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Abstract 
Given a targeted subject and a text collection, information extraction techniques provide the 
capability to populate a database in which each record entry is a subject instance documented in the 
text collection. However, even with the state-of-the-art IE techniques, IE task results are expected to 
contain errors. Manual error detection and correction are labor intensive and time consuming. This 
validation cost remains a major obstacle to actual deployment of practical IE applications with high 
validity requirement. In this paper, we propose a string feature-based approach to textual data 
profiling and invalid data detection. The approach is based on the observation that values of an 
attribute in IE results are symbolic form variations of a concept in the IE task subject and may 
exhibit a certain congruity with some string features. We conducted experiments to verify that 
effective detection of IE invalid values can be achieved by using the surface-form string features. 
 

1. Introduction 
Most IE researches are concerned with producing better performance and facilitating development 

portability [2][5][1]. Even with the state-of-the-art IE techniques, IE task results are expected to 
contain errors. If the IE results are to be used for applications with data validity concerns, IE errors 
need to be detected and corrected before any value-added processing can be applied. For a typical 
IE application with tens of thousands, or even hundreds of thousands, extracted entities, manual 
error detection and correction are labor intensive and time consuming in checking IE results with 
original documents. This validation cost remains a major obstacle to actual deployment of practical 
IE applications. In some cases, the validation cost may be so high that IE techniques appear to be 
hardly superior to direct human work in which both extraction and validation may be performed at 
the same time. Unfortunately, issues of ensuring highly validated IE results with acceptable cost are 
little addressed in the IE community. If IE techniques are to be translated into adequately supported 
actual deployment, we must have some ways to reduce validation cost and ensure data quality of IE 
results.  

Data cleansing, also called data cleaning, considers the problem of identifying and removing 
errors and inconsistencies in data sets [3]. Due to the wide range of possible data errors and 
inconsistencies, data cleansing involves a variety of research efforts to deal with invalid data, 
missing data, and duplicated data that occur in single source or when integrating multiple sources. 
One of the primary focuses is on data integrity analysis or data auditing. The goal is to analyze the 
actual instances of data to obtain indicative data characteristics or value patterns.  The results of 
data analysis are then used to locate potential errors and inconsistencies based on anomaly and 
conflict detection. Two related approaches, data profiling and data mining, have been attempted for 
data analysis [4]. Data profiling focuses on individual attributes and derives information such as 
data type, length, value range, variance, value frequency, occurrence of null values, typical string 
pattern, etc. Data mining helps discover specific data relationships between several attributes, such 
as dependencies or domain-specific business rules. Both approaches provide indispensable tools for 
data cleansing tasks.  
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In this paper, we present a string feature-based approach to textual data profiling and invalid data 
detection. A set of generic string features is proposed to provide characteristic profiling for textual 
data. Each string feature describes a surface property of a string without concerning its literal 
meaning. Textual data are audited by examining their string features and locating potential errors 
with atypical feature values. We consider two complementary strategies to establish the 
classification standards. The first strategy relies on specifying attribute constraints with a-prior 
domain knowledge. The second strategy employs the concept of statistical majority. The approach 
was applied to detecting invalid data in IE results from the task domain of government personnel 
directives. Performance evaluation shows the approach is capable of effectively classifying data 
validity and anomaly. Finally, we discuss certain observations and issues from the experiments, 
followed by suggestions for future explorations. 

2. Textual Data from Information Extraction  
The goal of IE tasks is to scan through a collection of documents and fill in a table of values with 

extracted strings from relevant text. Each instance of the targeted subject (or event) appeared in the 
text is to be transformed to an entity in a database with attributes specified by the information 
template of the subject. The output of an IE task, therefore, is a database first populated with 
exclusively textual data representing groups of subject instances. 
2.1. Error Analysis 

In general, data cleansing approaches and methods are closely related to the types of errors 
handled by them. Effective data cleansing for IE results would need to identify what types of errors 
are considered. IE results are derived by automatic data acquisition from raw text with computer 
processes. Extraction errors are the primary cause of data anomalies. From the point of view of data 
acquisition, IE techniques select a subset of words from raw text and fill them into a set of attributes. 
Errors occur both in selecting words and in matching selected words to attributes.  

