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Abstract. This paper reports about a multi-engine approach for the development of a NER system in 
Bengali by combining the classifiers such as Maximum Entropy (ME), Conditional Random Field 
(CRF) and Support Vector Machine (SVM) with the help of weighted voting approach.  The training 
set consists of approximately 272K wordforms, out of which 150K wordforms have been manually 
annotated with the four major named entity (NE) tags such as Person, Location, Organization and 
Miscellaneous tags. An appropriate tag conversion routine has been defined in order to convert the 
122K wordforms of the IJCNLP-08 NER shared task1, into the desired forms. The classifiers make 
use of the different contextual information of the words along with the variety of features that are 
helpful in predicting the various NE classes. Lexical context patterns, which are generated from an 
unlabeled corpus of 3 million wordforms in a semi-automatic way, have been used as the features of 
the classifiers in order to improve their performance. In addition, we have developed a number of 
techniques to post-process the output of each of the classifiers in order to reduce the errors and to 
improve the performance. Finally, we have applied weighted voting approach to combine the systems. 
Results show the effectiveness of the proposed approach with the overall average recall, precision, 
and f-score values of 93.98%, 90.63%, and 92.28%, respectively, which shows an improvement of 
14.92% in f-score over the best performing baseline SVM based system and an improvement of 
18.36% in f-score over the least performing baseline ME based system. The proposed system also 
outperforms the other existing Bengali NER system.
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1. Introduction
Named Entity Recognition (NER) is an important tool in almost all Natural Language 
Processing (NLP) application areas including machine translation, question answering, 
information retrieval, information extraction, automatic summarization etc. The current trend in 
NER is to use the machine-learning (ML) approach, which is more attractive in that it is 
trainable and adoptable and the maintenance of a ML based system is much cheaper than that of 
a rule-based one. The representative ML approaches used in NER are Hidden Markov Model 
(HMM) (BBN’s IdentiFinder in (Bikel, 1999)), ME (New York University’s MENE in 
(Borthwick, 1999)), CRFs (Lafferty et al., 2001) and SVM (Yamada et al., 2002). The process 
of stacking and voting method for combining strong classifiers like boosting, SVM and TBL, 
on NER task can be found in (Wu et al., 2003). Florian et al. (2003) tested different methods for 
combining the results of four systems and found that robust risk minimization worked best. The 
work reported in this paper differs from the existing works in the sense that here, we have 
conducted a number of experiments to improve the performance of the classifiers with the 
lexical context patterns, which are generated in a semi-automatic way from an unlabeled corpus 
of 3 million wordforms, and used several post-processing techniques to improve the 
performance of each classifier before applying weighted voting.   

Named Entity (NE) identification in Indian languages in general and in Bengali in particular 
is difficult and challenging as:

 Unlike English and most of the European languages, Bengali lacks capitalization 
information, which plays a very important role in identifying NEs.
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 Indian person names are more diverse and a lot of these words can be found in the 
dictionary with specific meanings.

 Bengali is a highly inflectional language providing one of the richest and most 
challenging sets of linguistic and statistical features resulting in long and complex 
wordforms.

 Bengali is a relatively free order language.
 Bengali, like other Indian languages, is a resource poor language - annotated corpora, 

name dictionaries, good morphological analyzers, Part of Speech (POS) taggers etc. are 
not yet available in the required measure.

 Although Indian languages have a very old and rich literary history, technological 
developments are of recent origin.

 Web sources for name lists are available in English, but such lists are not available in 
Bengali forcing the use of transliteration.

