
Aligning Parallel Texts:

Do Methods Developed for English-French

Generalize to Asian Languages?

Kenneth Church
Ido Dagan

William Gale
Pascale Fung
Jon Helfman
Bala Satish

AT&T Bell Laboratories
600 Mountain Avenue

Murray Hill NJ, 07974-0636
kwc,@research.att.com

1. Introduction

Parallel texts have recently received considerable
attention in machine translation (e.g., Brown et al,
1990), bilingual lexicography (e.g., Klavans and
Tzoukermann, 1990), and terminology research for
human translators (e.g., Isabelle, 1992). We have been
most interested in the terminology application. How
would Microsoft, or some other software vendor, want
the term "dialog box" to be translated in their
manuals? Technical terms such as "dialog box" are
difficult for translators because they are generally not
as familiar with the subject domain as either the author
of the source, text or the reader of the target text.
Parallel texts could be used to help translators
overcome their lack of domain expertise by providing
them with the ability to search previously translated
documents for examples of potentially difficult
terminology and see how they were translated in the
past. "Existing translations contain more solutions to
more translation problems than any other existing
resource." (Isabelle, 1992)

There has recently been quite a bit of interest in
programs that align parallel texts such as the Canadian
Parliamentary Debates (Hansards), which are available
in both English and French, e.g., Brown et al. (1991),
Chen (1993), Church (1993), Gale and Church (1993),
Dagan et al. (1993), Kay and ROsenschein (to appear),
Kupiec (1993), Matsumoto et al. (1993), Simard et al.
(1992), Warwick-Armstrong and Russell (1990). It
remains an open question how well these methods
might generalize to other language pairs, especially
pairs such as English-Japanese and English-Chinese.

Some of these methods depend on being able to count
the number of words in a sentence, a measure that is
fairly easy to compute for French and most European
languages, but not for many Asian languages. Other
methods make use of cognates, another measure that
may be restricted to historically related language pairs
that share a common character set.

Nevertheless, we have had some preliminary success
in aligning certain texts in English and Japanese,
especially texts such as the AWK manual (Aho,
Kemighan, Weinberger (1980)), - which have been
translated from English into Japanese. This particular
text contains a large number of examples and technical
words that are the same in both the English source and
target Japanese, a fact that greatly simplifies the
alignment task. We will show that methods that were
originally developed to identify cognates turn out to
work surprisingly well on a text such as the AWK
manual.

Moreover, it should also be possible to align sentences
using character-based methods such as Gale and
Church (1993) since it turns out that the number of
characters in an English sentence is highly correlated
with the number of bytes in the Japanese translation.
One might speculate that similar results might apply to
other Asian languages. That is, the number of bits
required to express a concept in English is probably,
on average, highly correlated with the number of bits
required to express the same concept in practically any
other language. In other words, it might well be the
case that all of the worlds' writing systems are about
equally compact encodings of meaning (modulo a few
constants).

1

2. Align, Char align and Word_align

We have developed three different alignment
programs: (1) align (Gale and Church, 1993), (2)
word align (Dagan et al., 1993) and (3) char_align
(Church, 1993). align is intended to produce quick-
and-dirty paragraph and sentence-level alignments,
using the fact that longer paragraphs (and sentences) in
one language tend to be translated into longer
paragraphs (and sentences) in the other language, and
that shorter paragraphs (and sentences) tend to be
translated into shorter paragraphs (and sentences). A
probabilistic score is assigned to each proposed
correspondence of sentences based on the ratio of
lengths of the two sentences (in bytes) and the
variance of this ratio. This probabilistic score is used
in a dynamic programming framework to find the
maximum likelihood alignment of sentences. An
evaluation showed that align correctly aligned 96% of
the sentences.

