
THE SIXTH JAPANESE-KOREAN
JOINT CONFERENCE
ON FORMAL LINGUISTICS ,1991

Unification in Unification-based Grammar

K.S.Choi, D.J.Son, and G.C.Kim

Department of Computer Science
Korea Advanced Institute of Science and Technology

Seoul, Korea

1. Introduction

After Herbrand's algorithm [HER71] to compute a unifier of two terms in 1930, unifica-
tion has been applied to the various areas; theorem proving, logic programming, computational
complexity, natural language processing, and so on.

In the computational linguistics area, after Kay's adopting of feature structures and their
unification to manipulate syntactic structures[KAY79], a lot of unification-based grammar for-
malisms have been issued such as FUG[KAY82] , LFG[BRE82] , GPSG[GAZ85] , PATR-
II[SHI86], HPSG[P0L87], etc.. Nowadays, an unification of feature structures is known as
one of the most effective and powerful means to process linguistic information, but few practi-
cal methodologies have been introduced to implement the unification.

In this paper, We introduce a programming language FUL which has an extended unifica-
tion intrinsically. Using this programming language as a tool, we suggest an effective unifica-
tion methodology.

This paper is organized as follows. Section 2 describes the definitions and examples of
feature structures and unification. In section 3, some existing unification tools are surveyed
and FUL is introduced. In sections 4 and 5, the practical unification processes in two
unification-based grammar formalisms (LFG and HPSG) are explained where FUL is used as
a unification tool. In section 6, the parsing of the unification-based grammar formalisms is
discussed from the viewpoint of the unification. Finally, some conclusions and mentions of the
implementations are described in section 7.

2. Feature Structures and Unification

A feature structure can be described in BNF as Figure 1.

<feature_structure> ::= [<paths>] I []
<paths> ::= <path> , <paths> I <path>
<path> ::= <label> <delimiter> <feature value>
<feature value> ::= <path> I <feature_structure> <terminal value>
<label> ::= <feature_name> <sharing_tag>
<terminal value> ::= <constant> I <list> I <set> <sharing_tag>

Figure 1. Description of a Feature Structure

26

In Figure 1, '[]' indicates a feature structure which has no information and therefore
corresponds to a variable. An example of a feature structure is shown in Figure 2.

[cat : NP,
agree : <1> : [num : sing, per : 3],
subj : <1>

Figure 2. An Example of a Feature Structure (Matrix Notation)

In figure 2, '<1 >' indicates the sharing tag.

Figure 1 and Figure 2 follow the matrix notation to represent the feature structures. On
the other hand, we can also follow the directed graph notation, which is known as a more
comprehensive and effective representation then matrix notation. The matrix notation
corresponding Figure 2 is shown in Figure 3.

NP

sing

Figure 3. An Example of the Feature Structure Representation(Directed Graph Notation)

In the directed graph notation, edges correspond to the feature names, and external
vertices(with child(ren)) to the terminal values. Internal vertices(without child) are pointers
pointing to the part of a feature structure. Sharing tag (e.g. '<1>') corresponds to the exter-
nal vertex. For example, in the Figure 3, the feature names agree and subj share the part of
the feature structure to which the sharing tag '<1>' indicates.

Now we will define the conflict between feature structures which is used in later definition
of an unification.

[Definition 1] Conflict between Feature Structures
For two feature structures Fl and F2, if there exists a maximally identical sub-path P,
/ 1 :: / 2 	 	 :: where :: is a delimiter and 1 (1 <= i 	 n) is a label, which has
feature values V1 and V2 in Fl and F2 correspondingly, and V1 and V2 are • included
to one of the following cases, then it is said that Fl and F2 conflict each other.

1) The kinds of V1 and V2 are different except the case that either of them is '[]'
(e.g. <path, terminal value>,<path, feature structure(not '[]')>, etc..)

2) V1 and V2 are terminal values and satisfy followings.
- The kinds of terminal values are different except the case that either of them is a

sharing tag.
(e.g. <constant, list>, <list, set>, etc..)
- They are constants whose values are different.

27

3) V1 and V2 are feature structures which conflict each other.

An unification of feature structures is defined as Definition 2.

[Definition 2] Unification of Feature structures
An unification of two feature structures is an operation that takes the least information
which subsumes the informations of the two unconflicting feature structures.

An example of an unification of feature structures is shown in Figure 4.

