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0. Introduction

Assuming that representation is a crucial issue for Computational Semantics, I will
show in this paper that equation solving is a very simple and elegant way or
computing meaning representations or information structures conveyed by the use of
natural language. In a formal semantics like Montague's(1974), a type-theoretic A

-calculus with /3-reduction is often used to handle with substitutions. But I argue
in this paper that the substitution for equation solving is less constrained that

the substitution by 13-reduction and that the former can treat the phenomena of free

word-order and partial information in natural language more conveniently that the

latter. To support my argument, I will analyze some fagments of Korean and English,

particulary those involving scrambling in Korea, and quantification and

NP-conjunction in English.

1. Two Types of Substitution

There are two types of substitution in computing meaning representations: one by I?

-reduction and the other, by equation solving. Consider the following substitutions

instances:

(1) /1-reduction

a. Ax2yf(x,y)(b)(a)
b. A yf(a)(b)

c. f(a,b)

(2) equation solving

a. f(x,y), x=a, y=b.

b. f(a,y), y=b. OR b'. f(x,b , x=a.

c. f(a,b).

In (1), the functor A x A yf (x, y) takes two arguments a and b, yielding a closed

formula A xAyf(x, y)(b)(a). This formula is reducible to f(a,b) by the repreated

application of fi -reduction: first, a substitutes for x and then b for y. Unlike the

formula (1a), the formula AxAyf(x,y)(a)(b) reduces to a different formula f(b,a)

by substituting b for x and a for y. But in the case (2) of equation solving, there

is no fixed order of substitution: whatever the order of application may be, a

always substitutes for x and b for y. (2a) is thus equivalent to f(x,y)fx=a, y=b},

where there is no constraint over the order of substituting a for x and b for y.
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There is another difference between /3-reduction and equation solving. In

the /3-reduction approach, the meaning of a sentence is normally represented by
a single formula, and this formula may often consist of an n-ary functor and
its n arguments. This complex formula is then reduced by /3-reduction to a
simpler or atomic formula. In the equation-solving approach, on the other hand,
the meaning of a sentence may be represented by a set of open formulas and these
formulas may reduce to a single formula by the process of equation solving. In
the former, a formula consisting of a functor and its arguments is not
decomposed into other formulas, whereas in the latter a set of formulas may
decompose to simpler formulas or simpler sets of formulas. If we accept the view
that atomic formulas represent basic units of factual or non-factual
information, then the equation-solving approach can represent any partial
information associated with parts of a sentence in a more elegant way as will be
illustrated in this paper.

2. Scrambling in Korean

In Korean, no-verbal expressions like NP's can be scrambled in a sentence, as

in:

(3) a. Kim-i	 Ann-eke ton-il cuassta.
Kim-nom Ann-dat ton-acc gave
'Kim gave Ann money.'

b. Kim-i ton-il Ann-eke cuassta.

c. Ann-eke Kim-i ton-il cuassta.

d. Ann-eke ton-11 Kim-i cuassta.
e. ton-il Kim-i Ann-eke cuassta.

f. ton-il Ann-eke Kim-i cuassta.

Despite a difference in word order, they all have the same semantic
representation.

(4) cuasssta(kim,ann,ton) 'Kim gave Ann money'

In the traditional Montague grammar based on A-calculus, we had to set
several different categories of the di-transitive verb cu-ta 'give' and several
different rules of combination. But in the proposed equation-solving approach,
we need only a single recursive PS rule for the category V and an NP rule
introducing a 04, Case Marker:

(5) Rules

V --> NP V
NP --> N CM

We also need a Lexicon in which each lexical item is provided with appropriate
information or necessary constraints. Factual information is mostly represented

in an equational form, while a constraint is represented by a rule form p q
read 'p if q', where p is a head and q, a body".
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Before I discuss scrambled sentences in (3), I will analyze a simpler
sentence kia-i conta 'Kim dozes' for illustration's sake,

(6) Lexicon

conta: V, v(SEM)=[conta(X) 	 member(X,Agent)], Role=Agent	 Case=nom.

