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Abstract. Current researches on Question Answering concern more complex questions than 

factoid ones. Since definition questions are investigated by many researches, how to acquire 

accurate answers still becomes a core problem for definition QA. Although some systems 

use web knowledge bases to improve answer acquisition, we propose an approach that 

leverage them in an effective way. After summarizing definitions from web knowledge 

bases and merge them to a definition set, a two-stage retrieval model based on Probabilistic 

Latent Semantic Analysis is produced to seek documents and sentences in which the topic is 

similar to those in definition set. Then, an answer ranking model is employed to select both 

statistically and semantically similar sentences between sentences retrieved and sentences in 

definition set. Finally, sentences are ranked as answer candidates according to their scores. 

Experiments indicate following conclusions: 1) specific summarization technologies 

improves definition QA systems to a better performance; 2) topic based models can be more 

helpful than centroid-based models for definition QA systems in solving synonym and data 

sparse problems; 3) shallow semantic analysis is effective to find discriminative 

characteristics of definitions automatically. 

Keywords: web knowledge bases, question answering, definition questions, probabilistic 

latent semantic analysis. 
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1 Introduction 

Current researches on Question Answering (QA) mainly concern more complex questions than 

factoid ones. In TREC2007, ciQA track (Dang et al., 2007) focuses on ‘Relationship’ questions, 

which is defined as the ability of one entity to influence another, including both the means to 

influence and the motivation for doing so. In NTCIR-7, complex question (Mitamura et al., 

2008) are taxonomically defined as four types (Event, Definition, Biography and Relationship). 

Sentences that contain correct responses are extracted as answer candidates. In most cases, the 

correct answer for a complex question is composed of multiple sentences. 

Complex questions refer to complex relations between semantic concepts or synthesizing 

processes of deep knowledge; they implicate rich information need. Take a question-answer 

pair in Table 1 as an example. The question is a definition one; the information need is 
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supposed to be the consequence between the greenhouse gas and the greenhouse effect, and 

names of gases that cause the greenhouse effect. Therefore, Answer 1 and Answer 2 are both 

correct answers for the question. 

 

Table 1: A definitional question-answer pair. 

Question What is the greenhouse gas? 

Answer 1 Greenhouse gas is a kind of gas that causes 

greenhouse effect. 
Answer 2 Greenhouse gases include carbon dioxide, 

methane, nitrous oxide, etc.. 

 

Questions like “What is the greenhouse gas?” or “Who is Kofi A. Annan?” are assigned to 

definition questions, and this type of questions has become especially interesting due to their 

high frequency in real user logs (Figueroa, 2009). Similar to complex questions of other types, 

the answer to a definition question is a combination of complex semantic relations and should 

be accurate as while as non-redundant. Thus how to acquire precise information need becomes 

a core problem for definition QA. 

In order to acquire accurate answers (or nuggets), many systems aim at patterns of definition 

sentences. Such approaches leverage the syntactic styles of definition sentences and convert 

them to patterns for answer sentence retrieval. We (Ren et al., 2008) built a pattern list for 

Chinese complex questions by manual work. Wu et al. (2008) extracted definitional patterns 

from the Wikipedia data using regular expressions. Cui et al. (2004a) employed soft patterns 

(also known as probabilistic lexico-syntactic patterns), which were produced by unsupervised 

learning. These approaches are supported either by manual work or by annotated corpus more 

or less. 

Some approaches seek another access to solve the problem. Harabagiu et al. (2006) 

decomposed complex questions to factoid ones using lexico-semantic resources. Answers to the 

factoid questions are fused as the answer to the original question. Such methods convert 

information need acquisition to decomposition problem, by which abstract information need 

can be changed to concrete concepts. But general lexico-semantic resources may result in lower 

performance against specific resources like dictionaries. 

For a better performance, most systems employ specific knowledge bases such as Wikipedia 

or Encarta; and the essential reason is that the specific knowledge involves almost entire 

information need for a definition question. Hickl et al. (2007) searched the original complex 

questions into Wikipedia and calculate similarity between sentences in Wikipedia and the 

corpus. Zhang et al. (2005) utilized multiple web knowledge bases to improve EAT acquisition. 

Cui et al. (2004b) also indicated that Specific Web knowledge gleaned from definitional Web 

sites greatly improves the performance of definitional QA. However, most of these systems 

may achieves low performances, since complex questions imply relations (such as semantic 

similarity) between terms whereas these systems do not take them into account and just 

statistically retrieve and rank documents or sentences by centroid-based (or bag-of-words) 

method. 

In this paper, we propose an approach based on web knowledge bases. Our work differs 

from those mentioned above is that we employ web knowledge bases with an effective way. 

