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Abstract. This paper describes the Institute for Infocomm Research (IIR) system for the 
2007 Language Recognition Evaluation (LRE) conducted by the National Institute of 
Standards and Technology (NIST). The submitted system is a fusion of multiple state-of-
the-art language classifiers using diversified discriminative language cues. We 
implemented several state-of-the-art algorithms using both phonotactic and acoustic 
features. We also investigated the system fusion and score calibration strategy to improve 
the performance of language recognition, and worked out a pseudo-key analysis approach 
to cross-validate the performance of the individual classifiers on the evaluation data. We 
achieve an equal-error-rate (EER) of 1.67 % on the close-set general language recognition 
test.  
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1. Introduction 
Automatic spoken language recognition (SLR) is a process of determining the identity of the 
language in a spoken document. As multilingual applications are demanded by the emerging 
need for globalization and the growing international business interflow, SLR has become an 
enabling technology in many applications such as multilingual conversational systems (Zue and 
Glass, 2000), multilingual speech recognition and translation (Waibel et al., 2000), and spoken 
document retrieval (Dai et al. 2003). It is also a topic of great importance in the areas of 
intelligence and security, where the language identities of recorded messages and archived 
materials need to be established before any information can be extracted. SLR technology also 
facilitates massive on-line language routing for voice surveillance over telephone network. 

The National Institute of Standards and Technology (NIST) has conducted a series of 
evaluations of SLR technology in 1996, 2003, 2005 and 2007 (NIST, 2007). The language 
recognition evaluations (LREs) focus on language and dialect detection in the context of 
conversational telephony speech. They are conducted to foster research progress, with the goals 
of exploring promising new ideas in language recognition, developing advanced technology 
incorporating these ideas, and measuring the performance of this technology. The Institute for 

                                                           
* Copyright 2008 by Haizhou Li, Bin Ma, Kong-Aik Lee, Khe-Chai Sim, Hanwu Sun, Rong Tong, 

Donglai Zhu, and Changhuai You 

46

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286946833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Infocomm Research (IIR) team has participated in the 2005 and 2007 NIST LREs and 
demonstrated the state-of-the-art technologies.  

One of the fundamental issues in SLR is to explore the discriminative cues for spoken 
languages. In the state-of-the-art language recognition systems, these cues mainly come from 
the acoustic features (Sugiyama, 1991; Torres-Carassquilo et al., 2002; Burget et al., 2006; 
Campbell et al., 2006) and phonotactic representations (Hazen and Zue, 1994; Zissman, 1996; 
Berkling and Barnard, 1994; Corredor-Ardoy et al., 1997; Li and Ma, 2005; Ma, Li, and Tong, 
2007), which reflect different aspects of spoken language characteristics. Another issue is how 
to effectively organize and exploit these language cues obtained from multiple sources in the 
recognition system design for the best performance. 

Significant improvements in automatic speech recognition (ASR) have been achieved through 
exploiting the acoustic features representing the temporal properties of speech spectrum. These 
acoustic features, such as Mel-frequency Cepstral Coefficients (MFCCs), are also good choices 
to be the front-ends in language recognition systems. Gaussian mixture model (GMM), which 
can be seen as a one-state hidden Markov model (HMM) (Rabiner, 1989), is a simple modeling 
method to provide a multimodal density and is reasonably accurate when speech data are 
generated from a set of Gaussian distributions. It has demonstrated a great success in text-
independent speaker recognition (Reynolds, Quatieri, and Dunn, 2000). In language 
recognition, GMM is also an effective method to model the unique characteristics among 
languages (Torres-Carassquilo et al., 2002). The support vector machine (SVM) has proven to 
be a powerful classifier in many pattern classification tasks. It is a discriminative classifier to 
separate two classes with a hyperplane in a high-dimensional space. The generalized linear 
discriminant sequence kernel (GLDS) has been proposed to apply SVM for speaker and 
language recognition (Campbell et al., 2006). The cepstral feature vectors extracted from an 
utterance are expanded to a high-dimensional space by calculating all the monomials. 

