Some Distributional Properties of Mandarin Chinese --A Study Based on the Academia Sinica Corpus

Ching-Yu Chen*, Shu-Fen Tseng*, Chu-Ren Huang**, Keh-jiann Chen*
*The Institute of Information Science, Academia Sinica
**The Institute of History and Philology, Academia Sinica
Nankang, Taipei, Taiwan, Republic of China

Abstract

0. Abstract

The study of word frequency has been discussed by linguists, psychologists, and computer scientists. However, the results of these studies cannot be valid unless the corpus is big enough and properly-segmented. This paper observes the distributional information derived from word frequency based on a 14 -million-character corpus of Chinese newspaper (CKIP 1993). This is the first available Mandarin Chinese corpus of such magnitude. The word frequency count is obtained with an automatic-segmentation program with above 99% accuracy rate (Chen and Liu 1992). The count reflects some general phenomena of Chinese usage. For example, among the first thousand high frequency words, there are more bi-syllabic words than mono-syllabic words, attesting to the trend of bi-syllabicfication observed by many linguists. However, in general, the mono-syllabic function words occur more frequently than bi-syllabic words. In addition, the frequency of numerals is ranked according to their numeric order ('one' is higher than 'two', and 'two' is in turn higher than 'three', etc.)

This paper discusses the theoretical and applicational implications of these distributional properties. For instance, we find that the most frequent 2452 characters and 28124 words make up $\mathbf{9 9 \%}$ of the corpus content. It is suggested that the optimal strategy for learning Chinese lies in the mastery of the most frequent 2452 characters plus words whose meanings can not be predicted on the basis of their component characters. This implies that one need not know 28124 words in order to achieve good reading knowledge in Chinese. Given the noted parallel between the internal structure of words and phrases, one can predict that knowledge of a few thousand words and of the morphosyntactic rules will enable one to read Chinese without much difficulty.

1. Overview

Previous studies on word frequencies were not based on large corpuses. For example, Hsieh (1975) studied word frequency based on Taiwan's seven leading daily newspapers, which contained a corpus of only 112,708 words. In addition, Hsieh's work was done by hand and not automaticized, so there might have some miscalculation in the result. Beijing Language College's (1985) 'Xiandai Hanyu Pinlu Cidian' (Word Frequency count of Modern Mandarin), a well-known dictionary which is often cited, has $1,808,114$ words. However, the result of these studies cannot be valid unless the corpus is big enough and properly-segmented. This paper observes the distributional information derived from word frequency based on a fourteen-million-character corpus of Chinese newspapers (Huang et al,1993), (Huang and Chen, 1992). This is the first available Mandarin Chinese corpus of such magnitude. The word frequency count is obtained with an automatic-segmentation program with above 99% accuracy rates. (Chen and Liu,1992). Furthermore, since the corpus contains mostly texts from journals, its contexts cover many topics, such as politics, humanities, sciences, culture, arts and literature....etc. It also contains interviews, fiction, letters...,etc. In other words, this corpus has both critical size and
diversity. The distributional properties that obtain from the corpus should be a good indicator of the general properties of Mandarin Chinese.

In this study, we follows approaches in statistical linguistics and try to combine mathematics and linguistics in our research. Through observing computed results, we are able to gain an overall understanding of the distributional properties of languages. In section 2, we will make observations based on the word frequency count, and discuss the linguistic interpretation of these observations. In section 3, we provide statistics derived from our frequency count to test the robustness of some important laws proposed in the field. In the last section, section 4, we will make some concluding remarks on this study.

2.The Linguistic Phenomena and Study

In this section, linguistic phenomena are observed and interpreted.

2.1 Classification of the 500 Most Frequent Words

The first 500 words occur no less than 2778 times. These words (types) make up 50.696 percentage of the corpus. There are some important attributes of these most frequent words:
(1) Among the 500 most frequent words, there are 93 disyllabic nouns, and many of them are government organizations, corporations, and official titles(32 nouns): zheng fu 'government', xian fu 'county government', guo jia 'nation', li wei 'legislator', yi yuan 'councilman', xian zhang 'county magistrate', etc.) These words are all frequently used words in political news.
(2) Among the first 500 most frequent words, there are 136 verbs; and the active verbs are more than stative verbs ($84: 50$), transitive verbs more than intransitive verbs ($99: 35$). Among disyllabic verbs the frequency of discourse verbs is comparatively high. For example biao shi 'to express', zhi chu 'to point out', ren wei 'to think', jue ding 'to decide', bao dao 'to report', diao cha 'to investigate', gui ding 'to prescribe'...etc, and for the most part action verbs occur with single objects. Among 99 transitive verbs, there are 57 action verbs with single objects.
(3) In addition, since the three factors,"person, place and time", are the three (almost) abligatory elements in lither actions or states, they are also the most common properties of the first five hundred high frequency words. For example, there is the factor of "person", and as we mentioned before, most of them are government organizations and official titles. The factor of "time" includes words such as: mu qian 'presently', zuo tian 'yesterday', jin nian 'this year, shang wu 'morning', qu nian 'last year', etc. The factor of "place" including Tai Wan 'Taiwan', Tai Bei 'Taipei', Mei Guo 'America', Ri Ben 'Japan', Kao hsiung 'Kaohsiung', etc. also occurs frequently.