Sentence-based methods have become popular in the
literature because they are so easy to implement, and
they produce reasonably accurate results with
relatively little cost. These methods are based entirely
on the lengths of the sentences in the two texts, and
completely ignore the words. Of course, the words are
very important. It would really help to know that the
English word government is very likely to be
translated into French as gouvernement. Word-based
methods such as Kay and ROsenschein (to appear) are
potentially more accurate than sentence-based
methods since they make use of more information,
although they are probably also more expensive.
Hybrid methods have recently become popular;
Shemtov (1993) and Brown et al. (to appear), for
example, both use a sentence-based method to produce
a rough initial starting point, and then word-based
methods are used to refine the results. Our word align
program is also a hybrid method, though we tend to
run it on the output of char_align rather than on the
output of a sentence-based alignment program such as
align.

char_align is intended as a robust alternative to align.
Sentence-based methods have been very successful on
clean inputs such as the Canadian Hansards.
Unfortunately, if the input is noisy (due to OCR and/or
unknown markup conventions), these methods tend to
break down because the noise can make it difficult to
find paragraph boundaries, let alone sentences and
words. To deal more effectively with these robustness
issues, we developed yet another alignment program,
char_align, that produces quick-and-dirty rough

alignments at the character level rather than at the
sentence/paragraph level, based on the cognate
approach proposed by Simard et al (1992). The new
program, char_align, looks for 4-byte sequences in the
source language that are identical to some 4-byte
sequence in the target language. There are often quite
a large number of these matching 4-byte combinations
along the correct alignment .path. Proper nouns are
often the same in both the source and target text.
Numbers, dates, times are also nearly the same in both
texts. Likewise for punctuation. 4-grams are
especially powerful in historically related language
pairs such as English and French, where there are large
numbers of cognates, e.g., government and
gouvernement.

3. Do These Methods Generalize Beyond European
Languages?

It might appear that all three of these methods might
be limited to languages based on the Roman alphabet.
In particular, char_align depends on finding 4-grams
that are the same in both the source and target text.
This assumption is unlikely to work very well when
the source and target text are written in different

alphabets.'

align makes a somewhat weaker assumption that the
length of a source text (in characters) can be used to
predict the length of the target text (in characters).
Although this assumption has been very useful for the
European languages that we have investigated thus far,
it may run into trouble when we consider Japanese and
Chinese, since these languages have a very different

notion of what counts as a character.

word align also might run into trouble because the
European notion of a "word" may not translate very
well into non-European languages like Japanese and
Chinese. The first problem, of course, is that Japanese
and Chinese do not use spaces to delimit words, and
therefore, one cannot tokenize Japanese and Chinese
into words by simply looking for spaces as one might
for a European language. One could, of course,

1. Umemura (personal communication) hypothesized that although
char align might not work very well when one language is
based on the Roman alphabet and the other is based on the
Chinese alphabet, it might work just as well when both
languages are based on the Chinese alphabet as it does when
both languages are based on the Roman alphabet. This is a
fascinating hypothesis that deserves further investigation.

2

English French

According to our survey, 1988
sales of mineral water and soft
drinks were much higher than in
1987, reflecting the growing
popularity of these products.
Cola drink manufacturers in
particular achieved above-
average growth rates.

Quant aux eaux minerales et aux
limonades, elks rencontrent
toujours plus d' adeptes. En effet,
notre sondage fait ressortir des
ventes nettement superieures
miles de 1987, pour les boissons
a base de cola notarnment.

The higher turnover was largely
due to an increase in the sales
volume,

La progression des chiffres
d'affaires resulte en grande pantie
de l'accroissement du volume des
ventes.

Employment and investment
levels also climbed.

L'emploi et les investissements
ont dgalement augments.

Following a two-year transitional
period, the new Foodstuffs
Ordinance for Mineral Water
came into effect on April 1, 1988.
Specifically, it contains more
stringent requirements regarding
quality consistency and purity
guarantees.

La nouvelle ordonnance fi,derale
sur les deludes alimentaires
concemant entre autres les eaux
minerales, entree en vigueur le
ler avril 1988 apre.s une piriode
transitoire de deux ans, exige
surtout une plus grande constance
dans la qualiti et tine garantie de
la pureti.

overcome this first stumbling block with a more
sophisticated tokenizer such as Juman (Matsumoto et
al., 1991) for Japanese or some equivalent for
Chinese. Even so, one might feel uncomfortable
equating the output of such a program with words in
English. The Juman program is designed to output
"bunsetsu," which correspond better to phrases in
English than to words. The tokenizing .. problem is
probably even more problematic in Chinese where
they have only one character set rather than the four in
Japanese. Moreover, it appears that native speakers
have less clear intuitions about how a text should be
segmented into word/phrase-like tokens than in
Japanese or English? European word-like units might
not be a very useful concept when aligning non-
European languages since the very concept of a
European word might not be all that meaningful in
non-European languages.