A pattern directed shallow parsing approach for NER in Bengali is reported in Ekbal and 
Bandyopadhyay (2007a). A HMM based NER system for Bengali has been reported in Ekbal et 
al. (2007b), where additional contextual information has been considered during emission 
probabilities and NE suffixes are kept for handling the unknown words. More recently, the 
related works in this area can be found in Ekbal et al. (2008a), Ekbal and Bandyopadhyay 
(2008b) with the CRF, and SVM approach, respectively. Other than Bengali, the works on 
Hindi can be found in Li and McCallum (2004) with CRF and Cucerzan and Yarowsky (1999) 
with a language independent method. As part of the IJCNLP-08 NER shared task, various 
works of NER in Indian languages using various approaches can be found in IJCNLP-08 NER 
Shared Task on South and South East Asian Languages (NERSSEAL)2.

2. Named Entity Recognition in Bengali

Bengali is the seventh popular language in the world, second in India and the national language 
of Bangladesh. We have used a Bengali news corpus (Ekbal and Bandyopadhyay, 2008c), 
developed from the web-archive of a widely read Bengali newspaper for NER. Out of 34 
million wordforms of this corpus, 200K wordforms have been manually annotated with the four 
NE tags namely, Person, Location, Organization and Miscellaneous. The annotation was 
carried out by a technical person and edited by a linguist. The data has been collected from the 
International, National, State and Sports domains. We have also used the annotated corpus of 
122K wordforms, collected from the IJCNLP-08 NERSSEAL (http://ltrc.iiit.ac.in/ner-ssea-08). 
This data was a mixed one and dealt mainly with the literature, agriculture and scientific 
domains. Moreover, this data was originally annotated with a fine-grained NE tagset of twelve 
tags. We have defined an appropriate tag conversion routine in order to convert this data into 
the forms tagged with the four NE tags. The tagset mapping table is shown in Table 1.   
Table 1: Tagset mapping table

IJCNLP-08 tagset Our tagset Meaning
NEP Person Single/multiword person name
NEL Location Single/multiword location name
NEO Organization Single/multiword organization name
NEA, NEN, NEM, NETI Miscellaneous Single/multiword miscellaneous name
NED, NEB, NETP, NETE, NETO NNE Other than NEs

In order to properly denote the boundaries of NEs, the four NE tags are further divided into 
the forms: 
B-XXX: Beginning of a multiword NE, I-XXX: Internal of a multiword NE consisting of more 
than two words, E-XXX: End of a multiword NE, XXXPER/LOC/ORG/MISC. For example,

                                                          
2 http://ltrc.iiit.ac.in/ner-ssea-08/proc/index.html
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the name sachin ramesh tendulkar is tagged as sachin/B-PER ramesh/I-PER tendulkar/E-PER. 
The single word NE is tagged as, PER: Person name, LOC: Location name, ORG: Organization 
name and MISC: Miscellaneous name. In the output, sixteen NE tags are mapped to the four NE 
tags with some simple rules.

2.1. Approaches of NER in Bengali
NLP research around the world has taken giant leaps in the last decade with the advent of 
effective machine learning algorithms and the creation of large annotated corpora for various 
languages. However, annotated corpora and other lexical resources have started appearing only 
very recently in India. 

In this paper, we have used ME, CRF and SVM frameworks in order to identify NEs from a 
Bengali text and to classify them into Person, Location, Organization and Miscellaneous. We 
have developed two different systems with the SVM model, one using forward parsing that 
parses from left to right and other using backward parsing that parses from right to left. 
Lexical patterns, generated from an unlabeled corpus of 3 million wordforms, have been used 
to improve the performance of each of the classifiers. In addition, a number of post-processing 
techniques have been adopted in order to improve the performance of the classifiers. Finally, 
the classifiers are combined together with the three different weighted voting schemes. 

We have used the C++ based ME package 
(http://homepages.inf.ed.ac.uk/s0450736/software/maxent/maxent-20061005.tar.bz2) and C++

based CRF++ package (http://crfpp.sourceforge.net) for NER. The SVM system has been 
developed based on (Jochims, 1999; Valdimir, 1995), which perform classification by 
constructing an N-dimensional hyperplane that optimally separates data into two categories. We 
have used YamCha toolkit (http://chasen-org/~taku/software/yamcha), an SVM based tool for 
detecting classes in documents and formulating the NER task as a sequential labeling problem. 
Here, the pair wise multi-class decision method and polynomial kernel function have been used. 
We have used TinySVM-0.07 (http://cl.aist-nara.ac.jp/~taku-ku/software/TinySVM) classifier 
that seems to be the best optimized among publicly available SVM toolkits.