As mentioned above, among the first five hundred high frequency words, there are 93 disyllabic nouns, and 32 of them are names of government organizations, corporations and official titles while there are also 12 time nouns and 24 place nouns. These three kinds of words make up of two thirds disyllabic nouns.

2.2 Distribution of Syllabic Length

Table 2-1 is computed based on a corpus of $9,529,233$ segmented words . Segmentation was done by the automatic-segmentation program designed by Chinese Knowledge Information Processing Group (Chen \& Liu, 1992). The numbers of words and frequency of one-character words to nine-character are given in Table 2-1.

Concerning word type, there are 5191 monosyllabic words, which consists of 9.52% of all lexical entries. There are 35,752 disyllabic words and they consist of 65.60% of all entries. The numbers of trisyllabic and quarter-syllabic words are very close (12.36% and 11.58% respectively). Words of five or more characters are rare, about 0.94%. However, concerning word tokens, the numbers of monosyllabic words is more than the numbers of disyllabic words (53.77% vs. 42.28%). The sum of the two classes of tokens is more than 96%, while the other words which are more than three characters only add up to less than 4%.

From the statistics, we can see that most Mandarin Chinese words are monosyllabic or disyllabic. The pre-dominance of disyllabic word types (65.60%) seem to support the theory that Chinese is in the process of disyllabification. However, in actual use monosyllabic words are far more frequently than disyllabic words. Moreover, we count the average word length of Mandarin Chinese is 1.494 according to the table; which is lower than the estimated value of 2 .

Kind of Word	Number of Words	Total Frequency	Type	Token
One-character words	5191	5123836	9.52%	53.77%
Two-character words	35752	4028894	65.60%	42.28%
Three-character words	6736	279711	12.36%	2.94%
Four-character words	6309	91006	11.58%	0.96%
Five-character words	300	3635	0.55%	0.04%
Six-character words	138	1736	0.25%	0.02%
Seven-character words	58	337	0.11%	0.00%
Eight-character words	15	72	0.03%	0.00%
Nine-character words	1	6	0.00%	0.00%

Table 2-1 Words Classified by Syllabic Length

We will next investigate more closely the distribution in terms of word-length by monitoring the
distribution of each 100 word segments on the frequency scale. The result is Figure 2-1.

Figure 2-1, Distribution of Word Types with regard to syllable number within each 100-word frequency stage
Among the $\mathbf{2 0 0}$ most frequent words, there are no multisyllabic words longer than three syllables. Moreover, in the 300 most frequent words, monosyllabic words are far more than disyllabic words (monosyllabic: 156, disyllabic:44). The numbers of disyllabic words overtakes the number of monosyllabic words in the 300-400 stage. From Figure 3-1 we can see that with the 300 most frequent words, monosyllabic and disyllabic words show dramatic decrease and increase respectively. Then from the 300th words to the 10000 th words, the count of monosyllabic continues to decrease, whereas disyllabic words are increasing continuously. Because longer multisyllabic words consist only a small percentage, the two curves of monosyllabic and disyllabic words in figure 3-1 are almost perfect mirror image of each other. This again shows that most Chinese words are either monosyllabic or disyllabic.

In addition we learn that the total frequency of one to four character words reaches 99%, and five and more-character words are rare. After observing the spread of every one to four-character words, we find the one-character words are predominant in the highest frequency range, and most of the words are function words such as prepositions, determinative, measures, conjunctions, personal pronouns, the verb"to be," and the verb "to have." In the next highest frequency range (400 to 2000), two-character words are predominant, and most of the words are nouns and verbs. Almost all three and four-character words are nouns and verbs. Focusing on the phenomenon, we would discuss in 3.3 why one-character function words have such a high usage frequency. In addition, the distribution of one to four-character words in terms of grammatical categories will also be discussed.

3.3 High Frequency of One-Character Minor Category Words

Among high frequency words, monosyllabic words dominate, and these monosyllabic words are almost all minor category words, which include prepositions, determinative, conjunctions, personal pronouns, etc.. Of all monosyllabic words, de has the highest frequency. Next we will observe the distribution of
prepositions, determinative, and conjunctions.

Fig.2-2 the distribution of minor category words in Mandarin Chinese (bar graph)

Fig.2-3 the distribution of minor category words in Mandarin Chinese (line graph)

In Figure 2-2, we see the number of one-character determinatives is double of that of two-character determinatives. In Figure 2-3, the graph shows 20 one-character determinatives appear in first 100 high frequency words, which occupy half of the total amount of one-character determinatives, but two-character determinatives do not appear before the 200th word. Thus we see one-character determinatives are greater in number and also in usage frequency. The amount of one-character prepositions are almost equal to that of two-character prepositions, and in first 1000 words, two-character prepositions appear less than one-character propositions. The presentations of conjunctions and adverbs also clearly illustrate the phenomenon that one-character words have higher frequency than two-character words, but in first 1000 words, the amount of two-character words' appearances are few. Hence, two-character conjunctions and two-character adverbs are all low-frequency words.