Nevertheless, despite numerous potentially serious
concerns, we believe that many of these alignment
methods are actually much more general than it might
appear at first. We will review align, char_align and
word align and discuss how the methods might be
applied to non-European texts.

4. Align

0	 50	 100	 150	 200	 250	 300

English

Figure 1: The length of an English sentence (in characters) is highly
correlated (0.97) with the length of the corresponding French

sentence. (x =y line superimposed for comparison.)

The align program uses this correlation in a dynamic
programming framework to decide which pieces of the
source text correspond to which pieces of the target
text. Figure 2 (below) shows the results of align on a
particularly difficult paragraph where there are several
multi-sentence alignments. A sentence in one
language normally matches exactly one sentence in the
other language (1-1), though other possibilities are not
uncommon. The 1-1 case accounts for 90% of the
alignments, with most of the remainder consisting of
2-1 and 1-2 alignments.

As previously mentioned, align makes use of the very
strong correlation between the length of a piece of text
(e.g., sentence or paragraph) and the length of its
translation. This correlation is illustrated in Figure 1
below, which plots the length (in characters) of 10,000
English and French sentences, selected from the
Canadian Hansards. The correlation is 0.97. We have
found even higher correlations at the paragraph level
than at the sentence level.

2. We tend to think that it is a trivial matter to tokenize English text
into "words," but in fact, even in English, there are some
interested challenges for tokenization. For example, are
hyphenated words, one word or two? Spaces usually delimit
words, but not always. For example, phrasal verbs such as cut
down and complex nominals such as White House and
greenhouse effect are often treated as a single "word," even
though there are spaces in the middle of these "words." In fact,
half of the entries in Roget's Thesaurus (Chapman, 1992)
contain spaces. It is not easy to come up with a rigorous
definition for a "word," even in a language like English where
the writing system makes it fairly obvious, at least in most cases,
and where native speakers usually have very strong (and
consistent) intuitions.

Figure 2: Sentence Alignment (from Union.Bank of Switzerland)

3

What Next?
1.9 $.3--)ItAill?
You have now seen the essentials of awk.
L'Al:Ctrtgl:1 awk
Each program in this chapter has been a sequence of pattern-action
statements.

	

1)3t,	 g .‘i320”11(45-Drz.
Awk tests every input line against the patterns, and when a pattern
matches, performs the corresponding action.
Fook
Ati-ur-AltditZ"--Ci 7	 :)*,--111/5.

Patterns can involve numeric and string comparisons, and actions can

f

include com putationn and formatted printing.

	

fr-77-3110.tr -, IL- 7 f/	 ttrsol.11,:--3 -Epi--t--i-
-L sift,-A- --('-tcv,.

Besides reading through your input files automatically, awk splits
each input line into fields.

OAt 7 7)1,	 tlaM(.7-littrzFt-e �::z <, awk d-i-1.-t19,0)At4-11-1111

It also provides a number of built-in variables and functions, and
lets you define your own as well.
Awk	 iq 0), ,4iA.1 Mft\Niligt)-3A,Iggl*,	 StV141 61 0D VitiO flt1

mt Ittu—Nirtz.

With this combination of features, quite a few useful computations can
be expressed by short programs Vero many of the details that would be
needed in another language are handled implicitly in an awk pr ram.

, Z-zt. < A, oTAffi	 b9Ek;
V_'...g-2-c-c 3. tii.Lv l otw) wr-s-.4E,ZT3 g

	

017 ‹	 awkiV	 2,raRtA0-.):3tiv:
,3 p 6V66.

The rest of the book elaborates on these basic ideas.
,:.',0)*6)41) Qyais%-c4, \IAA. oAAKIY]tc7 i'9 17	 <
Since some of the examples are quite a bit bigger than anything in
this chapter, we encourage you strongly to begin writing programs as
soon as possible.

<-)t% 0D-011a,zo-Ii.ztoct}2V)-' 71))z1, 1 0D -c, tfebimdg*ff
<10#)6.

This will give you familViarity with the language and make it easier
to understand the larger programs.

L(z.:1:2 -tIVV__70)1-tilcillt-L, og*.0)*Vsiv
ot'l%Wc s3T,456 -5.

Furthermore, nothing answers questions so well as some simple experiments.
,44-dv17.10,Ito-C11).