In recent years, phonotactic features have been shown to provide effective cues for language 
recognition. The phonotactic features are extracted from an utterance to represent phonetic 
constraints in a language. Although common sounds are shared considerably across spoken 
languages, the statistics of these sounds, such as phone n-gram, can differ considerably from 
one language to another. Parallel Phone Recognizers followed by Language Models (PPR-LM) 
(Zissman, 1996) uses multiple parallel phone recognizers to convert the input utterance into a 
phone token sequence. It is followed by a set of n-gram phone language models that imposes 
constraints on phone decoding and provides language scores. Instead of n-gram phone language 
models, vector space modeling (VSM) was proposed as the classifier (Li, Ma, and Lee, 2007), 
called PPR-VSM. For each phone sequence generated from the multiple phone recognizers, the 
occurrences of phone n-grams are counted. A phone sequence is then represented as a high-
dimensional vector of n-gram occurrence. SVM is used as the classifier on the concatenated n-
gram occurrence vectors. 

It is generally agreed upon that the integration with different cues of discriminative 
information can improve the performance of language recognition (Adda-Decker et al., 2003). 
The information extraction and organization of multiple sources has been critical to a successful 
language recognition system (Singer et al., 2003; Tong et al., 2006). In this paper, we will report 
our language recognition system submitted to the 2007 NIST LRE. The system is based on the 
fusion of multiple classifiers, each providing unique discriminative cue for language 
classification. In order to avoid a spoiled classifier in the submitted fusion system, we have 
designed a pseudo key analysis approach to check the integrity of each individual classifier 
before the system fusion. 

The remainder of this paper is organized as follows. The evaluation data and evaluation metric 
of the 2007 NIST LRE will be introduced in Section 2. The system structure together with the 
phonotactic and acoustic language classifiers will be presented in Section 3. The fusion of 
multiple language classifiers and language recognition results on the 2007 NIST LRE 
evaluation data will be described in Section 4. The pseudo key analysis will be shown in Section 
5. Finally in Section 6, we summarize our findings in language recognition. 
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2. Data and Metric 

2.1. Evaluation Data 
There are six test categories in the 2007 NIST LRE involving 26 target languages and dialects: 
• General Language Recognition (LR) including 14 languages, Arabic, Bengali, Chinese, 

English, Hindustani, Spanish, Farsi, German, Japanese, Korean, Russian, Tamil, Thai and 
Vietnamese. 

• Chinese LR including four Chinese dialects, Cantonese, Mandarin, Min and Wu. 
• Mandarin Dialect Recognition (DR) including Mainland Mandarin and Taiwan Mandarin. 
• English DR including American English and India English. 
• Hindustani DR including Hindi and Urdu. 
• Spanish DR including Caribbean Spanish and non-Caribbean Spanish. 

Both closed-set and open-set tests in the six categories were conducted. For the closed-set tests, 
the non-target languages will be limited to those languages and dialects known to the system. 
For the open-set test the non-target languages will also include all other unknown languages 
such as Italian, Punjabi, Tagalog, Indonesian, and French. These unknown languages were not 
disclosed to participants, and the training data for these languages were not made available. 

There are three test conditions to evaluate the system performance under different test segment 
durations: 

• 3 seconds of speech (2-4 seconds actual) 
• 10 seconds of speech (7-13 seconds actual) 
• 30 seconds of speech (25-35 seconds actual) 

The silence was not removed from speech so a segment could be much longer. There are 2510 
segments for each of the three durations. 

2.2. Training and Development Data 
All the phonotactic and acoustic classifiers were trained with the LDC CallFriend corpus1 and 
the LRE 2007 development databases released by NIST to all the participants. The phone 
recognizers used for phonotactic features were trained with OGI Multilingual database 
(Muthusamy, Cole, and Oshika, 1992) and IIR-LID database (Tong et al., 2006). The weights of 
fusion system were tuned on the LRE 1996, 2003, 2005 databases as well as the LRE 2007 
development database. 