Since Chinese is generally not inflectional, it is necessary to use functional categories words to represent grammatical relations, thus they occupy an important position in the grammar as well as use. But these words have low productivity and belong to a closed class. So the chance of repetitive use is very high. The obilgatoriness of functional category words, such as having no proforms and allowing no ellipsis, explain the reason why one-character function words occupy a majority in instances of high frequency words. In addition to the discussion of Fig.2-2 and Fig.2-3 above concerning the distribution of function words, we make detailed observations on these words and find the following phenomena:
(1) In the first 1000 words, many one-character words are ranked higher than two-character words which have the same meaning: conjunctions $j i$ and $y i j i$ 'and', chie and er chie 'and', yin and yin wei 'because', $d a n$ and dan shi 'but', prepositions $z i$ and $z i$ cong 'since', $j u$ and gen $j u$ 'according to', and dui and dui $y u$ 'toward', for instance. Maybe it presents the characteristics of the writing form that writing vocabulary is necessary to be brief and clear, simple and to the point to save the space of printing plate. Besides, since function words only have syntactic function, if one-character words do work, we must refrain from usingtwo-character words, so that we can avoid verbiage.
(2) It is important to take 'syllable' into considerations when using Chinese, especially when choosing adequate adverbs to modify some verbs. It is observed that some monosyllabic adverbs always occur with some certain monosyllabic verbs. Since these verbs are frequent, the frequency of these adverbs are also very high. According to our corpus, high frequency verbs (shi 'to be', you 'to have', for example) always occur with adverbs (jiang 'be going to', bu 'not', ye 'also', yi 'already', dou 'all', ying 'should', zai 'not yet', for example.) These adverbs also have high frequency.

2.4 Distribution of Major Categories

In one to four-character words, the distribution of noun frequency and verb frequency have some differences in addition to similarities. The similarities are in the distribution of noun frequency and verb frequency: the frequency of monosyllabic words is higher than that of disyllabic words, and the frequency of disyllabic words is higher than those of three and four-character words. The differences lies in the frequency rank of four-character words. Three and four-character nouns occur in the set of the 500 most frequent words. Hence, in three and four-character words, the usage frequency of nouns is higher than that of verbs. However, multi-syllabic words do not rank higher than 2500th and four-character verbs do not rank higher than 4500th.

Fig.2-4 ratio chart of Noun types in Mandarin Chinese

Fig.2-5 ratio chart of Verb types in Mandarin Chinese

In addition, we can see from the ratio chart (Figure 2-4 and Figure 2-5) the percentage of every syllable types of nouns and verbs----the ratio of one and two-character nouns and verbs are similar, but that of three and four-character words are contrary; unexpectedly there are more three-character nouns but more four-character verbs.

Based on the data of corpus-based frequency count of words(CKIP, 1993), three-character nouns are mostly derived words, i.e., words composed of stems and affixes. These words have the often refer to government institution(--Yuan, --Yu, --Shu, etc.), name of administration division(--Shi, --Xian, etc.). Because of the high-productivity, three-character nouns consist a significant percentage. Chinese names in general consist of three-characters; this may be one of the reasons why there are many three-character nouns.

Four-character nouns are almost always proper names and government corporations, but four-character government corporations are usually abbreviated to disyllabic words (for example, Zhong Yang Yin Hang --> Yang Hang 'Central Bank'). As a result, four-character nouns occur less often, and their frequency is not high. To sum up, except for monosyllabic words, the amounts of nouns reduce progressively as the characters increase.

The distribution of three and four-character verbs is different to that of nouns. There are a few threecharacter verbs, which are almost VR compound verbs (ying xiang dao 'influence', bian geng wei 'change') and V-O construction verbs (da dian hua 'to telephone', fa pi qi 'to lose temper'). In fourcharacter verbs, VR compound verbs are few, and most of them are idioms (cheng2 yu3). As is wellknown, four character Cheng2 Yu3 is the time-honored way to conventionalize and lexicalize longer expressions in Chinese. Since these idioms are often used to creat vivid speech, four-character verbs are more than three-character verbs.

Fig.2-6 ratio chart of Noun tokens in Mandarin Chinese

Fig.2-7 ratio chart of Verb tokens in Mandarin Chinese

Figure 2-6 and Figure 2-7 are the ratio chart of tokens of nouns and verbs based on syllabic length. Comparing Figure 2-4 and Figure 2-6, we see that the percentage of monosyllabic nouns expands to nearly ten times (4.4% type vs. 40.6% token) when we use them, but three and more-character words correspondingly contract (e.g. for 3 character words, percentages come down to 6.3% from 19.9%). To see the rise and fall of verbs, we see that the extension degree of monosyllabic verbs is equivalent to that of nouns, but the usage frequency of three and more-character words reduces more drastically (only 1.8\%). We learn from Figure 2-6 and Figure 2-7 the main present forms of nouns and verbs are one and two-character. The reason why three -character nouns still occupy a significant ratio is that nouns are designator of entities and cannot be easily abbreviated without causing ambiguities. In contrast, three and more-character verbs occupy only 1.8%, because they do not show strong negative effect when abbreviated. As to the reason why four-character verbs are more than four-character nouns, it is because there are many idioms(Cheng2 Yu3) in Chinese which can be used as predicates, but, in fact, in contrast with Figure 2-5, the type amount of four-character verbs occupy 17.2%, and it contracts to 1.2% when being actually used. We see that the frequency of four-character idioms is not high in common usage, though they represent a healthy protion of the lexicon.