[a : b <1>, = [a : <2>,	 [a : <2> : b <1>,
c : <1>]	 c : d : <2> I	 c : <1> : d : <2>]

Figure 4. An Example of an Unification of Feature Structures

3. Unification Tools

Two well known unification tools for computational linguists are Prolog (subsuming DCG)
and PATR-II. Prolog is a programming language which provides an unification on term
level. As Prolog can't directly unify the complex feature structures including sharing tags (tags
to represent a structure sharing in a feature structure), etc., to implement the unification of
feature structures, we must program the extended unification module with Prolog that generally
requires an enormous effort.

PATR-II is not only an unification-based grammar formalism, but also a tool that imple-
ments this grammar formalism. Having a parser intrinsically, PATR-II can parse an input
sentence with the grammar and lexicon written in PATR-II formalism. But as PATR-II is
inadequate to implement other grammar formalisms [SHI87] , it hardly seems to be a general
unification tool.

Recently we developed a programming language FUL (acronym of Feature Unification
Language) which has an extended unification intrinsically [SON89a].

FUL can unify various objectives such as;

1) terms
2) lists :
3) external paths :
4) sharing tags :

5) feature structures
6) functions
7) special symbols

'$::' is prefixed.
::' is prefixed.

&(N) which is a global sharing tag and
#(N) which is a local sharing tag
where N is a tag number.

pathval/1, append/2, and delete/2.
top which corresponds to a variable and
bottom which corresponds to a fail.

There are three kinds of unification procedures in FUL such as

Ul = U2,
U1 = U2	 R, and
T1 == T2

28

where U1 and U2 are the objectives of extended unification, R is a variable, and T1 and T2
are terms. The first procedure mainly checks whether Ui and U2 are unifiable. If they con-
flict each other, it fails. The second procedure saves the unified result into R. When a con-
flict occurs, bottom is saved in R but procedure itself succeeds. The third procedure is an
term-level unification.

With relations to the unification, FUL has a few of useful functions and procedures such
as

pathval(F P),
get_pathval(F P, V), and
gather_wfs(F)

where F is a feature structure, P is an (internal) path, and V is a variable. pathval/1 is a
function which returns the value of P in F. get.pathval/2 is a procedure which gets the value
of P in F and saves it into V. In the above extended unifications, if one of the unificands is
an external path, the unification procedures generate a fragment of a working feature structure
for temporary use. gather wfs/1 is a function which gathers these fragments of a working
feature structure and saves them into F which is a (normal) feature structure.

4. Unification Process in LFG

We can describe simple LFG(Lexical Functional Grammar)) grammar rules as Figure 5.
(From now on, we follow the notation of FUL.)

==> np ((I\ subj) = I/),

vP (I \ = I !).
nP ==> n (I \ = 1 1).
vp ==> v (I\ = I/),

np	 (I\ obj)	 I/).

Figure 5. Simple LFG grammar rules

In Figure 5, 'IV corresponds to the up arrow and 'IP to the down arrow in LFG.

We also can describe several LFG lexical items as Figure 6.

Mary : n, pred = Mary }, num = sg.
kissed : v, pred = { kiss, subj, obj }, tense = past.
John : n, pred	 { John }, num = sg.

Figure 6. LFG lexical items

If the input sentence is 'Mary kissed John', the unification process may become as follows. In
unification-based grammar formalisms, all linguistic information may be represented in a
feature structure. For the case of LFG, we can build the top-level feature structure with the
features shown in Figure 7.

1) cat (constituent)

29

n, vp, s, etc.
2) defjstruct (definitional F-structure)

definitional equation (=), set inclusion (C)
3) conjstruct (constraining F-structure)

constraining equation (=c), negation (")
4) cstruct (C-structure)

phrase structure tree

Figure 7. Features in the top-level feature structure

Now, let's assume that noun phrase NP and verb phrase VP have been built through the unifi-
cation process as shown in Figure 8.

NP = [cat :: np,
defjstruct [pred $ [Mary], num :: sg]

	

cstruct
	

$	 [np, [n, [Mary]]]
],

VP= [cat :: vp,
def.Jstruct [

	

pred	 $:: [kiss, subj, obj],

	

obj	 def_struct [pred $	 [John], num :: sg],
tense :: past],

	

cstruct	 $	 [vp, [v, [kissed]], [np, [n, [John]]]]
].

Figure 8. The noun phrase and verb phrase built through unification process

To apply the first grammar rule (s rule) of Figure 5 to NP and VP, we can simply program
using FUL as shown in Figure 9. (Here, we show only the unification process between defini-
tional F-structures.)