2.3. Evaluation Metric 
The primary evaluation metric is taken as the average cost performance avgC  (NIST LRE, 
2007), which indicates the pair-wise language recognition performance, represented in terms of 
detection miss and false alarm probabilities, for all target/non-target language pairs. For the case 
of closed-set test condition, the avgC  is given by 

 ( )
( )

( )
tar non

avg miss FA
tar tar

1 10.5 0.5 ,
1l L l L

C P l P l l
N N ′∈ ∈

⎧ ⎫
′= + ×⎨ ⎬

−⎩ ⎭
∑ ∑  (1) 

where tarL  is the set of tarN  target languages (e.g., tar 14N =  for general LR). Notice that the miss 
probability Pmiss is computed separately for each target language. All other languages are treated 
as non-target languages to compute the false alarm probabilities PFA for each target/non-target 
language pairs. A complete definition of Cavg can be found in (NIST LRE, 200). In addition to 
the Cavg, we also report the results in terms of the average equal-error-rate (EER). That is, we 
compute the EER for each of the target language and take their average as the performance 
measure. 
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3. System Description 
The IIR system submitted to the 2007 NIST LRE is a fusion of multiple language classifiers. 
Figure 1 shows the overall framework. 

3.1. Feature Extraction 
The first stage of the feature extraction process is the Voice Activity Detection (VAD). Two 
types of VAD were used: 
• Frame-based VAD 

For the acoustic classifiers, an energy based voice activity detector (VAD) is applied to 
remove silence frames and to retain only the high quality speech frames for language 
recognition. The frames whose energy level is more than 30dB below the maximum energy of 
the entire utterance are considered silence and therefore removed. Furthermore, if there are 
more than 40% of the frames are retained, only the top 40% of the frames with higher SNR 
are retained. The rest of the frames are discarded. There are approximately 30% of the frames 
which are actually selected for further processing. 

• Segment-based VAD 
For phonotactic classifiers, segment-based VAD is used. Based on the VAD speech frame 
index obtained in the above, we first join continuous speech frames to form the speech 
segments. If the resulting segment is longer than 8 seconds, the segment is further split at the 
frame in that segment with the lowest energy. This is repeated until the resulting segment is 
less than 8 seconds in long. The final segments are padded with 200ms silence at both ends. 
After VAD, two types of short time cepstral features, Mel Frequency Cepstral Coefficients 

(MFCCs) and Linear Prediction Cepstral Coefficients (LPCCs), are adopted as the basic features 
for acoustic classifiers. To capture temporal information across multiple frames, Shifted Delta 
Cepstral (SDC) coefficients (Torres-Carassquilo et al., 2002) are further applied to the frame-
based MFCCs and LPCCs. 

3.2. Phonotactic Classifiers 
The phonotactic classifiers use multiple phone recognizers as the front-end to derive phonotactic 
statistics of a language. Since the individual phone recognizers are trained on different 
languages, they capture different acoustic characteristics from the speech data. Therefore, 
combining these recognizers together improves the overall language recognition performance.  

The PPR front-end can be followed by both the phone n-gram language models (LM) 
(Zissman, 1996) and the vector space modeling (VSM) backend (Li, Ma, and Lee, 2007). The 
LM backend evaluates each token sequence using multiple language models, each of which 
describes a token sequence from the perspective of a target language. With VSM backend, the 
n-gram statistics from each token sequence form a high-dimensional feature vector, also known 
as a bag-of-sounds (BOS) vector (Li and Ma, 2005). A composite vector is constructed by 
stacking multiple bag-of-sounds vectors derived from multiple token sequences. 
3.2.1. PPR-LM Classifier 
With the PPR front-end, the backend of the language classifier can be language models for 
capturing the phonotactic constraints for each target language. PPR-LM approach (Zissman, 
1996) uses the PPR front-end to convert a spoken utterance into multiple sequences of phones. 

Feature
Extraction

Classifier 1

Classifier 2

Classifier N

...

input output
Fusion

 
Figure 1: Fusion of multiple language classifiers. 
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Then a set of L n-gram phone language models estimates the likelihood phonotactic scores for 
the spoken documents in order to produce classification decisions.  
3.2.2. PPR-VSM Classifier 
Suppose that we have F phone recognizers with a phone inventory of { 1, , ,v v vτ= K  }, FvK  and 
the number of phones in vτ  is nτ . An utterance is decoded by these phone recognizers into F 
independent sequences of phone tokens. Each of these token sequences can be expressed by a 
high dimensional phonotactic feature vector with the n-gram counts. The dimension of the 
feature vector is equal to the total number of n-gram patterns needed to highlight the overall 
behavior of the utterance. If unigram and bigram are the only concerns, we will have a vector of 

2n nτ τ+  phonotactic features, to represent the utterance by the thτ  phone recognizer.  
For each target language, an SVM is trained by using the composite feature vectors in the 

target language as the positive set and the composite feature vectors in all other languages as the 
negative set. With L target languages, we project the high dimensional composite feature 
vectors into a discriminative feature vector with a much lower dimension (Ma, Li, and Tong, 
2007). 