3.5. Another Distributional Property: numerals

All the fundamental numerals one to ten occur among the most 50 highest frequent words. Their frequencies generally reflects the numeric order, except for wu 'five' and shi 'ten'.

In the corpus, the high frequency of numerals is related to their common use in counting and referring. The progressive decrease from one to nine can be explained by some characteristics we meet when using ordinal numbers to count. In our statistics of words which display numerals side by side, we find a large quantity of numerals are used along with standard measures ("dollar", "year", "month" and "day", for example) and quasi-measures for measuring place words (xiang 'alley', nong 'lane', and hao 'number', for example.)

When we use ordinal numbers to refer a group of things, the range to number would influence the usage frequency of every number. For example, in a year we just have " the first season" to "the fourth
season", so the numerals of five and above are not used in this context and consequently occur less frequently. Thus, the frequencies of numerals from one to nine usually decrease gradually.

The reason for one's highest frequency is predictable, because "one" covers many meanings. In Chinese, besides the meaning "number", it also presents the meaning "whole" and "same". The abbreviation of the frequencies of "five" and "ten", exceptional to numeric order, relate to the system we use to count. The numbers over ten would usually have the number "ten" in them, "five" has a higher frequency than "four" probably because "five" is the middle value of "ten" and we are used to generalize the number less than five with "five" (for example, we always say "about 25 dollars" instead of " 23 dollars"). The importance of the number 5 in Chinese can also be supported by the idiom $Y i \mathbf{W u}$ Yi Shi '(literally) per-five, per-ten', '(idiomatically) to give a detaild account', and the fact that Chinese abacus uses both decimal and quintuple units.

2.6 Abbreviation

The efficiency concern of modern life also reflects on human language. People use abbreviation more and more frequently; we can easily observe the phenomena i . the corpus. For example, with the same meaning, guo min da hui dai biao (nation-people-grand-meeti`g-representative) 'the National Assembly' is less frequent than its abbreviation guo da dai biao, wh 'eas, guo da dai biao is in turn less frequent than its abbreviation guo dai. Predictably, abbreviation w.rds are found among the most frequently used words. For example, Yang Hang 'Central Bank of China', Tai Da 'National Taiwan University'. We find among the 2500 most frequent words.

In addition, the syllabic transformation of abbreviations and their origin forms are interesting. We found that words with odd syllables in its full forms are most likely to be abbreviated to odd syllables ones. Whereas the even syllable words are abbreviated to even syllable words. It is rare that some trisyllabic words are shorten to disyllabic words. We only find counterexamples to this generalization in the title of a news story, such as Jing Bu (shortened from Jing Ji Bu 'Ministry of Economic Affairs'), Li Yuan (shortened from Li Fa Yuan 'Legislative Yuan'). This can again be used as evidence to support the generalization that people use abbreviated form for the sake of efficiency but do not sacrifice their communicative goals.

3. An Observation on Statistics Linguistics - Zipf's Law

It is claimed that when we arrange the result of word frequency count in a decreasing order, it happens that the rank multiples the rate of its frequency results in a constant; i.e. $\mathbf{F} * \mathbf{R}=\mathbf{C}$ (R: rank, F: the rate of frequency) This is known as Zipf's Law. (Zipf, 1949) Following Zipf's proposal, there was a lot of discussion on it in the literature. However, our work is different from previous studies in some aspects:

1. Our study is based on a much larger corpus than previous ones; their research was based on at most a few hundred-character corpus.
2. This is the first time Zipf's Law is applied in Chinese with a properly segmented words. Previous work focused their research on Chinese character frequency instead of word frequency.

Fig.3-1 the rank-frequency distribution of words (Zipf, 1949)

Fig.3-2 the rank-frequency distribution of words (Academia Sinica Corpus)

Firstly, the rank-frequency distribution of words(Zipf,1949) is shown in Fig.3-1; Curve A is the James Joyce data; B the Eldridge data; C ideal curve of 45° slope. Curve A and Curve B are close to a straight line. In Fig.3-2, curve D, shows the rank-frequency distribution of words derived from Academia Sinica corpus. We can see the curve approximates linear between 42th and 1408th. This follows Zipf's prediction. Scholars(Deng, 1987) have claimed that Zipt's Law can not apply the most frequent words and the rare frequent words, so the the curve in Fig.3-2 does not violate the spirit of Zipf's Law.

Fig.3-3 the rank-frequency distribution of Chinese characters (Zipf, 194)

Fig.3-4 the rank-frequency distribution of Chinese characters (Academia Sinica Corpus)

Besides, Fig.3-3 and Fig.3-4 demonstrate the rank-frequency distribution of Chinese characters. Fig.3-3 is Zipf's data; and Fig.3-4 based on Academia Sinica corpus. The curve of Fig.3-3 is firstly downwardly convex then becomes linear and finally becomes step-like. However, Fig.3-4 shows a upwardly convex curve while Fig.3-3 is downwardly convex. The difference between these two figures implies that Zipf's Law does not correctly predict the distribution of Chinese characters. The reason
might be that not all Chinese characters are information units. ${ }^{1}$
Thus, the distribution of a corpus is more complex than what Zipf predicted, and it is possible that Zipf's Law can only fit a part of a corpus, not whole corpus. And if Zipf's Law can apply the distribution of characters should be reconsidered. Thus whether the value of C is 0.1 should not be emphasized as previous studies do. ${ }^{2,3}$

In conclusion, we have shown that Zipf's Law can not be a general property of the distribution of Chinese characters. However, it still applies to some specific range of word distribution. The interpretation given in Smith (1991) should shed light on why Zipf's Law applies in a limited domain: "It may suggest an equilibrium between unwillingness to exert mental energy in coming up with words and the need for words specific enough to express the meaning. Or it may suggest that, as an efficient channel of communication, language obeys laws of probability by the number of available word choices."