You should also browse through the whole book; each example conveys •
something about the language, either about how to use a particular
feature, or how to create an interesting prolam.
riAit	 6D*0±1*)�-' L7c,	 <

0) 1-, V,0) X00 011,M4sb„a5M,I721:29`91.0f1Mi‘A
RW)�.1„UTvI-6.

Figure 3: An Example of Sentence-aligned English/Japanese (from AWK manual, p. 19)

0

How well do these results generalize to other
languages? We have looked at several other
European languages (e.g., German, Spanish) and
found quite similar results. But, one might
suspect that Japanese would be quite different.
However, Figures 3 and 4 show that Japanese is
actually not unlike French in this respect. Figure
3 shows a short excerpt from the AWK manual
(Aho et al., 1980, p. 19), and its Japanese
translation, manually aligned sentence by
sentence. Figure 4 shows the lengths of these
sentences (in bytes), as well as the lengths of those
in Figure 2. The J's denote the lengths of the
Japanese sentences, and the F's denote the lengths
of the French sentences. Note that both the. J's
and the F's seem to follow the x =y line. Again,
there is a very strong correlation, and the slope is
fairly close to 1. The J's and F's together have a
correlation of 0.95, and the J's alone have a
correlation of 0.96. We conclude that the basic
approach in align seems promising, even for
language combinations such as English &
Japanese and English & Chinese, because of the
high correlation in sentence lengths, and because
it is relatively easy to identify sentence boundaries
in these languages.

0	 50	 100	 150	 200	 250	 300

Bytes (English)

Figure 4: Lengths (in bytes) of sentences in Figures 2 and 3.

(x =y line superimposed for comparison.)

5. C ha r_alig n

alternative to align. It is intended to produce
similar quick-and-dirty results, but it is more
robust to the kinds of noise that we find in real
texts (e.g., OCR noise, missing figures, etc.).

Figure 5 shows the results of char _align on a
sample of Canadian Hansard data, kindly provided
by Simard et al, along with alignments as
determined by their panel of 8 judges. Simard et
al (1992) refer to this dataset as the "hard"
dataset and their other dataset as the "easy"
dataset, so-named to reflect the fact that the former
dataset was relatively more difficult than the latter
for the class of alignment methods that they were
evaluating. Figure 5 plots f(x) as a function of x,
where x is a byte position in the English text and
f(x) is the corresponding byte position in the
French text, as determined by char_align. For
comparison's sake, the plot also shows a straight
line connecting the two endpoints of the file. Note
that f(x) follows the straight line quite closely,
though there are small but important residuals,
which may be easier to see in Figure 6.

Figure 6 plots the residuals from the straight line.
The residuals can be computed as f(x) – cx,
where c is the ratio of the lengths of the two files
(1.1). The residuals usually have fairly small
magnitudes, rarely more than a few percent of the
length of the file. In Figure 6, for example, the
residuals have magnitudes less than 2% of the
length of the target file.

0 50000	 150000	 250000

2
LL

co 0

x Position in English File

Although Figure 4 suggests that we probably
could have developed a sentence-based alignment
program for Japanese (and possibly other non-
Europen languages, as well) following similar
methods that have been developed for the
Canadian Hansards, we decided not to, because of
a number of robustness issues mentioned above.
Most real texts are not nearly as clean as the
Hansards. char_align was designed as an

Figure 5: char_align output on the "Hard" Dataset

0
To3
:0 8

II

0

are not nearly as clean as the Canadian Hansards.
Most texts are full of large sections that don't
align for one reason or another.

8

0 50000	 150000	 250000

x Position in English File

Figure 6: rotated version of Figure 5 0 50000 150000	 250000

0	 100000 200000 300000 400000

Position in English File

Figure 7: char align output on English/Japanese

(AWK manual)