/ subj deffstruct = pathval(NP deLfstruct),
/ defjstruct = pathval(VP deffstruct),
gather_wfs(S).

Figure 9. FUL program that applies the s grammar rule

In Figure 9, the first procedure unifies the definitional F-struct in NP and the definitional F-
struct of subj feature in S. The second procedure unifies the definitional F-struct in VP and
the definitional F-struct in S.

As a result, a feature structure of S is built as shown in Figure 10.

[cat :: s,
defjstruct [

pred	 $:: [kiss, subj, obj],
subj	 def_,struct [pred $	 [Mary], num :: sg],
obj	 def_,struct [pred $	 [John] , num :: sg],
tense :: past 1,

cstruct	 $	 [
s, [np, [n, [Mary]]], [vp, [v, [kissed]], [np, [n, [John]]]]]

30

Figure 10. A feature structure of S built through the unification of NP and VP

5. Unification Process in HPSG

In HPSG (Head-driven Phrase Structure Grammar), the number of grammar rules are
extremely reduced. But HPSG adopts several principles which must be applied in the analyzing
process as shown in Figure 11. (Here, we omitted some other principles such as adjunct princi-
ple and semantic principle and so on.)

HFP = [syn loc :: head :: #(101),
dtrs :: head dtr	 syn loc :: head :: #(101)

],
SCP = [syn loc subcat $:: delete(#(103), #(102)),

dtrs [head_dtr syn loc subcat $ #(102),
comp_dtrs $ #(103)]

I .•

Figure 11. The major principles of HPSG

In Figure 11, HFP indicates the Head Feature Principle and SCP the Subcategorization Princi-
ple in HPSG.

These principles can be unified for the sake of further application as shown in Figure 12.

HFP = SCP => UNIFIED_PRINCIPLE.

(a) FUL program to unify the HPSG principles

[syn loc	 [head :: #(101),
subcat $ delete(#(103), #(102))],

dtrs [head_dtr syn loc [head :: #(101),subcat $ #(102)],
comp_dtrs $ #(103)]

(b) Unified HPSG principles (UNIFTED_PRINCIPLE)

Figure 12. Unification of HPSG principles

We can describe a primitive HPSG grammar rule as Figure 13.

PRIMITIVE_ GRAMMAR =

[phon $:: append(#(1), #(2)),
syn loc subcat $	 [top],
dtrs	 [head_dtr [syn loc :: lex :: yes, phon $	 #(1)],

comp_dtrs $	 phon $ #(2)]]

31

Figure 13. A HPSG primitive grammar rule

The completed HPSG grammar rule can be obtained from the unification of the primitive
grammar and the unified principles as shown in Figure 14.

PRIMITIVE GRAMMAR = UNIFIED_PRINCIPLE => COMPLETED GRAMMAR.

(a) FUL program to complete the HPSG grammar

[phon:: $:: append(#(1), #(2)),
syn:: loc:: [head:: #(101), subcat:: 	 delete(#(103), #(102)), lex:: no],
dtrs:: [

head dtr:: [
phon:: $:: #(1),
syn:: loc:: [head:: #(101), subcat:: $:: #(102), lex:: yes 11,

comp dtrs:: $:: #(103):: [phon:: $:: #(2)]]

(b) Completed HPSG grammar (COMPLETED GRAMMAR)

Figure 14. Completion of HPSG grammar

We can describe two HPSG lexical items (lexical signs) as shown in Figure 15.

kissed:
[phon:: $:: [kissed],

syn:: loc:: [
head:: [maj:: v, vform:: fin
subcat:: $::

syn:: loc:: [head:: [maj:: n, case:: acc, nform:: norm], subcat:: $:: []]],
[syn:: loc:: [head:: [maj:: n, case:: nom, nform:: norm], subcat:: $:: []]]],

lex:: yes]

1.

John:
[phon $ [John]
syn loc [

head :: maj n,
subcat $ [1,
lex :: yes]

]•

Figure 15. HPSG lexical items

To apply the grammar in Figure 14(b) to the lexical signs of Figure 15, we can program as
shown in Figure 16(a). As a result, we can obtain the phrasal sign as shown in Figure 16(b).
(We omitted here the dtrs features and sharing tags.)

COMPLETED GRAM :: dtrs :: head dtr = lexical sign of kissed,
COMPLETED GRAM :: dtrs :: comp dtrs = lexical sign of John.