4. Conclusion

All the above discussion and observation are based on the CKIP word frequency count which is computed from the Academia Sinica Corpus. Our research provides empirical evidence which lend solid ground to linguistic theory and prediction. In addition to providing empirical evidences to linguistic theory, our research also captures distributional properties of Chinese that cannot be predicted by pure theoretical approaches. For instance, although 5665 Chinese characters in total occur in the 14-millioncharacter corpus, the frequently used 2452 characters made up 99 percentage of the corpus. This figure implies that a person who has learned 2452 Chinese characters plus a few morphological rules can easily understand most of a Chinese texts. The result can suggest an expected scale for the evaluation of Chinese learners (native and foreign).

In conclusion, this study suggests a new approach combining computer and linguistic theory. In Taiwan, this is the first time the frequency count of words is directly analyzed and observed on a completely electronically based corpus. With the success of this pioneering corpus-based study of Chinese linguistics, more extensive utilization of corpuses in linguistic and NLP research should bear profitable results in the future.

Acknowledgements:

Research for this project was partially funded by the Chiang Ching-Kuo Foundation for Internation Scholarly Exchanges. We want to thank Guan-Wen Wang, Sheng-Yih Wang, Wei-Liang Chen, Spring Ji, Wen-Shyang Lu for their programming and drawing graphs. We also want to express our gratitude to Kathleen Ahrens for her comments on the earlier draft and to all the colleagues at CKIP for providing support and information. Any remaining errors are our responsibility.

References

[1] The Chinese Knowledge Information Processing Group, 1993, "Corpus-Based Frequency

Count of Words in Journal Chinese＂，The CKIP Group，Institute of Information Science， Academia Sinica，Taiwan，ROC．
［2］The Chinese Knowledge Information Processing Group，1993，＂Corpus－Based Frequency Count of Characters in Journal Chinese＂，Academia Sinica，Taiwan，ROC．
［3］The Chinese Knowledge Information Processing Group，1993，＂The Most Frequent Verbs in Journal Chinese and Their Classification＂，Academia Sinica，Taiwan，ROC．
［4］The Chinese Knowledge Information Processing Group，1993，＂The Most Frequent Nouns in Journal Chinese and Their Classification＂，Academia Sinica，Taiwan，ROC．
［5］Chu－Ren Huang and Keh－jiann Chen，1992，＂A Chinese Corpus for Linguistic Research＂． In the Proceedings of the 1992 International Conference on Computational Linguistics （COLING－92）．1214－1217．Nantes，France．
［6］Chu－Ren Huang，et al．，1993，＂Chinese Linguistic computing－－－Modern and Classical Chinese Corpora at Academia Sinica＂．In the Proceedings of Fifth ROC－Japan Information Symposium on Modern Information Services．67－93．Taipei，Taiwan．R．O．C．
［7］George W．Smith，1991，＂Computers and Human Language＂，Oxford University Press
［8］Hsieh，Jen Hsiao，1975，＂A Frequency Count of Contemporary Chinese Vocabulary Based on Seven Leading Newspapers＂，South Carolina University，Ph．D．，U．S．A．
［9］John R．Pierce，1980，＂An Introduction to Information Theory－－Symbols，Signals \＆Noise＂， Dover Publications，Second，Revised Edition，New York，U．S．A．
［10］Keh－jiann Chen，Shing－Huan Liu，1992，＂Word Identification For Mandarin Chinese Sentences＂．In Proc．of COLING 92，Nantes，France．
［11］Zipf，1949，＂Human Behavior and the Principle of Least Effort＂，Addison－Wesley Press， Massachusetts，U．S．A．
［12］尹斌庸（Yin，Bin－Yung）：漢字習得效率研究，＜＜語文建設通訊＞＞第38期， 1992.12
［13］王還．等（Wang，Huan et al．）：現代漢語頻率詞典（上，中，下）北京語言學院出版社， 1985.7
［14］衛志強（Wei，Zhi－Qiang）：當代跨科學語言學，北京語言學院出版社， 1992．2，第一版

［15］鄧珞華（Deng，Lou－Hua）：詞頻分析，＜＜武漢大學學報＞＞（社會科學版）第一期，

 1987［16］馮志偉（Fong，Zhi－Wei）：數理語言學，知識出版社，上海，1985．8

Footnote

Fig．3－5 value of \mathbf{C} in Academia Sinica Corpus

Fig．3－6 the Zipf＇s ideal value of \mathbf{C}

1．It can also be observed that Pierce＇s（1980）account＂．．．Cree gives a line having only about three－fourth the slope of the Zipf＇s law line．This means a greater number of different words in a given length of text－－－a large vocabulary．Chinese characters give a curve which zooms up at the left，indicating a smaller vocabulary＂is misleading．Chinese does not have a smaller vocabulary．It has a relatively small set of characters．