2.2. Named Entity Features
Context words: Preceding and following words of a particular word. This is based on the 
observation that the surrounding words are very effective in the identification of NEs.
Word suffix and prefix: Word suffix and prefix information are helpful to identify NEs. A 
fixed length (say, n) word suffix/prefix of the current and/or the surrounding word(s) can be 
treated as feature(s). If the length of the corresponding word is less than or equal to n-1 then the 
feature values are not defined and denoted by ND. The feature value is also not defined (ND) if 
the token itself is a punctuation symbol or contains any special symbol or digit. Another way to 
use the suffix information is to modify the feature as binary valued. Variable length suffixes of 
a word can be matched with predefined lists of useful suffixes (e.g., -babu, -da, -di etc. for 
persons and -land, -pur, -lia etc. for locations). These features are useful to handle the highly 
inflective Indian languages as like Bengali.
Named Entity Information (dynamic feature): NE tag(s) of the previous word(s). 
First word (binary valued): Current token is the first word of the sentence or not. First word is 
most likely a NE.
Length of the word (binary valued): Length of the token is less than three or not. This is based 
on the observation that very short words are rarely NEs.
Infrequent word (binary valued): A cut off frequency has been chosen in order to consider the 
infrequent words in the training corpus. Frequently occurring words are rarely NEs.
Digit features: Several digit features have been considered depending upon the presence 
and/or the number of digit(s) in a token. These binary valued features are helpful in recognizing 
miscellaneous NEs such as time, monetary and date expressions, percentages, numerical 
numbers etc.    
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Position of the word (binary valued):  Position of the word in a sentence is a good indicator of 
NEs. Generally, verbs occur at the last position of the sentence. This feature is used to check 
whether the word is the last word in the sentence.   
Part of Speech (POS) Information: We have used a CRF-based POS tagger (Ekbal et al., 2007c) 
that was originally developed with the 26 POS tags, defined for the Indian languages. For SVM 
based systems, we have used this POS tagger. However, for CRF and ME models, we have 
considered a coarse-grained POS tagset that has the following tags: Nominal, PREP 
(Postpositions) and Other. Postpositions are considered as these often appear after the NEs.
Gazetteer Lists: Gazetteer lists, developed from the news corpus (Ekbal and Bandyopadhyay, 
2008c), have been used as the features in each of the classifiers. These features can improve the 
performance of the classifiers when used as the features or used to post-process the outputs. 
Any particular gazetteer does not include the ambiguous entries, i.e., those that can appear in 
more than one gazetteer list. If the current token is in a particular list, then the corresponding 
feature is set to 1 for the current and/or the surrounding word(s); otherwise, it is set to 0. 
Following is the list of gazetteers along with the number of entries:
 (1). Organization clue word (e.g., kong, limited etc): 94, Person prefixes (e.g., sriman, sreemati
etc.): 245, Middle names: 1,491, Surnames: 5,288, Common location (e.g., sarani, road etc.): 
547, Action verb (e.g., balen, ballen etc.): 241, Function words: 743, Designation words (e.g., 
neta, sangsad etc.): 947, First names: 72,206, Location names: 7,870, Organization names: 
2,225, Month name (English and Bengali calendars): 24, Weekdays (English and Bengali 
calendars): 14
 (2). Common word (521 entries): Most of the Indian language NEs appears in the dictionary 
with some other valid meanings. For example, the word kamol may be the name of a person but 
also appears in the dictionary with another meaning lotus, the name of a flower; the word dhar
may be a verb or also can be the part of a person name. We have manually prepared a list, 
containing the words that can be NEs as well as valid dictionary words. 
(3). Lexicon (128,000 entries): We have used a lexicon that has been developed from the 
Bengali news corpus in an unsupervised way. The feature ‘LEX’ has value 0 for those words 
that appear in the lexicon; otherwise, the value is 1. This feature has been included as the words 
that appear in the lexicon are rarely NEs. 