Since we are not meant to utilize any other method by manual work or annotated corpus, web 

knowledge bases are the exclusive way for our approach to acquire information need of 

questions. First, we summarize definitions from web knowledge bases and merge them to a 

definition set; then a two-stage retrieval model based on Probabilistic Latent Semantic Analysis 

(PLSA) is produced to seek documents and sentences in which the topic is similar to those in 

definition set; after that, an answer ranking model is employed to extract sentences which not 
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only statistically but also semantically similar with any sentence in definition set. Finally, 

sentences are ranked as answer candidates according to their scores. Experiments in NTCIR-7 

data set show that our approach leverages web knowledge bases effectively and achieves better 

performance than the baseline system in NTCIR-7. 

The rest of the paper is organized as follows. In Section 2, we show the processing 

mechanism of our system. In Section 3, we give methods of definition acquisition and answer 

ranking in detail. In Section 4, we discuss the experimental results. Finally, the conclusion and 

future work are given in Section 5. 

2 System Overview 

Our system utilizes a general QA framework which mainly contains three models: text 

annotation, document retrieval and answer ranking. To obtain the definition set, a 

summarization model is also employed. The system shown in Figure 1 carries out the following 

steps which are briefly described as follows. 

 

 
 

Figure 1: System processing mechanism. 

 

In text annotation model, words in questions and definitions summarized from web 

knowledge bases are segmented since the data set we utilize in our experiments is a simplified 

Chinese version. After eliminating stop words, we recognize named entities from sentences of 

questions and definitions. Finally, named entities and other terms are put into web knowledge 

bases for retrieval. 

We employ two summarization models for our system. The first one is an effective model 

that summarizes definitions from Wikipedia and the other one is a traditional single document 

summarization model. We first summarize definitions from Wikipedia and get a basic 

definition set. Then we utilize the traditional model to deal with other web knowledge bases 

and get a extent definition set. After that we combine the extent set to the basic set without 

sentence redundancy. 

For document retrieval, we utilize a statistical IR model based on VSM to retrieve 

documents in a wide range. Then we produce a topic model based on PLSA to compare topical 

similarity between definition set and sentences in documents. 

In answer ranking phase, sentences in relevant documents are weighted with those in 

definition set. The weighting method is based on statistical and shallow semantic similarity. 

Sentences are ranked and those with high scores are picked out as answer candidates. 
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In this paper, we mainly focus on how to utilize PLSA model to improve IR performance, 

and how to acquire precise answers by web knowledge bases. Thus details of retrieval model 

and answering ranking will be introduced in the following section. 

3 Definition Question Answering Based on Web Knowledge Bases 

In the experiments we utilize three web knowledge bases that are Wikipedia
1
, Baidupedia

2
 and 

Hudong
3
. All of them provide simplified Chinese version, so that we can easily use them for the 

experiments. 

3.1 Definition Summarization 

Although web knowledge bases are cleaned up and generalized by manual work, they still 

permeate insignificant information that may decrease the performance of document retrieval or 

answering ranking. To solve this problem, some systems make use of summarizing methods to 

acquire important portions from definitions. But when definitions are not rich, the snippets 

summarizing from them are also sparse. Since some web knowledges such as Wikipedia 

provide links to combine enormous concepts, documents linked by these links allows us to 

obtain more reliable texts. Ye et al. (2009) proposed a novel approach that can produces 

summaries with various length. By building an extended document concept lattice model, 

concepts and non-textual features such as wiki article, infobox and outline are combined. 

Experiments showed that system performance outperformed not only traditional summarizing 

methods but also some soft-pattern approaches. In this paper, we utilize this approach to 

perform definitions in Wikipedia. Definitions summarized are put into basic definition set. 

Although most definitions can be found in Wikipedia, we still utilize other two web 

knowledges as a supplement. Following an unsupervised summarization approach proposed by 

Ji (2006) to rank sentences, text summarized are put into extend definition set. Then we add 

sentences in the extent definition set to the basic set without sentence redundancy. 

3.2 PLSA based Document Retrieval 

Traditionally, retrieving a definition question may encounter more difficult than other complex 

questions because information derived from a definition question is quite insufficient for 

retrieval. For instance, the question in Table 1 has only one concept greenhouse gas, which is 

much difficult for IR models to seek relevant documents. To solve it, most QA systems employ 

various external resources such as WordNet or search engines to expand queries. But the 

performance of these systems can not reach those of which utilize specific resources like 

Wikipedia. For this reason, we consider using definitions summarized from web knowledge 

bases to expand queries formed by concepts in definition questions. 

As to IR models, many of them consider documents or sentences as a bag of words, which 

can provide a good performance at document level retrieval. But for QA systems, they 

encounter two problems that can not increase the performance effectively: (1) synonym and 

polysemy of concepts; and (2) data sparse in small text retrieval. Different from methods above, 

topic models such as PLSA build a semantic (or topic) layer to combine words and documents. 