We classify between four types of data anomalies in IE results. 
 Missing values: IE techniques fail to identify the correspond-ing value for an attribute from the 

text. As a result, the attribute slot is left empty.  
 Missing entities: IE techniques fail to recognize the subject entity entirely from the text. As a 

result, no corresponding entry is recorded.  
 Invalid values: IE techniques make mistakes in segmenting sequences of words or in associating 

words to attributes. As a result, attribute values are invalid either at the syntactical or the semantic 
level.  

 Duplicates: Duplicates are multiple entries representing the same subject entity. The occurrence 
of duplicates is usually not a mistake of IE techniques but is mostly due to repeated multiple 
descriptions of the same subject entity in text collection.  
2.2. IE Data Anomaly Problem 

Ideally, data cleansing for IE results should be able to detect and remove all four types of data 
errors. However, the textual nature of IE results presents much more obstacles for data analysis than 
numeric data. Among the four types of data anomalies, duplicates are easier to detect with 
information of key attributes. Missing values are mostly dependent on the availability of integrity 
constraint. If an attribute is known to be required, an empty slot provides a straightforward 
indication of a missing value. Otherwise, it is very hard to detect anything as missing when there is 
no information on its existence. The same applies to missing entities, which is not possible to detect 
by analyzing IE results alone.  

Our primary focus will be on detecting invalid values. Given an initial textual database loaded by 
an IE task, we address the problem of analyzing the actual data content and detecting values that are 
either syntactically or semantically invalid. We consider a simplified database in the form of a table 
where each row is a subject entity and each column corresponds to an attribute. Each attribute may 
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or may not associate with integrity constraints defined by a-prior knowledge of the task domain. 
The goal is to detect each and every invalid value in the textual database. Such a detection 
capability offers significant help to ensuring high-quality IE applications and is the beginning step 
towards more complete data cleansing with anomaly removal and correction.  

3. Featured-based Detection on Invalid Values 
We propose a set of generic string features that can be used to classify textual data into groups 

with different feature values. Each string feature describes a certain characteristics of a string. 
Ideally, invalid data will be exclusively separated out from normal data based on their unique string 
feature values. We observe that attribute values of different entities are only various instantiations 
of the same concept. Values in each column can be considered as the same class of textual string 
that shares certain characteristics. String features provide a basis to find the common characteristics 
of a class of textual strings. Groups with atypical string feature values indicate their possible 
anomaly. 
3.1. String Features 

A textual string, as an attribute value in IE results, is usually a word or a sequence of words that 
provides a unit of information pertaining to a subject entity. In linguistics, morphology concerns 
rules of word formation. A word has a form at the surface level and a meaning at the content level. 
Word meaning classification requires dictionary, which is subject dependent and does not work for 
entity name. On the other hand, word forms allow direct processing to determine its surface 
properties. Therefore, we propose to detect anomaly of attribute textual values based on surface 
forms of words. Our basic assumption is that certain surface properties of words would help provide 
differentiable characteristics between normal and abnormal values. Invalid attribute values would 
be revealed by their uncharacteristic surface features. 

We define a set of string features that characterize a textual string’s surface form. Each string 
feature describes a surface property of a string without concerning its literal meaning. Depending on 
the text language and the subject domain, string features can be defined at the character level or the 
word level. We will focus on the character-leveled features and their applications on Chinese IE. 
The same principles should be applicable to word-leveled features and other languages. We define a 
set of six string features, SF = (Sc, Sp, Ss, Se, Sl, Sn), that are used to evaluate each value vi in an 
n-tuple. Given a set of n-tuple, r = {t1, t2, …, tm}, in the database initially loaded by an IE task, we 
will apply the set of string features to the set of n-tuple such that each value vi in the database is 
evaluated by six string features. In other words, SF(r) = (Sc (vi), Sp(vi), Ss(vi), Se(vi), Sl(vi), Sn(vi)), for 
each and every vi in the database. The set of string features are specified as follows. 

 String cardinality, denoted by Sc: the number of characters in the string.  
 String k-prefix, denoted by Sp: the first k characters of a string, where k is a design parameter.  
 String k-suffix, denoted by Ss: the last k characters of a string, where k is a design parameter.  
 String entity, denoted by Se: the full range of characters of a string. 
 String lexicon, denoted by Sl: a true/false evaluation on whether the string matches with any of 

the known lexicon associated with a corresponding attribute. 
 String numeral, denoted by Sn: a true/false evaluation on whether the string contains any 

numeral symbol. 
3.2. Attribute Constraints 

Assuming that domain knowledge of IE task subject is given, constraints on attribute values may 
be specified based on string features. Each string feature provides a potential classifying and 
screening criterion on data validity for an attribute. Recall that each attribute represents a concept of 
IE subject and attribute values are instantiations of the same concept in various symbolic forms. 
Whether the various valid symbolic forms of an attribute converge on certain string feature values 
depends on the nature of the corresponding concept. Some attributes may be associated with 



 

effective criteria on a single string feature, while others may need logical combinations of multiple 
string features to enable appropriate screening. Still other attributes may be difficult to find reliable 
string features at all. Nevertheless, string feature constraints, when available, provide a convenient 
and potentially effective way to discriminate invalid data.  