3. Unsupervised Lexical Pattern Learning from the Unlabeled Corpus
We have developed a method to generate the lexical context patterns from a portion of the 
unlabeled Bengali news corpus (Ekbal and Bandyopadhyay, 2008c) containing 3 million 
wordforms. Given a small seed examples and an unlabeled corpus, the algorithm can generate 
the lexical context patterns in a bootstrapping manner. The seed name serves as a positive 
example for its own NE class, negative example for other NE classes and error example for 
non-NEs. 
(1). Seed list preparation: We have collected the frequently occurring words from a part of 
this Bengali news corpus and the annotated training set of 272K wordforms to use as the seeds. 
There are 123, 87, and 32 entries in the person, location, and organization seed lists, 
respectively. 
(2). Lexical pattern generation: The unlabeled corpus is tagged with the elements from the 
seed lists. For example, <Person> sonia gandhi </Person>, <Location> kolkata </Location> 
and <Organization> jadavpur viswavidyalya </Organization>. For each tag T inserted in the 
training corpus, the algorithm generates a lexical pattern p using a context window of maximum 
width 6 (excluding the tagged NE) around the left and the right tags, e.g., 
    p = [l-3l-2 l-1  <T> ...</T> l+1 l+2 l+3], 
 where, l±i   are the context of p. Any of l±i may be a punctuation symbol. In such cases, the 
width of the lexical patterns will vary.  All these patterns, derived from the different tags of the 
training corpus, are stored in a Pattern Table (or, set P), which has four different fields namely, 
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pattern id (identifies any particular pattern), pattern example (pattern), pattern type
(Person/Location/Organization) and relative frequency (indicates the number of times any 
pattern of a particular type appears in the entire training corpus relative to the total number of 
patterns generated of that type). This table has 28,986 entries, out of which 17,031 patterns are 
distinct. We have also generated the context patterns by extracting the examples from the 
labeled training data of 272K wordforms and it yields 15,488 patterns. Finally, the set P has 
21,233 distinct patterns. 
(3). Evaluation of patterns: Every pattern p in the set P is matched against the same 
unannotated corpus. In a place, where the context of p matches, p predicts the occurrence of the 
left or right boundary of name. The POS information of the words as well as well as some 
linguistic rules and/or length of the entity have been used in detecting the other boundary of the 
entity. The extracted entity may fall in one of the following categories:

 positive example: The extracted entity is of the same NE type as that of the pattern.
 negative example: The extracted entity is of the different NE type as that of the 

pattern.
 error example: The extracted entity is not at all a NE.

(4). Candidate pattern acquisition: For each pattern p, we have maintained three different 
lists for the positive, negative and error examples. The type of the extracted entity is 
determined by checking whether it appears in any of the seed lists 
(person/location/organization); otherwise, its type is determined manually. The positive and 
negative examples are then added to the appropriate seed lists. We then compute the pattern’s 
accuracy as follows: 

  accuracy(p)= |positive (p)|/[| positive (p)| + |negative (p)| + |error(p)|]
A threshold value of accuracy has been chosen and the patterns below this threshold values 

are discarded. A pattern is also discarded if its total positive count is less than a predetermined 
threshold value. The remaining patterns are ranked by their relative frequency values. The n top 
high frequent patterns are retained in the pattern set P and this set is denoted as Accept Pattern. 
(5). Generation of new patterns: All the positive and negative examples extracted by a pattern 
p in Step 4 can be used to generate further patterns from the same training corpus. Each new 
positive or negative instance (not appearing in the seed lists) is used to further tag the training 
corpus. We repeat steps 2-4 for each new NE until no new patterns can be generated.  The 
threshold values of accuracy, positive count and relative frequency are chosen in such a way 
that in each iteration of the algorithm at least 5% new patterns is added to the set P. A newly 
generated pattern may be identical to a pattern that is already in the set P. In such case, the type 
and relative frequency fields in the Set P are updated accordingly. Otherwise, the newly 
generated pattern is added to the set with the type and relative frequency fields set properly. 
The algorithm terminates after the 17 iterations and there are 27,098 distinct entries in the set P. 