We formulate the language recognition as a hypothesis test. For each target language, we build 
a language detector which consists of two GMMs { , }λ λ+ − . The GMM trained on the 
discriminative vectors of the target language is called the positive model λ+ , while the GMM 
trained on those of its competing languages is called the negative model λ− . We define the 
confidence of a test sample O belonging to a target language as the posterior odds in a 
hypothesis test under the Bayesian interpretation. We have 0H , which hypothesizes that O is 
language λ+ , and 1H , which hypothesizes otherwise. The posterior odd is approximated by the 
likelihood ratio ( )OΛ  that is used for the final language recognition decision. 

 ( ) ( | )log
( | )

O p O m
p O m

+

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

Λ =  (2) 

3.2.3. Target-Oriented Phone Tokenizer (TOPT) 
In the PPR framework, the languages of parallel phone recognizers, also known as phone 
tokenizers, and target languages may not have to be the same languages. For example, an 
English phone recognizer functions as a human listener of English background, trying to extract 
the discriminative information from the spoken utterances of each target language from its 
perspective. The discriminative information is expressed in an English phone sequence. In 
general, the performance gain increases with a greater number of parallel recognizers. 

We proposed to design the target-oriented phone tokenizers (TOPTs) (Tong et al., 2008) rather 
to use the same phone recognizer for all the target languages in the PPR practice. For example, 
Arabic-oriented English phone tokenizer, Mandarin-oriented English phone tokenizer, as Arabic 
and Mandarin each is believed to have its unique phonotactic features to an English listener. 

Phone 
inventory

TOPT1

TOPT2

Estimate 
Discriminative 

Power

Phone
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Phone Tokenizers

TOPTL

W2

WL

W1

 
Figure 2: Construction of target oriented phone tokenizers. 
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Note that not all the phones and their phonotactics in the target language may not provide 
equally discriminative information to the listener, it is desirable that the phones in each of the 
TOPTs can be those extracted from the full phone set of a phone recognizer, and having highest 
discriminative ability in distinguishing the target language from other languages. 

The target-oriented phone selection strategy is illustrated in Figure 2. Assuming we have a 
language recognition task of L target languages, given a phone recognizer with phone inventory 

1 2{ , , , , }i nv v v v v= L L  which contains n phones, we estimate the discriminative power of each 
phone iv  in distinguishing a target language kl  from other target languages: jl  with [1, ]j L∈  
and j k≠ . The discriminative power of phones in v  for distinguishing language kl  from others 
can be denoted as 

1 2, , ,{ }
mk v k v k v kW w w w= L . We select a subset of phones that have highest 

discriminative power to construct a new target-oriented phone tokenizer, kTOPT . In this way, we 
can construct L new target-oriented phone tokenizers, one for each target language.  
3.2.4. Phonetic and Acoustic Diversifications (PAD)  
Phonetic and acoustic diversifications may be applied to both PPR-LM and PPR-VSM systems. 
The conventional approach adopts phonetic diversification, where the parallel phone 
recognizers are trained on speech data from different languages with different phone sets. On 
the other hand, we proposed an alternative methodology where phone recognizers using 
different acoustic models trained on the same speech data with the same phone set (Sim and Li, 
2007, 2008) are used to achieve acoustic diversification. Analogous to system combination for 
speech recognition in which merging outputs from multiple systems with different error patterns 
helps to improve the final performance, using multiple acoustic models aims to form the 
contractive parallel phone recognition systems using different modeling techniques and training 
paradigms, without requiring additional phonetically transcribed speech data.  