If the residuals are large, or if they show a sharp
discontinuity, then it is very likely that the two
texts don't match up in some way (e.g., a
page/figure is missing or misplaced). We have
used the residuals in this way to catch errors of
this kind. Figure 7 illustrates this use of the
residuals for the AWK manual. Note that the
residuals have relatively large magnitudes, e.g.,
10% of the length of the file, compared with the
2% magnitudes in Figure 6. Moreover, the
residuals in Figure 7 have several very sharp
discontinuities. The location of these sharp
discontinuities is an important diagnostic clue for
identifying the location of the problem. In this
case, the discontinuities are caused by several
large figures (17,000 bytes) which were left out of
the translation. One of the strengths of char align
over sentence-based methods is that it can cope
with these sorts of realities. When we tried to
transfer our alignment technology to AT&T
Language Line, a commercial translation service
within . AT&T, we were rather surprised to
discover that align didn't work because most texts

x Position in English File

Figure 8: Figure 6 with judges' alignments

Figure 8 shows the correct alignments, as
determined by Simard et al's panel of 8 judges
(sampled at sentence boundaries), superimposed
over char_align's output. Char_align's results
are so close to the judge's alignments that it is
hard to see the differences between the two.
Char_align's errors may be easier to see in Figure
9, which shows a histogram of char_align's
errors. (Errors with an absolute value greater than
200 have been omitted; less than 1% of the data
fall into this category.) The errors (mean of 2
characters ± a standard deviation of 46 characters)
are much smaller than the length of a sentence
(129±84 bytes). Half of the errors are less than 18
characters.

"Hard" Dataset

Error (in characters)

Figure 9: histogram of errors (from Canadian Hansards)

In general, performance is slightly better on
shorter files than on longer files because
char align doesn't use paragraph boundaries to
break up long files into short chunks. Figure 10
shows the errors for the "easy" dataset (-1±57

6

bytes), which ironically, happens to be somewhat
harder for char_align because the "easy" set is
2.75 times longer than the "hard" dataset. (As in
Figure 9, errors with an absolute value greater
than 200 have been omitted; less than 1% of the
data fall into this category.)

"Easy" Dataset

-200
	

-100
	

0
	

100
	

200

Error (in characters)

Figure 10: histogram of errors (from Canadian Hansards)

6. 4-grams

As mentioned above, char_align looks for 4-
grams that are the same in both the source and
target text. This method works fairly well for
language pairs that make use of the Roman
alphabet since there will usually be a fair number
of proper nouns (e.g., surnames, company names,
place names) and numbers (e.g., dates, times) that
will be nearly the same in the two texts. We have
found that it can even work on some texts in
English and Japanese such as the AWK manual,
because many of the technical terms (e.g., awk,
BEGIN, END, getline, print, printf) are the same
in both texts. We have also found that it can work
on electronic texts in the same markup language,
but different alphabets (e.g., English and Russian
versions of 5ESS® telephone switch manuals,
formatted in toff).

Figures 11 and 12 below demonstrate the
usefulness of, 4-grams using a scatter plot
technique which we call dotplots (Church and
Helfman, to appear). The source text (N x bytes) is
concatenated to the target text (Ny bytes) to form a
single input sequence of Nx +Ny bytes. A dot is
placed in position i,j whenever the input token at
position i is the same as the input token at position
j. (The origin is placed in the upper left corner for
reasons that need not concern us here.) Various
signal processing techniques are used to compress
dotplots for large N x +N y.

The dotplots in Figures 11 and 12 look very
similar, with diagonal lines superimposed over
squares, though the features are somewhat sharper
in Figure 12 because the input is much larger.
Figure 11 shows a short article from a Christian
Science magazine, 11 kbytes in English and 13
kbytes in German, whereas Figure 12 shows the
entire AWK manual, English (455 kbytes) and
Japanese (330 kbytes). The features become even
sharper still in dotplots of much larger inputs. See
Church and Helfman (to appear) for a dotplot of 3
years of the Canadian Hansards.

The diagonals and squares are commonly found in
dotplots of parallel text. The squares have a very
simple explanation. The upper-left quadrant and
the lower-right quadrant are darker than the other
two quadrants because the source text and the
target text are more like themselves than either is
like the other. This fact, of course, is not very
surprising, and is not particularly useful for our
purposes here. However, the diagonal line
running through the upper-right quadrant is very
important. This line indicates how the two texts
should be aligned.3

Figure 13 shows the upper-right quadrant of
Figure 11, enhanced by standard signal processing
techniques (e.g., low-pass filtering and
thresholding). The diagonal line in Figure 13 is
almost straight, but not quite. The minor
deviations in this line are crucial for determining
the alignment of the two texts. Figures 14 and 15

make it easier to see these deviations by first
rotating the image and increasing the vertical
resolution by an order of magnitude. The
alignment program makes use of both of these
transformation in order to track the alignment path
with as much precision as possible.