4. Evaluation Results and Discussions
We have manually annotated approximately 200K wordforms of the Bengali news corpus 
(Ekbal and Bandyopadhyay, 2008c) with Person, Location, Organization and Miscellaneous
NE tags with the help of Sanchay Editor3, a text editor for the Indian languages. Out of 200K 
wordforms, 150K wordforms along with the IJCNLP-08 shared task data has been used for 
training the models. Out of 200K wordforms, 50K wordforms have been used as the 
development data. The system has been tested with a gold standard test set of 35K wordforms. 
Statistics of the training, development and test sets are presented in Table 2. A number of 
experiments have been carried out taking the different combinations of the available words, 
context and orthographic word level features to identify the best-suited set of features in the 
ME, CRF and SVM frameworks for NER in Bengali. The SVM models that use forward 

                                                          
3Sourceforge.net/project/nlp-sanchay
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parsing, and backward parsing are denoted by SVM-F, and SVM-B, respectively. The 
systems developed with these features are defined as the baseline models.
Table 2: Training, development and test set statistics
Set #of sentences #of wordforms (approx.) # of NEs Avg. length of NE
Training 21,340 272K 22,488 1.5138
Development 3,367 50K 3,665 1.6341
Test 2,501 35K 3,178 1.6202

Evaluation results of the development set for the baseline models are presented in Table 3 in 
terms of recall (R), precision (P) and F-Score (FS). Evaluation results of the development set 
have demonstrated that the ME based baseline system performs best (f-score=73.32%) for the 
context window of size three (i.e., previous, current and next word), NE information of the 
previous word, POS information of the current word, prefixes and suffixes of length upto three 
characters of the current word along with other features. The baseline CRF model has shown 
best performance (f-score=75.71%) for the context window of size five, POS information of 
the current and previous words along with the other set of features like ME. The SVM-F based 
baseline system has performed best among the three models and has demonstrated the f-score 
value of 76.3% for the context window of size six, NE information of the previous two words, 
POS information of the current, previous and the next words along with the other set of features 
as like ME and CRF. The SVM-B has shown the f-score value of 76.1% with the same set of 
features used in SVM-F. In SVM models, we have conducted experiments with the different 
polynomial kernel functions and observed the highest f-score value with degree 2.  

Evaluation results are reported in Table 3 by including the gazetteers to the baseline models. 
We have observed that all the gazetteers are not equally important to improve the performance 
of the classifiers. The use of gazetteers increases the performance by 2.49%, 4.11%, 4.45%, and 
4.11% in the ME, CRF, SVM-F, and SVM-B classifiers, respectively. Evaluation results 
suggest that adding all the available features may not be always helpful to improve the 
performance in a ME framework as careful feature selection has an important role. On the other 
hand, CRF and SVM can avoid overfitting more efficiently and this fact is established by their 
performance improvement. 
Table 3: Results of the development set for baseline models and by adding gazetteers

Baseline models Baseline + Gazetteers
Model R (in %) P (in %) FS (in %) R (in %) P (in %) FS (in %)