3.3. Acoustic Classifiers 
Acoustic classifiers exploit acoustic features directly. There are two main approaches, Gaussian 
mixture modeling (GMM) on short-time cepstral features, such as MFCCs, LPCCs, and the 
Shifted Delta Cepstral (SDC) coefficients, and support vector machine (SVM) modeling on high 
dimension acoustic features, such as the polynomial expansion of short-time cepstral features.   
3.3.1. MMI-GMM 
In the standard Maximum Likelihood (ML) training framework for GMM, the objective 
function is to maximize the total log likelihood of training data: 

 ( ) ( )ML
1
log |

R

r r
r

p O sθ
=

=∑F  (3) 

where θ  is the model parameter set and rO  is the rth observation sequence, R denotes the total 
number of training utterances, and rs  is the correct language identity of the rth utterance. The 
ML estimation maximizes the likelihood of each model generating the training data 
independently.  

The discriminative training techniques have been successfully applied in large vocabulary 
continuous speech recognition (LVCSR) systems. One of the most popular discriminative 
training approaches, maximum mutual information (MMI) training, has been proved to efficient 
in the Gaussian mixture modeling for language recognition (Bueget, Matejka, and Cernocky, 
2006). The objective function of MMI is posterior probability of correctly recognizing all 
training utterances. It estimates the GMM parameters in a discriminative manner by maximizing 
the following objective function: 

 ( ) ( )
MMI

1

| ( )log
( | ) ( )

R
r r r

r rs

p O s P s
p O s P s

θ

θ

θ
= ∀

=
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑
F  (4) 

where ( )rP s and ( )P s  are the prior terms and we consider the prior probabilities of all 
languages equal. The denominator ( | ) ( )rs

p O s P sθ∀∑  is the likelihood of utterance rO  given the 
competing language models.  
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3.3.2. GLDS Kernel 
SVM has been proven to be an effective two-class classifier for pattern classification problems. 
To adopt SVM for classification of speech utterances is not straightforward since speech 
utterances are often parameterized as variable-length sequences of cepstral feature vectors. A 
kernel function that can measure the similarity between two sequences of speech feature vectors 
has to be constructed. The generalized linear discriminant sequence (GLDS) kernel has been 
proposed for speaker and language recognition (Campbell et al., 2006) on acoustic feature 
vectors. Given two sequences, { }1 2, , , mX = x x xK  and { }1 2, , , nY = y y yK , of feature vectors, 
the GLDS kernel is given by 
 ( ) 1

GLDS , T
x yK X Y −=b R b  (5) 

where m and n denote the number of feature vectors in the sequences X and Y, respectively. In 
(5), the two sequences become comparable by mapping them to a high-dimensional vector space 
via 

 ( )1
x

Xm ∈

= ∑
x

b b x%  and ( )1
x

Yn ∈

= ∑
y

b b y%  (6) 

where ( )⋅b%  denotes the polynomial expansion function. For [ ]1 2, Tx x=x  and considering all 
monomials up to the second order, the expansion function is given by ( ) [ 2

1 2 11, , , ,x x x=b x%  
2

1 2 2, Tx x x ⎤⎦ . In our final implementation, we used all monomials up to the third order. In (5), 
( )T

UN=R U U  is a correlation matrix calculated from a data matrix U that consists of the 
expansions of the entire set of UN  training feature vectors. For computational simplicity, it is 
customary to assume that the matrix R  is diagonal. An SVM is then constructed as the sum of 
kernel functions in the following form 
 ( ) ( )GLDS ,l l

l
f X K X Xα β= +∑  (7)  

Here, { lX } denotes the support vectors, β  is the bias, and the term lα , for 0ll
α =∑ , 0lα > , 

indicates the weight of the lth support vector in the expanded feature space. 
3.3.3. Probabilistic Sequence Kernel (PSK) 
The PPR (see Section 3.2) serves as a front-end decoder that extracts phonotactic information 
(i.e., phone sequences) from which the speech utterance can be characterized in terms of the 
occurrence and co-occurrence statistics of various phones. In (Lee, You, and Li, 2008), we 
explored the use of acoustically-defined units, instead of the linguistically-defined phones, in 
characterizing speech utterances and spoken languages. In particular, we train an ensemble of 
acoustic sound classes in a self-organized manner, each modeled with a Gaussian distribution, 
to form a speech sound inventory analogous to the phone inventory. We interpret the acoustic 
sound classes to represent some general vocal tract configurations in producing various speech 
sounds. The self-organized nature of these acoustic sound classes circumvents the need of 
laborious phonetic transcription. Furthermore, the structural simplicity of the Gaussian 
distributions allows us to train sufficient number of acoustic units to transcribe the sound of 
spoken languages in an effective manner. 