3. The discontinuities in the diagonal in Figure 12 are caused
by several large figures that appear in the English source
text but not in the Japanese target. These discontinuities
can also be seen in Figure 7.

0

kuitl

ti

ti

R

411
	 ••••	 ••

Figure 11: A dotplot demonstrating the usefulness of 4-grams
	 Figure 13: Upper-right quadrant of Figure 11

(Christian Science material in English & German)
	

(enhanced by signal processing)

Figure 12: A dotplot demonstrating the usefulness of 4-grams	 Figure 14: Rotated version of Figure 13

(AWK manual in English & Japanese)

xshow

• • •
.1113

• •

• • •
•

Figure 15: Figure 14 with 10x gain on vertical axis

It is difficult to know in advance how much
dynamic range to set aside for the vertical axis.
Setting the range too high wastes memory, and
setting it too low causes the signal to be clipped.
We use an iterative solution to find the optimal
range. On the first iteration, we set the bounds on
the search space very wide and see where the
signal goes. On subsequent iterations, the bounds
are reduced as the algorithm obtains tighter
estimates on the dynamic range of the signal. The
memory that was saved by shrinking the bounds in
this way can now be used to enhance the
horizontal resolution. We keep iterating in this
fashion as long as it is possible to improve the
resolution by tightening the bounds on the signal.
Figure 16 shows the four iterations that were
required for the Christian Science text and Figure
17 shows the three iterations that were required
for the AWK manual.

!sr.. In

tWgS,
.tv
xy

RI maw

.Leal

1-14, Art- -111.71:• :-•- • .• •

•":"r"	 **!'' • *1_1•4...,,e	 • • • •-

nM 7".":••••'.!••.. • •••	 • •

Figure 16: Four iterations (for Christian Science text)

(last three iterations were enhanced by signal processing)

Figure 17: Three iterations (for AWK manual)

7. Word align

As mentioned above, word_align is a hybrid

method. It is intended to take the output of a
quick-and-dirty alignment method such as align or

char_align and improve the results using word-
level constraints. The program estimates two sets
of parameters: (1) translation probabilities, t, as
illustrated in Figure 18, and (2) offset
probabilities, o, as illustrated in Figure 19. The
translation probabilities indicate the
correspondences between words in one language
and words in the other language, and the offset
probabilities indicate how far word_align should
search from the initial quick-and-dirty input
alignment, I. Both sets of parameters are
estimated using the EM algorithm, following

Brown et al. (to appear).

French	 English	 t(e If)

zone	 box	 0.58
zone	 area	 0.28
zone	 want	 0.04

fermer	 close	 0.44
fermer	 when	 . 0.08
fermer	 Close	 0.07

insertion	 insertion	 0.61
insertion	 point	 0.23
insertion	 Edit	 0.06

Figure 18: Translation Probabilities

(from Microsoft Windows manual in English & French)

9

r

-20
	 -10	 0

	
10	 20

word_align errors (in words)

Figure 19: Offset Probabilities (from Canadian Hansards in
English & French). The smooth line shows a normal
distribution with a standard deviation of 10, suggesting that the

input quick-and-dirty alignment has an error of ± 10 words.

The offset probabilities can be thought of as an
estimate of the accuracy of the quick-and-dirty
input alignment. Figure 20 shows a histogram of
char_align's errors, when compared against
Simard et al.'s panel of eight judges. Note that
Figure 20 is remarkably similar to the offset
probabilities in Figure 19, which were computed
using the EM algorithm, an unsupervised method,
and did not make use of human judges.

Figure 21: Word align Errors (from Canadian Hansards). Note

the improvement over Figure 20.

How are the translation and offset probabilities
estimated? (The following is a brief summary of
the algorithm; see Dagan et al. (1993) for more
details.) Let i and j be positions in the two
languages, say English and French, respectively,
and let Pr(coni,i) be the probability that the
French word in position j is connected to the
English word in position i. Let CON f,, be the set
of connections between the French word f and the
English word e. That is, CON f, , denotes a set of

pairs (j,i) such that e is in position i and f is in
position j and Pr(coni,i) > 0.