ME 73.57 73.07 73.32 76.09 75.53 75.81
CRF 75.97 75.45 75.71 79.03 80.62 79.82

SVM-F 77.14 75.48 76.30 81.37 80.14 80.75
SVM-B 77.09 75.14 76.10 81.29 79.16 80.21

4.1. Use of Context Patterns as Features
Patterns in the Accept Pattern set (discussed in section 3) can be used as the features of the 
individual classifier. Words in the left and/or the right contexts of person, location and 
organization names carry effective information that could be helpful in their identification. 
High ranked patterns, which are generated in a bootstrapped manner from the unlabeled corpus, 
contain these types context words. These words are used as the trigger words and very useful to 
identify the NEs. A particular trigger word may appear in more than one pattern type. A feature 
‘ContextInformation’ is defined by observing the three preceding and following words of the 
current word. The feature is set depending upon the type of the trigger word. Experimental 
results of the system for the development set are presented in Table 4 by including the context 
features. Results show the effectiveness of context features with improvement of f-scores by 
2.27%, 3.08%, 2.82%, and 3.28% in the ME, CRF, SVM-F, and SVM-B models, respectively.
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Table 4: Results of the development set by adding context features
Model Recall (in %) Precision (in %) F-Score (in %)

ME 78.59 77.58 78.08
CRF 82.07 83.75 82.90

SVM-F 84.56 82.60 83.57
SVM-B 84.42 82.58 83.49

4.2.  Post-processing Techniques

We have performed error analysis for all the classifiers with the help of confusion matrices. In 
order to improve the performance of the classifiers, several post-processing techniques have 
been adopted depending upon the nature of errors involved. It has been observed that SVM 
models suffer most with the tendency of assigning NE tags to the non-NEs. Though SVM 
models perform better than CRF in terms of f-score, their precisions suffer. SVM performs 
better than ME with more than 5% f-score value but the rate of improvement of precision is less 
compared to recall. In ME model, a lot of NEs are not identified at all. CRF model also suffers 
from this problem. The most confusing pairs of classes in these two models are LOC vs NNE, 
B-PER vs NNE, PER vs NNE, E-ORG vs NNE and B-MISC vs MISC. On the other hand the 
most confusing pairs are LOC vs NNE, PER vs NNE, MISC vs NNE and E-ORG vs NNE in the 
SVM models.  Depending upon the errors involved in the models, we have adopted various 
mechanisms to improve the recall and precision values of the classifiers.
 (1). Class splitting technique for SVM: Unlike CRF or ME, SVM model does not predict the 
NE tags to the constituent words depending upon the sentence. SVM predicts the class 
depending upon the labeled word examples only. If target classes are equally distributed, the 
pairwise method can reduce the training cost. Here, we have a very unlabeled class distribution 
with a large number of samples belonging to the class ‘NNE’ (other than NEs) (Table 2). This 
leads to the same situation like the one-vs-rest strategy. One solution to this unbalanced class 
distribution is to split the ‘NNE’ class into several subclasses effectively. Here, we have 
splitted the ‘NNE’ class according to the POS information of the word. That is, given a POS 
tagset POS, we produce new |POS| classes, ‘NNE-C’|CPOS . So, we have 26 sub-classes 
which correspond to non-NE regions such as ‘NNE-NN’ (common noun), ‘NNE-VFM’ (verb 
finite main) etc. Experimental results have shown the recall, precision, and f-score values of 
87.09, 86.73%, and 86.91, respectively, in the SVM-F system and 87.03, 85.98%, and, 86.5, 
respectively, in the SVM-B system. 

(2). Post-processing with the n-best outputs for CRF and ME: There are inconsistent 
results in the CRF and ME models. We have performed a post-processing step to correct these 
errors. The post-processing tries to assign the correct tag according to the n-best results for 
every sentence of the test set. We have considered the top 15 labeled sequences for each 
sentence with the confidence scores. Initially, we collect the NEs from the high confident 
results and then we re-assign the tags for low confident results using the NE list. The procedure 
is given below:
S is the set of sentences in the test set, i.e, 1, 2, .....,{ }nS s s s ; R is set of n-best result (n=15) of 

S, i.e, 1, 2,{ ....., }nR r r r , where ir is a set of n-best results of is ; ijc  is the confidence score of 

ijr , that is the jth result in ir .
Creation of NE set from the high confident tags:
    for i = 1 to n {if ( 0ir >=0.6) then collect all NEs from 0ir  and add to the set NESet }.
Replacement:

for i=1 to n {if  ( 0ir >=0.6) then Result( is )= 0ir ; else { TempResult( is )= 0ir ; 
for j=1 to m {if ( NEs of  ijr are included in NESet) then Replace the NE tags of 
TempResult with these new tags}.