Kim: N, Role=[kim],

-i: CM, Case=nom.

Here, conta 'doze' belongs to a category V and its semantic content is a
constraint or rule consisting of a head conta(X) and a body member(X,Agent),
where Agent is a list of agents. 2  This verb contains a constraint that relates
the nom(inative) Case to the argument Role Agent. The noun kis denotes a list
[kim] with an uninstantiated Role: this Role will be instantiated when the noun
combines with an appropriate verb. The Case Marker(CM) -i carries information
about the Case-value nom.

Given the Lexicon, the Case-Marking rule licenses the following tree:

(7) NP
Role=[kim]
Case=nom

N	 CM
Role=[kim] Case=nom

Kim

Now, by unifying pieces of information given in the daughter nodes N and CM, 1 we
obtain the meaning or information structure associated with the mother node NP
as a list of equations [Role=[kim],Case=nom].

The V Rule will then combine the NP structure given above with V, yielding
the following:

1 In this paper, I will freely use terminology or notations commonly used in
Prolog.
2 Here, I will introduce an infix	 as defined: X:L	 member(X,L). By using

this infix, we can treat a formula f(X:L) as equivalent to f(X) & member(X,L).

Henceforth, I will abbreviate a rule like conta(X) 	 member(X,Agent) as

conta(X:Agent).

3 I here assume the Principle of Unification, which can be roughly stated

as: The information associated with the Mother node is a result of unifying all

the relevant pieces of information given in its Daughter nodes. Unification is a

series of complex operations involving appending, matching or substitution.
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(8)

NP
Role=[kim]	 v(SEM)=[conta(X:Agent)]

Case=nom	 Role=Agent	 Case=nom

N	 CM
Role=[kim] Case=nom	 conta

Kim	 -i

Again, by unifying the pieces of information given in NP and V, we obtain the
information for the Mother node V:

(9) v(SEM)=[conta(X:Agent)]
Role=Agent	 Case=nom
Role=[kim]
Case=nom

Here, we first get Role=Agent by resolving the constraint Role=Agent Case=nom
with an equation Cas(=nom and then obtain an equation Agent=[kim] on the basis
of two equations Role=Agent and Role=[kim]. Finally, we substitute [kim] for
Agent in the top formula, thus obtaining:

(10) v(SEM)=[conta(X:[kim])]

This is equivalent to:

(11) v(SEM)=[conta(kim)],

for X:L is defined as 'X:L	 member(X,L)' and X should be a member of the list
[kin].

By simply extending the Lexicon, we can treat the free word order
illustrated by sentences (3a-f).

(12) Extended Lexicon

conta: V, v(SEM)=[conta(X:Agent)], Role=Agent 	 Case=nom.
cuassta: V, v(SEM)=[cuassta(X:Agent,Y:Recipient,Z:Object)],

Role=Agent	 Case=nom,
Role=Recipient	 Case=dat,
Role=Object	 Case=acc.

Kim: N, Role=[kim].
Ann: N, Role=[ann].
ton: N, Role=[ton].

-i: CM, Case=nom.
11: CM, Case=acc.
eke: CM, Case=dat.
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Based on the extended Lexicon, the Case-Marking Rule derives the following
trees:

c.(13) a.	 NP	 b.	 NP
Role=[kim]	 Role=[ton]
Case=nom	 Case=acc

	

Kim-i	 ton-il

NP
Role=[ann]
Case=dat

Ann-eke

The V-Rule will then derive the following trees:

(14)
V

v(SEM)=[cuassta(X:[kim],Y:[ann],Z:[ton])],

1
V

v(SEM)=[cuassta(X:Agt,Y:[ann],Z:[ton])],
Role=Agt	 Case=nom.
	

 1
V

v(SEM)=[cuassta(X:Agt,Y:Rec,Z:[ton])],
Role=Agt	 Case=nom,
Role=Rec	 Case=dat.