The approach to examining string features of an attribute value against its known constrain for 
validity discrimination is both simple and straightforward. In addition, string feature constraints 
may be effective in detecting obvious errors due to IE’s mistaken selection and insertion operations. 
However, the approach is not applicable to all attributes. It also requires human intervention in 
specifying known constraints. Finally, the approach may not be able to detect errors that are 
semantically incorrect but appear to have the right surface forms. 
3.3. Majority Rule 

Another approach is to adopt common string features of attributes based on group majority as 
classification standards. All the values of an attribute (a column of the database table) are 
considered as a population to be discriminated based on majority and minority. Each string feature 
provides some differentiating characteristics that divide the whole population into one larger group 
and one smaller group. Attribute values in the smaller group, as minority, are discriminated as 
invalid data based on majority rule. It is expected that some string features work better than others 
on certain attributes. The accuracy of detecting invalid data also depends on the boundary between 
majority and minority.  

There are a number of strategies to draw the line between majority and minority. The most 
straightforward way is to calculate the occurrence percentage of each feature value for each string 
feature and rank them from the least to the most. Based on the ordered percentage distribution and a 
given threshold on accumulated percentages, a line can be drawn to separate minority from majority. 
For example, if a threshold of 20% is given, the subset of less significant groups with accumulated 
percentages less than 20% will be discriminated as minority. All other more significant groups are 
regarded as majority.  

Overall, the approach to derive classification standards based on majority rule requires no prior 
knowledge on subject domains and allows fully automatic processing. However, the assumption 
here is the percentage of invalid data is significantly less than that of valid data. Otherwise, it would 
be difficult to identify anomaly based on the notion of uncharacteristic features as minority. From 
the standpoint of data cleansing, the assumption is reasonable since it may not be suitable, in the 
first place, to apply data cleansing to a database with very high percentages of incorrect data. 
Another potential problem is the performance variations of pairs of string feature and attribute. For 
each attribute, the best string feature for detecting invalid data may be different.  

4. Experimental Evaluation 
We apply the feature-based detection approach to a set of IE task results and evaluate its 

performance. The IE task domain is government personnel changes. The original documents are 
government gazettes publishing government personnel directives issued by the reigning President. 
Each government personnel directive authorizes government post appointment and dismissal of the 
named officials. The IE task is to transform government personnel directives into a set of structured 
information on the subject, such as person name, government unit name, position title, rank, type of 
changes, date, etc.  
4.1. Performance Measures 

With string features as the basis of error detection, we are essentially constructing binary 
classifiers that indicate the validity/anomaly of data. Each string feature can be used directly as a 
simple binary classifier. Or we can develop more enhanced classifiers by combining multiple string 
features. The standard performance measures for binary classifiers are summarized in a 2 x 2 
confusion matrix, shown in Table 1.  
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Table 1: 2 x 2 confusion matrix 
 Classified as Yes Classified as No 

Actual Yes Class Number of True Positive (TP) Number of False Negative (FN) 

Actual No Class Number of False Positive (FP) Number of True Negative (TN) 

From this matrix a number of standard metrics are specified to measure classification performance. 
Theses metrics are true positive rate, true negative rate, false positive rate, and false negative rate. 

 True positive rate: TP-rate = TP/(TP+FN) is the percentage of positive cases correctly classified 
as belonging to the positive class; 

 True negative rate: TN-rate = TN/(FP+TN) is the percentage of negative cases correctly 
classified as belonging to the negative class; 

 False positive rate: FP-rate = FP/(FP+TN) = 1 – TN is the percentage of negative cases 
misclassified as belonging to the positive class; 

 False negative rate: FN-rate = FN/(TP+FN) = 1 – TP is the percentage of positive cases 
misclassified as belonging to the negative class; 

These four metrics measure the classification performance on the positive and negative classes 
independently, therefore, support objective evaluation even under skewed class distributions, as in 
our data set. The main objective of a classifier is to maximize the true positive and true negative 
rates. A perfect classifier will have true positive and true negative rates of 1. However, for most real 
world applications, there is always a tradeoff between TP-rate and TN-rate. The ROC (Receiver 
Operating Characteristic) graph can be used to characterize the tradeoff relationship between 
TP-rate and TN-rate of a classifier.  