Then the transition counts, tcount(f,e), can be
computed as:

tcounts(e,f) =	 :	 Pr(coni,i)
conj,, in CON f,

These counts can be turned into probabilities by
normalizing in the obvious way:

-20
	

-10	 0
	

10	 20

char align errors (in words)

Figure 20: Histogram of charalign's errors, computed on
same material as Figure 19. Note the similarity between

Figures 19 and 20.

Figure 21 shows that the combination of
word_align and char_align significantly improves
over the performance of char_align alone. Note
that the variance is reduced by a factor of 5, and
that more than half of the words are correctly
aligned.

t(elf) =
E tcounts(e',f)

The offset probabilities, o(k), can also be
computed from the connections. A connection,
coni,i has an offset k = i /(j). We use CONk
to denote the set of connections with offset k.
Then the offset counts, ocounts, can be computed
as:

ocounts(k) =	 Pr(conj,i)
con,„ in CONk

tcounts(e,f)

10

These counts are turned into probabilities by
normalizing in the obvious way:

ocounts(k)
o(k) - E ocounts(k')

k'

Thus, both t and o are defined in terms of
connection probabilities, Pr(coni,i). How do we
estimate Pr(coni,i)? Let conweights(j,i) be:

conweights(j,i) = t(fj (e i) o(i - 1(j))

where e i is the English word at position i, and fj is
the French word at position j. These conweights
are turned into probabilities by normalizing over
all English words that are within a window, w, of
the initial rough alignment, I. That is,

conweights(j,i)
E	 conweights(j,i')

1(j).-w <V�I(J)+w

The equations for t, o and Pr(coni,i) are used in
the EM algorithm in an iterative fashion. We start
with an initial guess for t and o. Then, we
compute Pr(coni,i), which is then used to
recompute t and o. We typically iterate this
process 10 times.

To find the best alignment, the program uses a
refinement where the offsets are defined in terms
of where the previous word was aligned, rather
than in terms of the initial alignment. Dynamic
programming is used to find the maximum
likelihood alignment.

word_align has been run on the AWK manual in
English and Japanese. The very same code was
used on English & Japanese as we used on
English & French, except that the Juman program
was used to tokenize the Japanese text into
"words" (and numerous uninteresting "minor
modifications" for manipulating Japanese
characters).

The results are shown in Figures 21 and 22, which
correspond to Figures 18 and 19. Figures 23 and
24 use word_align's results to produce a bilingual
concordance. The translators at AT&T Language
Line have found these kinds of bilingual
concordances to be useful when compiling
glossaries for European languages. Perhaps they

will also be useful for other language
combinations, as well.

0.03 0.21 0.36 0.52 0.65 0.74 0.81 0.86 0.89 program ,e,artp4P.,
0.02 0.06 0.06 0.05 0.04 0.04 0.03 0.03 0.03 program
0.02 0.04 0.04 0.04 0.03 0.03 0.02 0.02 0.02 program t
0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 program (t)
0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 program
0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 program 115)5
0.01 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 program COD
0.01 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.01 program V13

0.02 0.18 0.37 0.57 0.70 0.80 0.85 0.89 0.91 input Au
0.01 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 input	 •
0.02 0.06 0.07 0.06 0.05 0.04 0.03 0.03 0.02 input
0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 input t'S
0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 input
0.01 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 input P1
0.02 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 input e
0.02 0.04 0.03 0.03 0.02 0.02 0.02 0.01 0.01 input 7°12rt,j,

Figure 21: t(j e) for nine iterations of EM-algorithm

(from AWK manual in English & Japanese)

-30	 -20	 -10	 0	 10
	

20
	

30

Offset

Figure 22: Offset Probabilities

(from AWK manual in English & Japanese)

8. Conclusion

We have discussed how align, char_align and
word_align might be generalized to handle non-
European languages. align assumes that the
length of a source text will be highly correlated
with the length of its translation. Figure 4 showed
that this assumption seems to hold for parallel text
in Engish and Japanese.

char_align looks for 4-byte subsequences that are
the same in both the source and target. This
assumption is probably inappropriate when the

source and target are written in different
alphabets. Nevertheless, it seems to work
reasonably well for the AWK manual because
many of the technical terms (e.g., awk, BEGIN,
END, getline, print, prin0 are the same in both
texts. Moreover, the assumption can probably be
weakened in a fairly straightforward way to
require merely that there are 4-byte sequences in

Pr(coni,i) -
to
cv
O

-8 5.
a. 0

11

the source text that are often found near some
other 4-byte sequence in the target.

word align estimates the translation probabilities
and offset probabilities using the EM algorithm,
following Brown et al. (to appear). The program
appears to port relatively straightforwardly from
English & French to English & Japanese.