1	 1
NP	 NP	 NP	 V

Role=[kim] Role=[ann] Role=[ton] 	 v(SEM)=[cuassta(X:Agt,Y:Rec,Z:Obj)],
Case=nom Case=dat Case=acc 	 Role=Agt	 Case=nom,

	

Role=Rec	 Case=dat,

	

Role=Obj	 Case=acc.

Kim-i	 Ann-eke	 ton-il	 cuassta

(15) V
v(SEM)=[cuassta(X:jkimLY:[ann],Z:[ton])],

1
V

v(SEM)=[cuassta(X:Agt,Y:[ann],Z:[ton])],

	

Role=Agt	 Case=nom.
	

 1
V

v(SEM)=[cuassta(X:Agt,Y:[ann],Z:Obj)],
Role=Agt	 Case=nom,
Role=Obj	 Case=acc.

1	 1
NP	 NP	 NP	 V

Role=[kim] Role=[ton] Role=[ann]] 	v(SEM)=[cuassta(X:Agt,Y:Rec,Z:Obj)],
Case=nom Case=acc Case=dat 	 Role=Agt	 Case=nom,

	

Role=Rec	 Case=dat,

	

Role=Obj	 Case=acc.

Kim-i	 ton-11	 Ann-eke	 cuassta
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These trees show how sentences (3a) and (3b) can be analyzed. The other
trees can be analyzed in the same manner, yielding the same semantic
representation. For deriving these trees in which NP's are scrambled, we have
only utilized two PS rules and the Lexicon in which each lexical item is
provided with appropriate syntactic and semantic information and constraints.
The computation of meaning or information required unification and equation
solving: the meanings of Daughter nodes were unified and their representations
were simpified by the repeated application of a substitution.

3. Qunatifiers in English

The use of A-abstraction easily represents the meaning of a quantified NP as

a functor:

(16) every man: APN/x[man'(x) -> P(x)]

Taking as argument snores'which represents the meaning of a verb 'snores' and
undergoing /3-reduction, the given functor yields a formula:

(17) a. ANNI[man'(x) -> P(x)](snores')
b. Vx[man'(x) -> snores'(x)]

In this section, the proposed equation solving approach can treat quantifiers
equally well. For this, the following annotated PS rules and the Lexicon will be

set up.

(18) Annotated Rules
S --> NP	 VP

GRel=subj
NP --> N
NP --> DET N
VP --> V

VP --> V	 NP
GRel=obj

(19) Lexicon
Ann: N, Role=[ann].
snores: V, v(SEM)=[snores(X:Agent)],

X=[var, Agent],
Role=Agent	 GRel=subj.

loves: V, v(SEM)=[loves(X:Agent,Y:Patient)],
X=[var,Agent],
Y4var,Patient],

Role=Agent	 GRel=subj,
Role=Patient	 GRel=obj.

man: N, n(SEM)=[man].
every: DET, q(SEM)=every([var,Role],P1,P2),

P1=n(SEM),
P2=v(SEM).,
Role=avar,Rolefl.
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This small grammar generates sentences like:

(20) a. Ann snores.
b. Every man snores.
c. Ann loves every man.

First, (20a) is analyzed as follows:

(21)
GRel=subj
Role=[ann]

v(SEM)=[snores(X:Agent)],
X4var,Agent],

Role=Agent	 GRel=subj.

NP	 VP

GRel=subj

N	 V

Role=[ann]]	 v(SEM)=[snores ( X: Agent )],

X=[var,Agent],
Role=Agent	 GRel=subj.

snores

The information structure associated with S simplifies by equation solving to:

(22) v(SEM)=[snores(X:[ann])], X4var,[ann]].

Since X denotes a variable X such that it ranges over the list ann], (22)
further simplifies to:

(23) v(SEM)=[snores(ann)].