On a ROC graph, TP-rate is plotted on the Y-axis and FP-rate is plotted on the X-axis. The 
performance of a binary classifier, depicted by a (TP-rate, FP-rate) pair, corresponds to a point on 
the graph. The lower left point (0, 0) represents a classifier that never classifies a case as positive 
class. The opposite classifier, one that always classifies a case as positive class, is represented by 
the upper right point (1, 1). The upper left point (0, 1) represents a perfect classifier. The diagonal 
line x = y represents a classifier with a random guessing strategy. Any useful classifier must 
produce a point above the diagonal line. In general, a classifier is better than another if it produces a 
point closer to the northwest corner. For classifiers with parameters, different settings produce 
different ROC points. Plotting all the ROC points that can be produced by varying the parameters 
produces a ROC curve, representing the overall performance of the classifier.  
4.2. Experimental Design 

In order to evaluate our approach to feature-based detection for invalid textual data, we use a 
sampled subset of the initial database as our test data. The test data contains a total of 150,752 
textual string values, with approximately 2.2% error rate. Our primary goal of the experiment is to 
assess the utility of each string feature and the overall performance of the approach in detecting 
invalid textual data from IE results. We observe that values of an attribute in IE results are symbolic 
form variations of a concept in the IE task subject. Our fundamental hypothesis is that certain string 
features are shared by string variations representing the same concept. These common string 
features may be found at the string’s surface form level. As a result, effective detection of IE invalid 
values can be achieved by using the surface-form string features. The experiments are intended to 
verify the hypothesis and derive information on the overall performance of the approach.  

We conducted two sets of experiments. In the first set of experiments, we apply subject domain 
knowledge to specify attribute constraints with selected string features. Classification performance 
measures are collected. The results provide information for us to analyze the applicability 
relationships between string feature types and attribute types. In the second set of experiments, it is 
assumed that no prior domain knowledge is available. Majority rule is applied for classification. We 
examine its performance and analyze the conditions of applicability. The combined results of the 



 

two sets of experiments provide empirical evidence for us to suggest the overall utility of string 
feature based detection for IE results.  
4.3. Performance of Attribute Constraints 

There are a total of 16 attributes in the domain of government personnel directives. Although the 
entire database was tested for anomaly detection, we only report performance measures on four 
representative attributes based on their distinguished content characteristics. In general, each 
attribute can be examined by any of the string features we defined. However, not all pairs provide 
useful anomaly detection. With subject domain knowledge, we can select testing pairs that are 
meaningful and avoid useless, even noisy, classification results. We summarize the selected 
combinations of attribute and string feature pair and their corresponding performance measures in 
Table 2.  

Table 2: Performance metrics by attribute constraints 

ROC 
point attribute string feature constraint TP rate FP rate

A person name Sc ( = 2 ~ 4) .9999 .8672 
B person name Sp + Sl (first character ∈ known) .9867 .1719 
C person name Sc + Sp + Sl .9926 .1016 
D rank Sn (= true) .6549 .2900 
E rank Sn + Sl (= true) .6579 .0933 
F issue number Sn (= true) 1.0 .3276 
G cause of changes Sl (= true) 1.0 .2353 
H government unit name Sc ( = 2 ~ 10) .1536 .2857 

Figure 1 shows the ROC graph of the selected testing pairs. The ROC points fall into three groups 
based on their locations. The first group is {A, B, C, F, G}, all of which have extremely high TP 
rates. This indicates that the string feature constraints specified for the particular attributes are 
highly successful in correctly classifying valid values. In addition, we can generally enhance their 
performance by adding more string feature constraints, as shown by the improvement from A to B 
to C. The second group includes D and E, which are only moderately effective in correctly 
classifying valid values. Note that the results were achieved by using binary string features only. 
Again, with more restricted validity constraints, more invalid values are detected correctly, as 
shown by the improvement from D to E. The third group contains H only, which is worse than 
random guessing classification. In fact, H is intended to show the possibility of a meaningless 
testing pair.  