We formulate the acoustic sound inventory in a form of sequence kernel, referred to as the 
probabilistic sequence kernel (PSK), for SVM. Similar to that of the GLDS kernel mentioned 
earlier, the PSK maps variable-length utterances into fixed- and high-dimensional vectors in 
order to transform a complex classification task into a linearly separable one in a higher-
dimensional vector space. Let ( )|p jx ~ ( ); ,j jx μ ΣN , for 1,2, ,j L= K , denote the inventory of 
acoustic sound classes. Using these sound classes as bases, the feature expansion is defined as 

 ( ) ( ) ( ) ( )[ ]1| , 2| , , | Tp j p j p j L= = = =p x x x x% K  (8) 

where ( )|p j x  denotes the posterior probability of the jth acoustic class (the prior probability of 
each acoustic class is determined during the training stage as noted below). Each element of the 
expansion ( )p x%  gives the probability of occurrence of the jth acoustic class evaluated for a 
given feature vector x . The average probabilistic count across the entire sequence X is given by  
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 ( )1
x

Xm ∈

= ∑
x

p p x% . (9) 

The vector xp  can be interpreted as an M-bin histogram indicating the probabilities of 
occurrence of various acoustic sound classes observed in the given speech utterance X.  Given 
two sequences, the PSK measures their similarity as the inner product between their expanded 
vectors, lp  and xp , as follows 
 ( ) 1

PSK , T
x yK X Y −=p R p . (10) 

Compared to the GLDS kernel (5), the PSK hinges on the prior knowledge that the frequency of 
occurrence of speech sounds differs from one language to another in establishing the bases. This 
prior knowledge is not exploited in the GLDS kernel, leading to some performance deficiency. 

4. Fusion of Classifiers 
This section describes the fusion strategy for the IIR submission to the NIST 2007 Language 
Recognition Evaluation (LRE07). The final submitted system is a linear fusion of the scores 
contributed by ten individual classifiers. These classifiers are summarized in Table 1. 

Half of the classifiers are phonotactic classifiers while the remaining halves are acoustic 
classifiers. Two novel PPR-VSM classifiers were introduced to the LRE07 submission, namely 
the TOPT and PAD classifiers (see Sections 3.2.3 and 3.2.4 respectively). In addition, our 
system also made use of the HMM/NN hybrid phone recognizers provided by the Brno 
University of Technology (BUT)2. On the other hand, PSK, a novel acoustic classifier with 
generative front-end was also used (see Section 3.3.3). Furthermore, two GLDS acoustic 
classifiers were built using the MFCC and LPCC features. Two GMM classifiers were also 
trained using the ML and MMI criteria. 

The final system was obtained by means of linear fusion of the scores from the ten individual 
classifiers: 

 ( )
1

,
C

i c
c

s w s c i b
=

= +∑  (11) 

where C is the total number of classifiers and ( ),s c i  is the score of the ith trial from the cth 
classifier. The fusion parameters consist of the classifier specific weights cw  and the global bias 
b. Two objectives were used to tune the fusion parameters: 

a. minEER: 

 minEER ,
( , ) min

c
c miss FAw b

w b P P= −  (12) 

where the miss and false alarm probabilities are given by 

 
miss

FA

{ : True, }
{ : True}

{ : False, }
{ : False}

i

i

i i s bP
i i

i i s bP
i i

∈ <
=

∈
∈ ≥

=
∈

 (13) 

and { }K  denotes the cardinality of the set. 

b. Logistic Linear Regression (LLR): 

 ( )
( )LLR ,

1, max
1 expc

i ic iw b
w b

y s∀

⎛ ⎞
= ⎜ ⎟+ −⎝ ⎠

∑  (14) 

where 

                                                           
2 http://www.fit.vutbr.cz/research/groups/speech/index_e.php?id=phnrec 

53



 

 
1, True
0, Falsei
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y
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 (15) 

LLR attempts to transform the scores from multiple classifiers to the log likelihood ratios. The 
LLR is performed using the FoCal toolkit3. 