2．Let us examine Zipf＇s formula the way previous scholars did．The following numbers are the products of F multipling R ． All the product approximate to 0.1 like previous researchers＇results．

0.035_{1}	0.024_{2}	0.032_{3}	0.030_{4}	0.031_{5}
0.046_{10}	0.075_{20}	0.100_{50}	0.120_{100}	0.125_{200}
0.162_{1000}	0.163_{200}	0.147_{3000}	0.133_{4000}	0.121_{5000}
0.111_{6000}	0.102_{7000}	0.096_{8000}	0.090_{9000}	0.083_{1000}

However，when we continue computing the products of F multipling R and plotting the result on a $X Y$ diagram（see Fig．3－5），the graph is a mountain－like curve which zooms up at the upper left and suddenly drops off to the lower right．Also， we can see that the curve peaks at the rank of 1378．This can be compared with the idealized prediction based on Zipf＇s Law． （Fig．3－6）

It is interesting that our curve is plotted between the reasonable range that Zipf predicted，but it shows a smooth curve and the value of C seems to be relative to its rank．

3．In fact，Fong（1985）has proved that Zipf＇s Law is just a specific condition of Mandelbrot＇s formula．There are three variables in Mandelbrot＇s formula．This implies it existing at least three conditions should be controlled in such experiment． Thus the universality of Zipf＇s Law should be reconsidered．

Appendix

Words	Token	Frequency									
的	334639	3.513	下	14078	26.282	王	8063	34.294	中心	5617	39.354
	113149	4.701	内	14050	26.429	台北	8034	34.275	明	5604	39.413
在	101384	5.766	千	14032	26.577	進行	7988	34.462			
＋	71824	6.520	要	13983	26.723	區	7965	34.546	提出	5588	39.471
是	59375	7.143	次	13948	26.870	亦	7830	34.628	可以	5580	39.530
有	55913	7.730	應	13849	27.015	可能	7819	34.710	學生	5573	39.588
	54768	8.305	指出	13760	27.160	正	7770	34.792	地方	5570	39.647
三	48256	8.812		$80-$		只衆	7768	34.873	經澹	5534	39.705
爲	44740	9.281	名	13477	27.301	没有	7746	34.955	榢	5527	39.763
將	43421	9.737	向	13336	27.441	昨日	7737	35.036	只	5470	39.820
五	41938	10.178	高	13217	27.580	很	7611	35.116	日本	5445	39.878
及	40043	10.598	警方	12956	27.716	從	7590	35.196	同時	5440	39.935
人	38352	11.001	昨天	12772	27.850	處	7566	35.275	作	5344	39.991
不	37697	11.396	未	12749	27.984	較	7502	35.354	如果	5337	40.047
中	37678	11.792	地	12599	28.116	要求	7409	35.432	造成	5322	40.103
之	37254	12.183	再	12510	28.247		60		若	5316	40.159
苡	36881	12.570	由於	12440	28.378	吳	7401	35.509	女	5304	40.214
四	36807	12.957	前	12376	28.508	美國	7399	35.587	華	5304	40.270
也	36699	13.342	又	12277	28.637	希望	7390	35.665	達	5288	40.325
而	35974	13.720	台涝	12275	28.766	得	7274	35.741	某	5231	40.380
	20		或	12024	28.892	如	7266	35.817.	警	5219	40.435
與	34528	14.082	仍	11989	29.018	著	7261	35.893	上午	5193	40.490
荗	33532	14.434	因此	11957	29.143	起	7224	35.969	對於	5175	40.544
遈	33301	14.784	小	11940	29.269	還	7196	36.045		40	
他	32741	15.128	廿	11711	29.392	事	7136	36.120	性	5141	40.598
了	30368	15.446	新	11518	29.513	蝺	7102	36.194	法	5138	40.652
