recent Advances
in Slavonic Natural Language Processing 2008, pages 71–74, Brno, Czech Republic. Masaryk
University.

Christ, O. and Schulze, B. M. (1994). The IMS Corpus Workbench: Corpus Query Pro-
cessor (CQP) User’s Manual. University of Stuttgart, Germany, http://www.ims.uni-
stuttgart.de/projekte/CorpusWorkbench.

Davies, M. (2009). Relational databases as a robust architecture for the analysis of word fre-
quency. In In What’s in a Wordlist?: Investigating Word Frequency and Keyword Extraction,
pages 53–68, Ashgate.

Hazel, P. (1997). PCRE – Perl-compatible regular expressions. University of Cambridge, United
Kingdom, http://www.pcre.org.

746 Workshop on Advanced Corpus Solutions

Horák, A., Rychlý, P., and Kilgarriff, A. (2009). Czech word sketch relations with full syntax
parser. In After Half a Century of Slavonic Natural Language Processing, pages 101–112,
Brno, Czech Republic. Masaryk University.

König, E. and Lezius, W. (2000). A description language for syntactically annotated corpora. In
Proceedings of the COLING Conference, pages 1056–1060, Saarbrücken, Germany.

Pomikálek, J., Rychlý, P., and Kilgarriff, A. (2009). Scaling to Billion-plus Word Corpora. Ad-
vances in Computational Linguistics, 41:3–13.

Reddy, S., Kilgarriff, A., and Pomikálek, J. (2010). A corpus factory for many languages. In To
appear in LREC, Malta.

Rychlý, P. (2000). Korpusové manažery a jejich efektivní implementace. PhD thesis, Fakulta
informatiky, Masarykova univerzita, Brno.

Steffan, C., Corley, M., Keller, F., Crocker, M. W., and Trewin, S. (2001). Finding syntactic struc-
ture in unparsed corpora: The gsearch corpus query system. In Computers and the Humanities
35:2, pages 81–94.

PACLIC 24 Proceedings 747