The final fusion parameters were obtained as the average of the parameters estimated using the 
above objectives, i.e., 
  

 
[ ]

[ ]

minEER LLR

minEER LLR

1 ( ) ( )
2
1 ( ) ( )
2

c c cw w w

b b b

= +

= +
 (16) 

The fusion parameters were calibrated on the development data comprising the NIST 1996, 
2003 and 2005 evaluation sets as well as the 2005 OHSU development data. 
4.1.1. Fusion results 
Figure 3 shows the Detection Error Trade-off (DET) curves for the 10 individual classifiers as 
well as the final fusion system for the 30s General LR closed-test task. The top 3 performing 
classifiers include the BUT-PPR-VSM, TOPT-PPR-VSM and PAD-PPR-VSM classifiers.  

The Cavg performance of the best and worst individual classifiers as well as the fusion system 
for the 30s, 10s and 3s General LR closed-test tasks is summarized in Table 2. The relative 
improvements obtained from fusion over the best individual classifier were 22.3%, 33.3% and 
20.3% for the 30s, 10s and 3s tasks respectively.  
4.1.2.  Open-test versus Closed-test  
Table 3 shows the comparison of the EER (%) and Cavg (%) performance for the open-test and 
closed-test conditions on various tasks. In general, it was found that the General LR tasks are 
relatively easier compared to the Chinese LR and the other dialect recognition (DR) tasks. In 
particular, the Hindustani DR and Spanish DR tasks were the hardest, with Cavg performance 
greater than 30%. As expected, the performance of the closed-test tasks is generally better than 
that of the open-test tasks due to the presence of the out-of-set languages in the open-test 
                                                           
3 http://www.dsp.sun.ac.za/~nbrummer/focal/index.htm 

Table 1:  List of 10 individual classifiers used in the 
IIR NIST 2007 Language Recognition Evaluation 
submission. 

Phonotactic Classifiers Acoustic Classifiers 
PPR-VSM PSK 

TOPT-PPR-VSM MFCC-GLDS 
PAD-PPR-VSM LPCC-GLDS 
BUT-PPR-LM ML-GMM 

BUT-PPR-VSM MMI-GMM 
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Figure 3:  DET curves of individual classifiers and 
the final fusion system for the 30s General LR closed-
test task. 

Table 2:  Cavg performance using the minEER+LLR 
fusion method for the General LR closed-test tasks. 

Cavg (%) 
Systems 

30s 10s 3s 
Worst individual 10.23 18.16 33.05 
Best individual 3.54 9.22 20.59 

Fusion 2.75 6.15 16.40 
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condition. Note that the Cavg performance depends on the decision threshold which may not 
coincide with the EER operating point. There are several cases (e.g. Hindustani DR and Spanish 
DR) where the Cavg performance for the open-test condition outperformed the closed-test 
condition due to the poor decision threshold in the later condition. The decision thresholds for 
the open-test conditions were estimated using development data that contains some out-of-
language (OOL) languages to learn the appropriate trade-off between false acceptance (false 
alarm) and false rejection (miss). This has been found to yield improved performance compared 
to using data without OOL languages. For example, the Cavg performance for the 30s General 
LR open-test task would have been 5.71% instead of 4.28% if the decision threshold was tuned 
using development data without OOL languages. 