By casting them into a semantic layer, synonyms and data sparse problem can be overcome in a 

certain extent. Following is the description of our PLSA model for sentence retrieval. 

Given a sentence set S, a term set W and a topic set Z, the conditional probability of 

sentence-term P(s, w) can be described as follows: 

 

( ) ( ) ( ) ( ), | |
z Z

P s w P z P s z P w z
∈

=∑
 

(1) 

                                                      
1 http://zh.wikipedia.org/ 
2 http://baike.baidu.com/ 
3 http://www.hudong.com/ 
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P(w | z) represents the conditional probability of words in latent semantic layers (or topics), 

P(z | s) represents the conditional probability of topics in sentences. Here the count for topic set 

Z is between 20 and 100. Then the model fits with the EM algorithm and export the optimal 

P(Z), P(W | Z) and P(Z | S). When a new query is coming, it is projected to the topic space Z. 

The similarity of the query and each sentence can be acquired by computing the similarity of 

the probabilistic distribution between them in the topic space. 

In this paper, we adopt two-stage retrieval strategy, that is, first a VSM based model is 

utilized to retrieve relevant documents in a wide range. All of the documents can be treated as a 

sentence set. Then a PLSA based retrieval model is employed by retrieval model. For each 

sentence in definition set, it is treated as a query and submitted to the model to seek relevant 

sentences in sentence set. Sentence that its value achieves a threshold are picked out as the 

sentence candidates. 

3.3 Answering Ranking 

Our method of answer ranking considers syntactic/semantic and statistical information of 

sentences. On the one hand, although sentences retrieved have the latent semantic similarity 

with definition sentences from web knowledge bases, they are probably more similar with 

definition sentences if they have the syntactic or actual semantic similarity. Moreover, we can 

easily extract nuggets by using the same semantic constituents. On the other hand, to balance 

the impact of syntactic/semantic judgment, we utilize a statistical similarity which treats 

sentences as a bag of words. The motivation is, a sentence can be a potential answer candidate 

if most of the words in it are also appear in definitions derived from web knowledge bases. 

For semantic similarity of definitions, we consider the similarity of the core semantic roles, 

which primarily profile the features of definitions. We choose the verb based labeling 

architecture derived from PropBank in which ‘predicate’, ‘subject’ and ‘object’ are the core 

roles for a sentence. For each sentence in definition set we only label PRED, A0 and A1 and 

combine them to a triple. For example, the triple of Answer 1 in Table 1 is: 

 

{ }| PRED, | A 0, | A1is  Greenhouse gas  gas  

  

For labeling of semantic roles, we utilize a method which we implemented in CoNLL shared 

task (Ren et al., 2009) to extract triples. They handle syntactic dependency parsing with a 

transition-based approach and utilize MaltParser
4
 as the base model. We also utilize a 

Maximum Entropy model to identify predicate senses and classify arguments. 

Although definitions summarized from web knowledge bases are more precious, there still 

have some sentences that are not definitions. Since a definition sentence quite probably has the 

target of the definition, triples can only be acquired by these sentences. Also, co-reference 

resolution is made use of to help find actual definition sentences in web knowledge bases. 

Finally, sentences that do not contain the target of a definition are removed from the definition 

set. 

The wegithing formula of our method for answering ranking is as follows: 

 

{ } )k,s(S)()p,s(Wmax)s(R ijii •−+•= αα 1  (2) 

 

W and S denotes the semantic and statistical similarity respectively. si represents sentence i, 

pj represents triple j, and k means definition set. In the formula, α is an adjusting parameter. 

W is a binary function that is described below: 

 

                                                      
4 http://w3.msi.vxu.se/~jha/maltparser/ 
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i j

1, one or more roles are same except target
W(s , p )    

0, otherwise


= 


 (3) 

 

W means that if at least two roles in si and pj are same except the target (eg. A0 and the 

predicate), the value is 1; otherwise the value is 0. 

For statistical similarity, we simply use cosine similarity to deal with sentence candidates 

and web knowledge bases and si and kj are treated as a bag of words. 

4 Experiments and Analysis 

4.1 Experiment Setting 

We utilize Chinese data sets of NTCIR-7 CCLQA as our data set. The data set includes 545,162 

documents which come from Xinhua Newspaper and Lianhe Zaobao. The evaluation data 

contains 20 definition questions and biography ones respectively. We treat these 40 questions 

as definition ones. 

For each question we retrieve the concept in it using three web knowledge bases and merged 

to one definition text. Thus we collect 40 texts that include definitions for questions. In the 

experiment we tune summarization models to export 50 sentences for each question. 

For the first retrieval by VSM based IR model we select top 1000 documents and use them 

for latent semantic retrieval. Empirically, we set topic number in PLSA model as 50. 

In answer ranking, the adjusting parameter α is initially set as 0.5, which means that we treat 

semantic and statistical similarity equally. 