      Result( is )=TempResult( is )}}.
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Evaluation results have demonstrated the recall, precision, and f-score values of 84.32%,
81.31%, and 82.72%, respectively, in ME and 86.75%, 85.91%, and 86.33%, respectively, in 
the CRF model. Thus, these are the improvement of 4.64%, and 4.43% f-score in the ME, and 
CRF models, respectively.  
(3). Second confident tags: If a word is tagged as NNE by any model and the confidence of the 
second best tag is greater than a predetermined threshold value then the second best tag is 
considered as the correct tag. We have heuristically determined the threshold values of 
confidence in each model by observing their effects on the evaluation results. This post-
processing technique is executed after the techniques 1 and 2. Evaluation results are presented 
in Table 5. Results show the loss in precision value by less than 1% and the gain in recall by 
more than 2.5% in each case. This results in the overall improvement of the performance in 
each of the models. 
(4). Use of gazetteers and lexicon for handling unknown words: We have used person, 
location and organization name lists along with the lexicon to deal with the unknown words. If 
the confidence of the tag assigned to an unknown word is less than a predefined threshold value 
then its tag is determined by checking the gazetteers. This approach is followed only when the 
confidence of the second best tag is also below some threshold value (i.e., only when less than 
or equal to the thresholds used in technique 3). In some cases, an unknown word that is 
assigned the NE tag can also appear in the lexicon. The NE tag of such unseen word is changed 
to NNE, if its confidence is below a predetermined threshold value and the word is not found in 
the ‘Common word’ gazetteer list as discussed in Section 2.2. Appropriate threshold values 
have been determined by observing the effects on the evaluation results in each of the models. 
Approximately, there are 21% unknown words in the development set. Experimental results are 
presented in Table 5. 

   Table 5: Evaluation results using second confident tags and unknown word handling
With second confident tags Unknown word handling

Model R (in %) P (in %) FS (in %) R (in %) P (in %) FS (in %)
ME 88.53 80.52 84.33 89.46 81.92 85.44
CRF 89.64 85.03 87.27 90.03 86.18 88.06

SVM-F 90.82 86.01 88.35 91.01 87.23 89.08
SVM-B 90.63 85.73 88.11 90.99 86.97 88.95

4.3.  Voting Techniques 
Voting scheme becomes effective in order to improve the overall performance of any system. 
Here, we have combined four systems using three different voting mechanisms. In our 
experiments, we have applied weighted voting to the four systems. But before applying 
weighted voting, we need to decide the weights to be given to the individual system. We can 
obtain the best weights if we could obtain the accuracy for the ‘true’ test data. However, it is 
impossible to estimate them. Thus, we have used following weighting methods in our 
experiments:
(1). Uniform weights (Majority voting): We have assigned the same voting weight to all the 
systems. The combined system selects the classifications, which are proposed by the majority 
of the models. If four outputs are different, then the output of the SVM-F system is selected.  
(2). Cross validation f-score values: The training data is divided in to N portions. We employ 
the training by using N-1 portions, and then evaluate the remaining portion. This is repeated N 
times. In each iteration, we have evaluated the individual system following the similar 
methodology, i.e., by including the various gazetteers and the same set of post-processing 
techniques. At the end, we get N f-score values for each of the system. Final voting weight for a 
system is given by the average of these N f-score values. Here, we have considered the value of 
N to be 10.  We have defined two different types of weights depending on the cross validation 
f-score as follows: 

176



(a). Total F-Score: In the first method, we have assigned the overall average f-score of any 
classifier as the weight for it. 
 (b). Tag F-Score: In the second method, we have assigned the average f-score value of the 
individual tag as the weight. 