5. 
Pseudo Key Analysis 
We apply a pseudo-key analysis scheme to cross validate the performances of individual 
classifiers. It is to find out the abnormal classifier and prevent the error in the final fusion 
system without knowing the true keys of evaluation data. Suppose that the ratio of 
genuine/imposter test trials is around 1:(L-1), where L is the number of the target languages. 
From the pool of scores of M trials from each classifier c, we choose M/L trials with the highest 
scores as genuine trials and the remaining trials as impostor trials, i.e., 

 ( ) ( )
( )

True,     if ,
,

False,    if ,
c

c

s c i T
k c i

s c i T
≥⎧

=⎨
<⎩

%
%

%
 (17) 

where ( ),k c i%  denotes the pseudo key for the ith trial of the cth classifier and the threshold cT%  is 
set such that there are M/L trials whose scores are above it. In the above equation, ( ),s c i  
represents the score of the ith trial from the cth classifiers. Using the pseudo keys from all 
classifiers, we compute the pseudo EER for the cth classifier as 

 ( ) ( )Pseudo
1,

1 |
1

N

g g c
EER c EER c g

N = ≠

=
− ∑  (18) 

where 

 ( ) ( ) ( )| , | , , 1, )EER c g s c i k g i i Mα= ( =%  (19) 
is the operator computing the EER of cth classifier using the psuedo keys obtained from the gth 
classifier, and N is the total number of classifiers. 

We found that the genuine and imposter scores can be roughly expressed as two Gaussian 
distributions. The probability of error with the pseudo keys obtained from the cth classifier is 
given by 

Table 3: Comparison of EER and Cavg performance for the open-test and closed-test conditions on various tasks 

30s 10s 3s Systems Test 
Conditions EER Cavg EER Cavg EER Cavg 
Closed-test 1.67 2.75 5.87 6.15 15.38 16.40 General LR Open-test 2.34 4.28 6.79 8.20 15.92 17.88 
Closed-test 4.90 5.99 8.30 9.51 19.01 20.96 Chinese LR Open-test 4.89 5.96 9.03 8.02 21.71 18.29 
Closed-test 12.66 12.72 24.69 24.45 29.74 31.70 Mandarin DR Open-test 15.83 13.39 24.05 19.89 36.07 30.03 
Closed-test 9.38 17.34 14.38 23.13 23.75 24.06 English DR Open-test 11.25 14.59 16.88 18.58 26.88 26.45 
Closed-test 32.34 31.56 35.00 34.84 41.09 41.72 Hindustani DR Open-test 35.16 29.12 39.06 32.40 43.75 38.15 
Closed-test 27.97 34.38 33.12 40.00 42.50 44.06 Spanish DR Open-test 32.66 30.28 40.00 33.50 42.50 37.88 
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 ( ) ( ) ( )1 1 0 0, | , | ,c cP error c P s T m P s T mσ σ= < + ≥% %  (20) 

where { }1 1,m σ  and { }0 0,m σ  are the mean and variance of the genuine and imposter score 
distributions, ( )1 1; ,s m σN  and ( )0 0; ,s m σN , and cT%  is the threshold defined in (17). Obviously, 
the error probability is the overlapped sections of the two distributions as indicated in (20). The 
performance of each classifier depends on the area of this overlapped section. The smaller the 
overlapped section, the better the classifier is. When this overlapped section is minimized, the 
classifier achieves desired performance.  An outlier classifier will give a large overlap between 
the genuine and imposter distributions, resulting in high error rate with respect to pseudo keys. 

We used the pseudo-key approach to analyze the performance of individual classifierson the 
LRE07 development and evaluation data sets. The pseudo EERs were computed using (17) and 
(18). Figure 4 compares the pseudo and actual EERs for all the classifiers. It is shoen that there 
exists a consistency between the pseudo and actual EERs on both the development and 
evaluation sets. The pseudo EERs can therefore provide a rough performance indication of the 
classifiers. 

6. Discussion 
A description of a language recognition system has been presented as it was developed for the 
2007 NIST LRE. The submission was built upon multiple classifiers using generative and 
discriminative classification techniques, and was purposely designed to exploit the benefits of 
both phonotactic and acoustic features. Notably, we introduced three novel language classifiers, 
two phonotactic and one acoustic, in our LRE07 submission. The TOPT and PAD classifiers 
were shown to be successful refinements to the conventional phonotactic approach. On the other 
hand, the PSK bridges the gap between acoustic and token-based techniques. All the classifiers 
were combined at the score level with a simple linear fusion giving an EER of 1.67 % and a Cavg 
of 2.75 % under the general LR core test condition. The LRE results represent the state-of-the-
art performance with an effective design and implementation. 
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