Based on these performance results, we make the following observations.  
 Some attributes are strongly restricted by special types of value domains, which can be mostly 

represented by certain string features. Such a string feature is called the primary string feature of the 
corresponding attribute.  

 For many attributes, there is a good chance of finding a primary string feature that provides 
satisfactory or even highly successful positive classification. 

 The classification performance on an attribute can be enhanced by complementing its primary 
string feature with some secondary string features.  

 Given subject domain knowledge, string feature based detection by attribute constraints may 
provide more than satisfactory performance.  

The overall results seem to show that string features as attribute constraints are capable of 
effective data validity classification. We only show partial results in Table 2 to highlight some 
major points. However, we did confirm that by specifying more restrictive constraints with multiple 
string features ROC points of the attributes in our task domains all fall into area near the upper left 
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corner. Finally, constraint specifications for attribute values involve only surface-form string 
features. Shallow domain knowledge is sufficed to provide the classification rules.  
4.4. Performance of Majority Rule 

The second set of experiments concerns with the use of string features in invalid value 
discrimination based on statistical majority. It is hypothesized that invalid values in IE results will 
be indicated by their unusual string feature values, which may be exhibited when comparing to 
other valid values of the same attribute. We conducted pair-wise testing on every combination of 
string feature and attribute. When classifying values of an attribute, frequencies of occurrence of 
string feature values are ordered from least significant to most significant. A threshold of 
accumulated percentage is used as the discrimination line between minority and majority. Based on 
majority rule, attribute values with minority string feature values are considered as invalid data. The 
parameter of accumulated percentage threshold is set at 1%, 3%, 5%, 10%, 15%, 20%, and 25%, 
respectively. This variation of parameter values produces a ROC curve, representing the overall 
behavior of the classifier. 
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Figure 1: ROC graph of attribute constraints tests  Figure 2: ROC graph of person name attribute 
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Figure 3: ROC graph of government unit name attribute Figure 4: ROC graph of rank attribute 

We report testing results of three representative attributes, as shown in Figures 2, 3, and 4. 
Accumulated percentage threshold of 1% corresponds to ROC points at the upper right corner, 
indicating the behavior of a highly positive classifier that considers at most 1% data as invalid. As 
the percentage threshold increases, the ROC points move to the left side with descending slopes. In 



 

Figure 2, one string feature, Se (string entity), produces a ROC curve worse than that of a random 
classifier. This is because frequency of occurrence of person name generally provides little 
indication on its validity. Many person names appear only once because they are involved in only 
one job change during the time covered in our data set.  

Based on these performance results, we make the following observations.  
 Some attributes, such as government unit name and rank, respond well to majority rule 

classification. Values of these attributes usually come from limited domains and are highly repeated. 
A single string feature is capable of providing effective discrimination with respectable results of 
81% TP rate and 5% FP rate.  

 Some attributes, such as person name, are more difficult to discriminate invalidity with 
majority rule classification. Values of these attributes are usually highly variable as a string unit. 
Classification performance by one single string feature is hardly satisfactory. 

 Some invalid data are invisible from the angle of only one string feature and require cross 
examination from multiple perspectives. For example, invalid values of person name may also are 
strings of the same length with valid values of person name. However, these invalid strings of 
person name may be detected by examining their first character, which correspond to a person’s last 
name. By combining multiple string features to provide finer grained discrimination, better 
performance can be expected.  

The overall results show that when no prior domain knowledge is available majority rule 
discrimination is a feasible alternative for detecting invalid values. This suggestion is supported by 
the fact that attribute values in IE results usually exhibit high affinity with each other in certain 
aspect. The dominant form of valid values allows distinction with unusual variations by statistical 
majority.  

5. Conclusions 
IE techniques offer great potential for producing valuable databases from inventories of 

documents. However, before IE techniques can realize their full potential, the issue of data usability 
in IE results must be addressed. We propose a string feature-based approach to textual data profiling 
and invalid data detection. The approach is based on the observation that values of an attribute in IE 
results are symbolic form variations of a concept in the IE task subject and may exhibit a certain 
congruity with some string features. We conducted experiments to verify that effective detection of 
IE invalid values can be achieved by using the surface-form string features. The contribution of our 
work is to provide both analytical and empirical evidences for supporting the effective enhancement 
of IE results usability. The principles and the observations suggested in our paper are generic to IE 
task domains and languages and can be extended for further explorations in more sophisticated IE 
data cleansing. 
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