六	30004	15.761	每	11506	29.633	㖸	7101	36.269	因爲	5125	40.706
大	29918	16.076	最	11494	29.754	車	7088	36.343		5123	40.760
t	28159	16.371		-100		冉	7043	36.417	是否	5122	40.813
時	28148	16.667	項	11431	29.874	國内	6989	36.491	國家	5114	40.867
八	28105	16.962	張	11370	29.994	文	6781	36.562	去年	5104	40.921
	27755	17.253	種	11118	30.110	依	6738	36.633	美	5092	40.974
楊	27716	17.544	台	10875	30.224	境	6711	36.703	自己	5045	41.027
個	27108	17.829	問題	10812	30.338	有關	6641	36.773	看	5043	41.080
會	27025	18.112	家	10586	30.449	地區	6472	36.841	長	4980	41.132
百	26993	18.396	卻	10473	30.559	記者	6438	36.908	南	4974	41.184
對	26759	18.677	者	10241	30.667		$80-$		國際	4971	41.237
並	26596	18.956	使	10135	30.773	投資	6363	36.975	前往	4947	41.289
但	25922	19.228	更	10111	30.879	且	6348	37.042	規定	4918	41.340
年	25796	19.499	案	10085	30.985	發生	6321	37.108	銐	4902	41.392
上	25694	19.769	經	10059	31.091	工程	6317	37.174	水	4884	41.443
	40		外	9999	31.196	活動	6309	37.241	中共	4859	41.494
元	25550	20.037	我	9981	31.300	間	6213	37.306	約	4853	41.545
表示	25482	20.305	全	9978	31.405	決定	6210	37.371	方	4850	41.596
杂	25116	20.568	市場	9886	31.509	㙫府	6204	37.436		60	
於	24255	20.823	黄	9854	31.612	發展	6179	37.501	局	4829	41.647
等	23940	21.074	認爲	9662	31.714	成	6172	37.566	但是	4806	41.697
月	23499	21.321	天	9607	31.815	餘	6130	37.630	下午	4802	41.747
該	22638	21.559	國	9597	31.915	人士	6125	37.695	出	4797	41.798
由	21885	21.788		－120－		許	6122	37.759	姓	4797	41.848
多	21872	22.018	位	9588	32.016	譃	6103	37.823	相當	4753	41.898
萬	19050	22.218	路	9502	32.116	鎮	6102	37.387	其中	4723	41.948
和	19012	22.418	筲	9453	32.215	金	6074	37.951	其他	4723	41.997
各	18869	22.616	或	9307	32.313	無法	6040	38.014	令	4706	42.047
説	18193	22.807	子	9282	32.410	另	5992	38.077	土地	4705	42.096
公司	18163	22.997	郷	9275	32.508	帒表	5986	38.140		4690	42.145
所	17995	23.186	人員	8995	32.602	不過	5975	38.203	育加	4673	42.194
兩	17130	23.366	單位	8928	32.696		$00-$		建	4662	42.243
陣	17065	23.545	組	8841	32.789	報導	5968	38.265	雖然	4627	42.292
都	16891	23.723	政府	8823	32.881	本	5966	38.328	給	4624	42.340
第	16741	23.898	大陸	8813	32.974	場	5959	38.390	數	4612	42.389
被	16503	24.072	無	8739	33.066	部	5887	38.452	廠	4596	42.437
	60		點	8649	33.156	做	5840	38.514	商	4590	42.485
可	16468	24.245	才	8605	33.247	些	5828	38.575	我們	4569	42.533
因	16104	24.414	工作	8548	33.336	省	5823	38.636	幾	4532	42.581
其	15786	24.579	自	8515	33.426	好	5808	38.697		$80-$	
此	15528	24.742	市	8505	33.515	用	5786	38.758	業	4531	42.628
則	15216	24.902	均	8458	33.604	方式	5772	38.818	包括	4518	42.676
能	15114	25.061	股	8341	33.691	調查	5741	38.878	時間	4512	42.723
分	14921	25.217	他們	8287	33.778	影響	5723	38.939	請	4483	42.770
就	14806	25.373		－－140		戱理	5722	38.999	使用	4473	42.817
林	14725	25.527	億	8268	33.865	把	5672	39.058	舃	4469	42.864
至	14665	25.681	今年	8259	33.952	發現	5652	39.118	只進矰	4452	42.911
到	14582	25.835	即	8227	34.038	過	5635	39.177	未來	4446	42.958
目前	14322	25.985	她	8202	34.124	社會	5634	39.236	遭	4434	43.004
來	14194	26.134	業者	8107	34.210	受	5622	39.295	分局	4416	43.050