4.2 Evaluation Metrics 

In the experiment, we utilize the method described in NTCIR-7 for the evaluation. The method 

adopts F-score as the evaluation index where β is a parameter signifying the relative importance 

of precision and recall. In order to get comparable results with baseline system, β value is fixed 

to 3. 

 

( )2

3 2

1 precision recall
F

precision recall
β

β

β=

+ × ×
=

× +
 (4) 

 

Parameters that appear at Formula (4) are shown in Figure 2. 

 

r sum of weights over matched nuggets 

R sum of weights over all nuggets 

a # of nuggets matched in system response 

L total character-length of system response 

C character allowance per match 

allowance a×C 

recall r / R 

precision 

1             if L < allowance

          otherwise        
allowance

L






 

 

Figure 2: Parameters in evaluation method. 
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4.3 Experimental Results and Analysis 

We select NTCIR-7 organizer’s system as the baseline system in our experiments. The system 

makes use of the same architecture with JAVELIN (Nyberg et al., 2003), whereas does not take 

answer types into account and simply extracts noun phrases from questions as key terms. For 

answer extraction and ranking, the system selects sentences that contain key terms from high 

ranked documents. Table 2 shows the result of the experiment. 
 

Table 2: Overall Performance (%). 

 
Definition Biography Average 

this paper 24.31 20.67 22.49 

baseline 13.60 12.48 13.04 

 

The results indicate that our approach based on web knowledge bases can improve the 

overall performance of QA system. We can also see that, result of definition is more better than 

that of biography. It is mainly because named entities in biography texts are more than those in 

definition ones. For example, a temporal named entity almost appears at every biographic text 

whereas the entity does not represent a rich semantic concept; the PLSA retrieval model can not 

make a relationship with the entity and a topic in layer Z. Thus the sentence involving this may 

not have a tight relationship with definitions from web knowledge bases although the sentence 

could be an answer. 

We also investigate performance of each part in our system. For summarizing definitions, 

we utilize two methods proposed in Section 3.1, namely a definition summarization(ds) and an 

unsupervised summarization(us). For sentence retrieval, two models, which are based on VSM 

and PLSA mentioned in Section 3.2, are also involved in the experiments. For answer ranking, 

as a comparison, we invoke the approach of the baseline system that rank sentences by key 

terms to replace our method proposed in Section 3.3(sem). Table 3 shows the result of the 

experiments. 
 

Table 3: Comparsion of system performances based on different parts (%). 

 
Definition Biography Average 

VSM+key term 11.95 9.09 10.52 

PLSA+key term 13.68 10.71 12.20 

PLSA+sem 19.49 14.73 17.11 

us+PLSA+sem 21.03 16.56 18.80 

ds+PLSA+sem 22.67 18.98 20.83 

 

From Table 2 we can see that when adopting the definition summarization method, the 

performance increases 1.64% of definition questions and 2.42% of biography ones in contrast 

with the method of unsupervised summarization. When using VSM model to replace PLSA, the 

performances decrease 1.73% and 1.62% respectively. In addition, the average performance 

noticeably decreases 4.91% by using key term method to replace the method of computing 

semantic plus statistical similarity. Data show the facts that: (1) effective summarizing 

definitions from Wikipedia improves ordinary QA systems to a better performance; (2) a large 

number of synonyms and polysemys as well as data sparse phenomenon exist in texts, thus 

topic based models can be more fit than centroid-based models for complex QA systems; (3) a 

sentence that just contains key terms is not considered as a definition unless it has pattern or 

semantic features that definition bears. 
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In order to investigate the effect of semantic or statistical similarity, we set another 

experiment by adjusting α from 0 to 1. Figure 3 shows the results. We can see that when α = 0.6 

the system achieves the best performance. We also realize that when α changes from 0.6 to 0, 

the performance decrease sharply than the performance when α changes from 0.6 to 1. It 

indicates that the semantic similarity is a little more important than the statistical one. More 

specifically, the impact of methods that consider terms and their relations is more notable than 

that of those methods that just take texts as a bag of words for answer identification and ranking 

of definition questions. 

 

 

Figure 3: Adjusting α parameter. 

5 Conclusion 

Current researches on Question Answering mainly concern more complex questions than 

factoid ones. In this paper, we propose an approach to leverage web knowledge bases 

effectively. After summarizing definitions from web knowledge bases and merging them, a 

two-stage retrieval model based on Probabilistic Latent Semantic Analysis is employed seek 

documents and sentences in which the topic is similar to that in definition set. Finally, an 

answer ranking model is utilized to rank both statistically and semantically similar sentences 

between sentences retrieved and sentences in definition set. Experiment shows that our system 

yields a better performance than the official one of NTCIR-7. In the future, we aim at 

improvement of more effective topic models, which could achieve a better performance in 

dealing with complex question answering. 
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