The analysis of sentence (20b) undergoes a similar process of unification
and equation solving:

(24)

NP
GRel=subj

DET
q(SEM)=every([var,Role],P1,P2)

Pl=n(SEM)
P2=v(SEM)

Role=[[var,Role]]

every

n(SEM)=Cman]
V

v(SEM )4snores( X: Agent )]

X= [var, Agent]

Role=Agent	 GRel=subj    

snores



By unification and substitution, we first obtain:

(25) NP

q(SEM)=everyavar,Role],[man],P2)

P2=v(SEM)

Role=[[var,Role]]

GRel=subj

We then obtain the information structure for S:

(26)

q(SEM)=everyavar,Role],[man][man], snores(X:Agent)])

Role=[[var,Role]]

X=[var, Agent]

	

Role=Agent	 GRel=subj

GRel=subj

Since NP's GRel(ation) is subj(ect), its Role will be Agent. Then by

substituting Agent for Role and replacing [var,Agent] with X, we obtain:

(27)

q(SEM)=every(X,[man],[snores(X:[X])])

Furthermore, since f(X:[X]) is equivalent to (f(X) member(X,[X]) and

member(XJX]) always holds true, f(X:[X]) simplifies to f(X). Thus, from (27)

we get:

(28)

q(SEM)=every(X,[man],[snores(x)])41

A quantifier expression may occur in VP as in sentence (20c). But it can

also be treated nicely in the proposed grammar. The following is an analysis of

the VP 'loves every man':

4 In Prolog, the quantifier every may be treated as a functor defined as:

every(X,[f],[g(X)])	 all(X,f(X) -> g(X)).
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(29) VP

V	 NP

v(SEM)=[loves(X:Agent,Y:Patient)] 	 GRel=obj

X4var,Agent]	 q(SEM)=everyffvar,Role],[man],P2)

Y4var,Patient]	 P2=v(SEM)

Role=Agent	 GRel=subj	 Role=[[var,Role]]

Role=Patient	 GRel=obj

loves	 every man

To obtain the information structure for VP, we first unify the two information
structures of V and NP and then deduce the fact Role=Patient by resolving the

constraint Role=Patient	 GRel=obj and GRel=obj. We now substitute Patient for

Role, and Y for [var,Role], [loves(X:Agent,Y:Patient)] for P2 	 in

everyffvar,Role], [man],P2). As a result of all these operations, we now have:

(30) VP

q(SEM)=[every(Y,[man],[loves(X:Agent,Y:Patient)])],

Xgvar,Agent]

	

Role=Agent	 GRel=subj

Men this combines with an NP 'Ann', we obtain:

(31)

q(SEM)=[every(Y,[man],[loves(ann,Y)])]

Translated in Prolog, q(SEM) will be:

(32) all(Y,man(Y) -> loves(ann,Y))

We have thus captured the meaning of a universally quantified sentence

`Ann loves every man' through a step-by-step process. The meaning structure of

the entire sentence is obtained by unifying parts of the information assigned
to each of its phrasal parts. As in Montague Semantics, it is possible to assign

a semantic structure to the quantifier 'every' as well as to the quantified NP

'every man'.

4. Conjoined Noun Phrases

It has been pointed out by Moore (1989) and Halvorsen (1991) that the

treatment of conjoined NP's like (33) causes a problem for unification-based

approaches.
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(33) Ann and Bob snore.

But I will show that this conjunction can also be treated nicely in the
equation-solving approach. For such an treatment, we just need an NP-Conjunction
Rule with the specification of the meaning of 'and' in the Lexicon:

(34) NP	 NP and NP

(35) Lexicon

and: CONJ, MRole=X	 append(DRolel,DRole2,X).

Ann:	 Role=[ann].

Bob: N, Role=[bob].

snore: V, v( SEM ) = [snore ( X: Agent )],

X=[var, Agent] ,

Role=Agent	 GRel=subj.

Here in the Lexicon, the constraint assigned to CONJ may be formulated as a

general principle on conjunction, stating that MRole, the Role, or semantic

content, of the Mother node is the result of appending a DRole, the Role of one

of its Daugheter nodes to the other DRole.