立委	4416	43.097	委	3642	46.115	通過	3158	48.711	畐	2755	50.928
去	4351	43.142	研究	3634	46.153	個人	3137	48.744	了解	2752	50.957
清	4350	43.186	企業	3626	46.192	學校	3134	48.777		2750	50.986
必須	4345	43.234	率	3611	46.229	㵋格	3126	48.810	準備	2749	51.015
代	4342	43.279	最近	3609	46.267	最後	3123	48.842	根據	2744	51.044
舉行	4339	43.325	男	3595	46.305		440		渉瞩	2744	51.072
完成	4337	43.370	部份	3593	46.343	打	3122	48.875	已經	2743	51.101
成篇	4330	43.416	行動	3585	46.380	事件	3110	48.908	查猚	2741	51.130
回	4309	43.461	解決	3584	46.418	周	3104	48.940	價	2738	51.159
計責	4276	43.506	十分	3579	46.456	言	3102	48.973	行政院	2737	51.187
	0		道	3569	46.493	永	3091	49.006	積極	2733	51.216
那	4251	43.551	樶重	3568	46.531	男子	3089	49.038	國中	2730	51.245
德	4245	43.595	官員	3551	46.568	謝	3088	49.070	平	2729	51.273
檢	4241	43.640	至㐌	3548	46.605	環保	3086	49.103			
增加	4233	43.684	共府	3547	46.642	技術	3085	49.135	利用	2726	51.302
晨	4223	43.729	市府	3543	46.680	具	3077	49.167	委員	2721	51.331
我國	4221	43.773	中國	3542	46.717	要話	3072	49.200	收	2720	51.359
辦理	4217	43.817	福	3532	46.754	就是	3058	49.232	校	2719	51.388
方面	4214	43.861		0		同意	3054	49.264	香港	2712	51.416
楊	4165	43.905	安	3519	46.791	年度	3045	49.296	月份	2710	51.445
雖	4154	43.949	山	3514	46.828	舉辦	3036	49.328	展開	2707	51.473
情況	4153	43.992	建設	3514	46.865	戸	3035	49.360	力	2702	51.501
連	4126	44.036	件	3503	46.901	報	3034	49.391	電䐉	2699	51.530
行	4097	44.079	市長	3499	46.938	安非他	3031	49.423	電	2696	51.558
原	4095	44.122	二般	3498	46.975	特	3029	49.455	裡	2693	51.586
段	4078	44.164	安全	3497	47.011	規劃	3024	49.487	週	2692	51.615
除	4077	44.207	特別	3491	47.048		60		北	2691	51.643
以上	4069	44.250	信	3470	47.085	總統	3020	49.519	准得	2687	51.671
盤	4066	44.293	條	3468	47.121	環境	2989	49.550	採	2675	51.699
	4054	44.335	今天	3468	47.157	中央	2979	49.581	度	2667	51.727
部分	4051	44.378		3460	47.194	龍	2963	49.612	乃	2666	51.755
	0		政策	3458	47.230	派	2954	49.643	心	2656	51.783
銀行	4050	44.420	不是	3452	47.266	經品	2953	49.674	蘇	2655	51.811
驚長	4027	44.463	不能	3439	47.302	需	2945	49.705	移送	2649	51.839
主要	4019	44.505	計剽	3428	47.338	作業	2944	49.736		30	
半	4013	44.547	情形	3427	47.374	你	2938	49.767	䫅	2643	51.867
海	4012	44.589	針對	3418	47.410	改善	2928	49.798	選舉	2638	51.894
期	4002	44.631	經縈	3410	47.446	分別	2905	49.828	現場	2628	51.922
東	3995	44.673	執行	3406	47.482	伊拉克	2905	49.859	正式	2621	51.949
非	3989	44.715		00		運	2902	49.889	興	2615	51.977
配合	3978	44.757	産品	3389	47.517	業務	2899	49.920	進口	2606	52.004
䧽員	3954	44.798	附近	3374	47.553	委	2897	49.950	資金	2606	52.031
雄	3953	44.840	交通	3364	47.588	䙲	2897	49.980	屏	2605	52.059
服務	3953.	44.881	増年	3358	47.623	台北市	2897	50.011	港	2604	52.086
畜請	3940	44.922	申請	3334	47.658	加強	2894	50.041	負責	2601	52.113
	3931	44.964	送	3330	47.693	甚至	2889	50.072	院	2599	52.141
閵係	3930	45.005	責	3323	47.728	設	2887	50.102	生产	2599	52.168
管理	3911	45.046	旦前	3314	47.763		180		過去	2596	52.195
成立	3898	45.087	高雄	3286	47.797	昨	2878	50.132	當	2594	52.223
政治	3897	45.128	而且	3285	47.832	想	2861	50.162	敏	2587	52.250
們	3894	45.169	局長	3285	47.866	提	2860	50.192	整左	2582	52.277
之後	3886	45.210	引起	3276	47.901	往	2857	50.222	所有	2579	52.304
	340		重	3272	47.935	政	2857	50.252	垃圾	2578	52.331
	3874	45.250	僅	3265	47.969	啿績	2856	50.282	設計	2577	52.358
結果	3859	45.291	強調	3264	48.004	公	2851	50.312	開放	2577	52.385
嫌。	3843	45.331	如何	3263	48.038	走	2850	50.342		60	
村	3832	45.371	鹿	3262	48.072	支持	2835	50.372	持	2568	52.412
太 開始	3814	45.411	近	3258	48.106	社	2833	50.401	千萬	2568	52.439
開始	3813	45.451	䇾方	3247	48.141	波	2830	50.431	反	2567	52.466
榮	3797	45.491	定	3244	48.175	興建	2826	50.461	不會	2560	52.493
獲	3788	45.531		-420		重要	2813	50.490	主管	2552	52.520
出現	3783	45.571	除了	3236	48.209	劳外	2804	50.520	券	2551	52.546
所以	3775	45.610	里	3226	48.242	生活	2800	50.549	耲	2549	52.573
以及	3768	45.650	嚁	3225	48.276	共同	2800	50.579	爭取	2548	52.600
訊	3750	45.689	敀商	3212	48.310	只宥	2798	50.608	加上	2538	52.627
當	3743	45.729	站	3209	48.344	美元	2791	50.637	集瞷	2536	52.653
責	3742	45.768	文化	3208	48.377	國民第	2783	50.667	召開	2535	52.680
見	3714	45.807	建講	3205	48.411	機	2778	50.696	$\begin{aligned} & \text { 資料 } \end{aligned}$	2535	52.706
係	3713	45.846	接受	3203	48.445		500		光	2533	52.733
	3694	45.885	低	3200	48.478	賈施	2778	50.725	任何	2528	52.760
開發	3673	45.923	國小	3177	48.512	教育	2777	50.754	級	2527	52.786
絸供	3671	45.962	不少	3173	48.545		2772	50.783	義	2521	52.813
提供	3664	46.000	加	3170	48.578		2772	50.812	取締	2521	52.839
	60		利	3167	48.611		2765	50.841		2520	52.865
許多	3660	46.039	化	3165	48.645	道路	2765	50.870	主任	2520	52.892
祭	3658	46.077	台中	3158	48.678	預算	2761	50.899	一直	2518	52.918