Experimental results of the voted system are presented in Table 6. Results show that the 
system achieves the highest performance for the voting scheme ‘Tag F-Score’, which considers 
the individual tag f-score value as the weight of the corresponding system. Voting shows (tables 
5-6) an overall improvement of the f-scores of 6.76% over the least performing ME based 
system and 3.12% over the best performing SVM-F system.

Table 6: Results of the voted system for the development set
Voting Scheme R (in %) P (in %) FS (in %)

Majority 93.15 89.33 91.2
Total F-Score 93.78 89.91 91.8
Tag F-Score 93.82 90.24 92.2

4.4. Experimental Results of the Test Set
Four systems are tested with a gold standard test set of 35K wordforms. Approximately, 25% of 
the NEs are unknown in the test set. Experimental results of the test set for the baseline models 
have shown the f-score values of 73.92%, 76.35%, 77.36%, and 77.23% in the ME, CRF, 
SVM-F, and SVM-B based systems, respectively. Evaluation results have demonstrated the fact 
that the use of gazetteers, context features and post-processing can improve the performance of 
each individual system by the impressive margins of 11.79%, 12.28%, 12.25%, and 12.19% in 
f-scores over the baseline ME, CRF, SVM-F, and SVM-B base systems, respectively. These 
post-processed systems are then combined together into a final system by applying three 
weighted voting approaches. Experimental results are presented in Table 7. Results show that 
the voting scheme that considers the f-score value of the individual NE tag as the weight of a 
particular classifier, i.e., ‘Tag F-Score’ gives the best result among the three voting methods. 
The multi-engine system has demonstrated the improvement in the f-scores by 6.57%, 3.65%, 
2.67%, and 2.86% in the ME, CRF, SVM-F, and SVM-B systems, respectively. 

      Table 7: Results of the voted system for the test set 
Voting Scheme R (in %) P (in %) FS (in %)
Majority 93.21 89.75 91.45
Total F-Score 93.92 90.11 91.98
Tag F-Score 93.98 90.63 92.28

The most recent existing Bengali NER systems have been trained and tested with the same 
datasets. Evaluation results are presented in Table 8. Results have shown the effectiveness of 
the proposed multi-engine NER system that outperforms the other existing Bengali NER 
systems by the impressive margins. Thus, it can be decided that purely statistical approaches 
cannot yield very good performance always. Evaluation results also suggest that the contextual 
words along with their information and several post-processing methods can yield a reasonably 
good performance for each of the classifiers. Results also suggest that combination of several 
classifiers is more effective than the single classifier. 

Table 8: Comparisons with other Bengali NER systems 
Model R (in %) P (in %) FS (in %)
HMM, Ekbal et al. (2007c) 74.02 72.55 73.28
CRF, Ekbal et al. (2008a) 80.02 80.21 80.15
SVM, Ekbal and Bandyopadhyay (2008b) 81.57 79.05 80.29
Voted System (proposed) 93.98 90.63 92.28
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5. Conclusion 
In this paper, we have reported a multi-engine NER system for Bengali by combining the 
outputs of the classifiers such as ME, CRF and SVM. Performance of the individual classifier 
has been improved significantly with the use of context patterns learned from an unlabeled 
corpus of 3 million wordforms and the various post-processing methodologies incorporated by 
observing the different kinds of errors involved in each classifier. All the four systems are then 
combined together into a final system by the three different weighted voting methods. The 
voted system has exhibited the improvement in f-scores by 18.63% over the least performing 
baseline ME system and 14.92% over the best performing baseline SVM based system. Future 
works include investigating the methods that will enable to reduce the errors that still exist 
because of the abbreviated names and short names. Also, we would like to conduct experiments 
with the other weighted voting methods. 
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