Although we have shown that all three methods
show promise for parallel texts such as the AWK
manual in English & Japanese, much work
remains to be done before we can reliably align
documents when one language is based on the
Roman alphabet and the other is based on the
Chinese alphabet.

References

Aho, Kemighan, Weinberger (1980) "The AWK
Programming Language," Addison-Wesley,
Reading, Massachusetts, USA.

Brown, P., J. Cocke, S. Della Pietra, V. Della
Pietra, F. Jelinek, J. Lafferty, R. Mercer, and P.
Roossin, (1990) "A Statistical Approach to
Machine Translation," Computational
Linguistics, vol. 16, pp. 79-85.

Brown, P., Lai, J., and Mercer, R. (1991)
"Aligning Sentences in Parallel Corpora," ACL-
91.

Brown, P., Della Pietra, S., Della Pietra, V., and
Mercer, R. (to appear), "The mathematics of
machine translation: parameter estimation,"
Computational Linguistics.

Chapman, R. (1992) "Roget's International
Thesaurus," fifth edition, HarperCollins, New
York, USA.

Chen, S. (1993) "Aligning Sentences in Bilingual
Corpora Using Lexical Information," ACL-93, pp.
9-16.

Church, K. (1993) "Char_align: A Program for
Aligning Parallel Texts at the Character Level,"
ACL-93, pp. 1-8.

Church, K. and Helfman, J. (to appear) "Dotplot:
A Program for Exploring Self-Similarity in
Millions of Lines of Text and Code," The Journal
of Computational and Graphical Statistics, also

presented at Interface-92.

Dagan, I., Gale, W. and Church, K. (1993),
"Robust Bilingual Word Alignment for Machine
Aided Translation," in Proceedings of the
Workshop on Very Large Corpora: Academic and
Industrial Perspectives, available from the ACL.

Gale, W., and Church, K. (1993) "A Program for
Aligning Sentences in Bilingual Corpora,"
Computational Linguistics, also presented at
ACL-91.

Isabelle, P. (1992) "Bi-Textual Aids for
Translators," in Proceedings of the Eigth Annual
Conference of the UW Centre for the New OED
and Text Research, available from the UW Centre
for the New OED and Text Research, University
of Waterloo, Waterloo, Ontario, Canada.

Kay, M. and ROsenschein, M. (to appear) "Text-
Translation Alignment," Computational
Linguistics.

Klavans, J., and Tzoukermann, E., (1990), "The
BICORD System," COLING-90, pp 174-179.

Kupiec, J. (1993) "An Algorithm for Finding
Noun Phrase Correspondences in Bilingual
Corpora," ACL-93, pp. 17-22.

Matsumoto, Y., et al. (1991) Juman User's
Manual (in Japanese), unpublished ms., Kyoto
University, Japan.

Matsumoto, Y., Ishimoto, H., Utsuro, T. and
Nagao, M. (1993) "Structural Matching of
Parallel Texts," ACL-93, pp. 23-30.

Shemtov, H. (1993) "Text Alignment in a Tool
for Translating Revised Documents," EACL, pp.

449-453.

Simard, M., Foster, G., and Isabelle, P. (1992)
"Using Cognates to Align Sentences in Bilingual
Corpora," Fourth International Conference on
Theoretical and Methodological Issues in
Machine Translation (TMI-92), Montreal, Canada.

Warwick-Armstrong, S. and G. Russell (1990)
"Bilingual Concordancing and Bilingual Lexi-
cography," Euralex.

12

	PACFoCoL1-001.pdf
	PACFoCoL1-002.pdf
	PACFoCoL1-003.pdf
	PACFoCoL1-004.pdf
	PACFoCoL1-005.pdf
	PACFoCoL1-006.pdf
	PACFoCoL1-007.pdf
	PACFoCoL1-008.pdf
	PACFoCoL1-009.pdf
	PACFoCoL1-010.pdf
	PACFoCoL1-011.pdf
	PACFoCoL1-012.pdf