(36)

v(SEM)=[snore(X:[ann,bob])]

NP	 VP

GRel=subj	 v(SEM)=[snore(X:Agent)]

Role=[ann,bob]	 X=[var,Agent]

I	 Role=Agent	 GRel=subj

NP	 CONJ	 NP

Role=[ann]	 C	 Role=[bob]

Ann	 and	 Bob	 snore

By the contraint C on and-Conjunction, we first obtain (37) as representing the
meaning of the conjoined NP 'Ann and Bob':

(37) Role=[ann,bob]

And then, by unification, we obtain the semantic structure for S:

(38) v(SEM)=[snore(X:[ann,bob])]
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The formula given in the list is equivalent to:

(39) a. snore(X)	 member(X, [ann,bob]).
b, snore(ann), snore(bob).
c. snore(ann) & snore(bob)

It has thus be shown that a conjoined NP like 'Ann and Bob' can be treated
adequately in an equation-solving approach without /3-reduction.

I will also show that the proposed analysis of a conjoined NP can apply
to the case of a group interpretation,

(40) Ann and Bob met yesterday.

Here, the verb 'met' requires a group as its Subject. By just encoding this
information into the semantic structure of the verb, we can obtain the group

interpretation of sentence (40).

(41) Addition to the Lexicon

met: V, v(SEM) = (met(L:[Agent])],

L=[var,[Agent]],

Role=Agent	 GRel=subject.

yesterday: ADV, s(SEM) = [yesterday(v(SEM))].

On the basis of this expanded Lexicon, we can construct the following

tree:

(42)

s(SEM)=[yesterday(met(L:[[ann,bob]]))]

NP	 VP

GRel=subj	 s(SEM)=(yesterday(met(L:[Agent]))]

	Role=[ann,bob]	 L=[var, Agent]
Role=Agent	 GRel=subject.

V	 ADV
v(SEM)=[met(L:[Agent])] 	 s(SEM)=[yesterday(v(SEM))]
L=Nar,[Agent]],
Role=Agent	 GRel=subject.

Ann and Bob	 met	 yesterday
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The above tree is obtained by a routine process of unification and
substitutions, yielding the semantic structure (43) for S.

(43) a. yesterday(met(L:Uann,bobfl))

b. yesterday(met([ann,bob]))

Note in (43a) that L is a list [ann,bob]. Hence, (43a) reduces to (43b), as

before. (43b) is then interpreted as representing a factual or non-factual

information that Ann and Bob as a unit was involved in the meeting of yesterday.

5. Concluding Remarks

One of the motivations for adopting an equation solving approach is to make the

process of computing meaning representation more transparent and implementable

in a computer language like Prolog. Each information structure is represented by

a set of Horn clauses or equations and the composition of informaton structures

is carried out by the repeated application of appending, matching or

substituion. This process we call equation solving.

There are many problems left unresolved. One of the residual problems has

to do with a conjoined NP like:

(44) a. Ann and every man snore. s)

b. Bob and every other man snore.

But note here that the set of objects referred to by one conjunct 'Ann' must be

disjoint from that referred to by the other conjunct 'every man'. Hence, the

following expressions sound inconsistent.

(45) a.*Ann and every female snore.
b.*The man and every man snore.

c. *I and I snore.

5 According to the present formulation of the information structure of 'and',

sentences like (44a) fail to be treated properly. What is obtained is a wrong

representation:

[i] every(X, [man], [snore(X:[ann,X]),

which is equivalent to:

[ii]all(X,man(X) -> (member(X,[ann,X]) -> snore(X))).

This does not entail snore(ann). Hence, the analysis is wrong.
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On the other hand, the Ibilowing expressions 'became 'accept -Able, when 1/10y1MND used
to refer to two different persons:

(46) a, This man and this man snored.
b. You and you snored.

A problem like this cannot be resolved by just employing Type Raising or g
-reduction. But when this type of constraint is clearly understood, an
equation-solving approach can easily encode it into the information structure of a
Conjuction 'and'. This I hope to do in the next paper,
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