32

(a) (Abstract) FUL program to get a phrasal sign

[phon:: $:: [kissed, John],
syn.: loc:: [

head:: [maj:: v, vform:: fin],
subcat:: $:: [

[syn:: loc:: [head:: [maj:: n, case:: nom, nform:: norm], subcat:: $:: []]]],
lex:: no]

(b) An unified phrasal sign

Figure 16. Unification of HPSG grammar and lexical signs

6. Parsing of the Unification-based Grammar Formalisms

A parsing of the unification-based grammar formalisms has following features.
Firstly, besides the constituent information of CFG, complex linguistic informations (morpho-
logical, syntactic, semantic, and other informations) are included in the parsing objetives and a
parser should manipulate the unification of these informations. Therefore, there are more con-
straints in the parsing of the unification-based grammar formalisms.
Secondly, because of the high computational complexity of the feature structures and unifica-
tion of them, the parsing and preprocessing accompanying them have a high time complexity.
Some examples of the preprocessing are computations of the reachability relation [WIR87]
and LR parsing table [T0M87].
Lastly, in the unification-based grammar formalisms, most linguistic informations exist in the
lexical items and they are combined through unification, therfore it's natural to adopt the
bottom-up parsing philosophy.

7. Concluding Remarks

Though the core in the unification-based grammar formalisms is the (extended) unification,
few of general tools providing this extended unification have been introduced. The program-
ming language FUL can be used as the very tool. FUL itself is implemented using NU-
Prolog. Both interpreter and compiler have been developed for FUL. For the convenience of a
FUL program debugging, they have tracer intrinsically.

We have implemented prototype English LFG and HPSG parsers with FUL [SON89a].
And now we are developing practical LFG Korean analyzing system with it [SON8913]. All
the parsers could be very compact-sized. (For example, each size of the two prototype parsers
not exceeds 600 lines in FUL, but they can process almost all functions needed by the gram-
mar formalisms.)

33

References

[BRE82] J.Bresnan ed., "The Mental Representation of Grammatical Relations," MIT press,
1982.

[GAZ85] G.Gazdar etal., "Generalized Phrase Structure Grammar," Basil Blackwell, 1985.
[HER71] J.Herbrand, "Recherches sur la theorie de la demonstration," Ph.D. dissertation, in

Logical Writings, W.Goldfarb, ed, Harvard University Press, 1971.
[KAY79] M.Kay, "Functional Grammar," in 5th annual meeting of the Berkeley Linguistic

Society, 1979.
[KAY82] M.Kay, "Parsing in Functional Unification Grammar," in Natural Language Parsing,

D.R.Dowty et.al. ed., Cambridge Univ. Press, pp.251-278, 1982.
[KNI89] K.Knight, "Unification: A Multidisciplinary Survey," ACM Computing Surveys,

Vol.21, No.1, pp.93-124, March 1989.
[P0L87] C.Pollard and I.A.Sag, "Information-Based Syntax and Semantics," Vol., CSLI Lec-

ture Notes No.12, CSLI, 1987.
[SHI86] S.M.Shieber, "An Introduction to Unification-Based Approaches to Grammar," CSLI

Lecture Notes No.4, CSLI, 1986.
[SHI87] S.M.Shieber, "Separating Linguistic Analyses from Linguistic Theories," in Linguistic

Theory and Computer Applications, P.Whitelock et.al. ed., academic press, pp.1-36,
1987.

[SON89a] D.J.Son, "Design of a Feature Unification Language FUL and Implementations of
LFG and HPSG Parsers Using FUL," M.S. Thesis, KAIST, 1989.

[SON89b] D.J.Son, K.S.Choi, G.C.Kim, "An Implementation of a Korean LFG Analyzing Sys-
tem Using FUL," Proc. of Conference of Korean Information Science Society,
Vol.16, No.2, 1989.

[T0M87] M.Tomita, "An Efficient Augmented-Context-Free Parsing Algorithm," Computa-
tional Linguistics, vol.13, No.1-2, pp.31-46, 1987.

[WIR87] M.Wiren, "A Comparison of Rule-Invocation Strategies in Context-Free Chart Pars-
ing," LiTH-IDA-R-87-13, Univ. of Linkoping, 1987.

34

	JK6-re-026.pdf
	JK6-re-027.pdf
	JK6-re-028.pdf
	JK6-re-029.pdf
	JK6-re-030.pdf
	JK6-re-031.pdf
	JK6-re-032.pdf
	JK6-re-033.pdf
	JK6-re-034.pdf

