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§1 Introduction In Ishimoto (23 and subsequently in Kobayashi

and Ishimoto (5) it was proved that a propositional fragment of

Lesniewski's ontology is embedded in first-order predicate logic

with equality via a translation. (See also Shimizu and Kagiwada

(12).) Now, in this paper a much simpler proof will be given of

this embedding theorem along with some philosophical as well as

linguistic observations. The embedding theorem will also be

employed for proving the elimination theorem and other ones for

the proposed fragment which are usually proved syntactically.

§ 2 Tableau method As is the case with our previous work, we

first introduce following SchUtte (9) (10), (11) the notion of

positive-and negative parts of a fromula, which has the effect of

simplifying the subsequent discussion though not indispensable.

Definition 2.1 The positive and negative parts of a formula

A are defined recursively as follows:

2.11 A is a positive part of A,

2.12 If BVC is a positive part of A, then both B and C are

positive parts of A,

2.13 If --B is a positive part of A, then B is a negative

part of A,
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2.14 If --B is a negative part of A, then B is a positive

part of A.

For making the notion clearer, we are presenting some examples:

F (A+) =

F (A+) =

F (A+) =----(A V—B),

G (A--)=— A,

G AVB,

G (A-) =--- (—A V B) V C,

where F (A+ ) (G (	 ) ) means that A occurs in F ( A+ ) (G ( A.. ) ) as a

positive (negative) part thereof. The expressions like F (A+, B+) ,

G (A+, B_, C_ and the like are understood analogously subject to the

condition that A, B and C be not overlapping.

As proposed by Ishimoto ( 2 ) the propositional fragment of

Lesniewski's ontology called Li is defined in its Hilbert-type

version to be the smallest class of formulas containing all the

instances of tautology as well as the formulas of the following

froms:

2.21	 I- e ab Deaa,

2.22 F E ab Ae	 ac,

2.23 1- eab Ae'oc.	 E ba,

being closed under detachment.

Lesniewski's (elementary) ontology is, on the other hand, defined

to be the smallest class of formulas containing all the formulas of the

form:

E abz=-.(2x) Exa A (x)(y)( exaA 	 mexy) A (x) (E xaDexb),

or	 1- e ab r---•( x)( exaAexb) A (x) (y) (e xaAeya.nexy)

as well as all theses of first-order, predicate folic (witnuut

equality) being closed under quantificational rules.



The tableau method proposed of L1 by Kobayashi and Ishimoto

(5) is defined by the following reduction rules:

G CAVB..)
V_ 	

G (AVB_W-- A G (AVB_	 ,

G eab_)
E

G (Eab_ )V--e aa ,

G (Eab_ , ebc_

e2
G (eab_, ebc_ )v--e ac ,

GCEab_ , e bc_

G ( eab-, E bc- )V—eba ,

of which the first one is known to be sufficient for developing

classical propositional logic.

The (well-formed) formulas oz L I are defined in the well—mown

way in terms of a (countably) intini•e list of uame variables a, 0,

c, • and the like as well as of two logical symbols, namely, V

(disjuuution) ana --(negation)along with tue Lesniewski't EE(epsilon)

and some technical symbols. (Other logical symbols are defined, if

necessary , in terms of them.) The formulas thus defined will le

denoted by such meta-logical variables as A, B, C,... (Outermost

parentheses will be suppressed almost in every case.) It is:remarked

in this connection that all the symbols thus introduced will.be

employed only meta-log ically. (For Lesniewski's ontology consult,

among others, Slupecki (13) , Lejewski (6) and Luschei (7) .)

Now, on the basis of the reduction ru.i.s as above introduced, we

wish to prove some these of LI by the tableau method. (The detailed

definition of tableau is not given here. For the formal definition

refer to Smullyan (14) .)

1
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2.31 The proof of e ab DE aa (2.21):

ab v e aa

(^-E ab VE aa)	 aa.

2.32 The proof of E ab AE bc. DE ac (2.22):

--eab V—ebc) ve ac
E2

e abV^-ebc) V Eac)V—eac

2.33 The proof of E ab AE bc. De ba (2.23):

("'eab V^-ebc)Ve ba

(- .Eabv--ebc) Ve ba)

2.34 The proof of (--EaaV—Eab) 	 ab:

aa v—eab)V---e ab

(1) (3)

(2)

where

(1) =	 aa	 ab) V---Eab)	 aa ,

(2) =	 aa V--Eab)V---eab) 	 aa) -E aa

(3) = —(	 aaV--•eab) V--Eab) V --Eab ,

As exemplified above, a tableau, every branch of which ends with a

formula of the form F ( A+, A...) , is said to be closed. A closed tableau

constitutes a proof of the given formula.

§3 Fundamental theorem For presenting the fundamental theorem

(Theorem 3.2), the notion of Hintikka formula is in order, which runs

as follows:

Difinition 3.1 A Hintikka formula A is defined only as follows:

3.11 A is not of the form F 3+, B.. ,

3.12 If A contains BVC as a negative part, then it contains B or

C as a negative part thereof,

Ia., IN.,
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3.13 If A contains E=ab as a negative part, then it contains

Eiaa as a negative part thereof,

3.14 If A contains E ab and E bc as negative parts, then it contains

E ac as a negative part thereof,

3.15 If A contains E ab and EE be as negative parts, then it contains

EEba as a negative part thereof.

Now, we state the theorem:

Theorem 3.2 Given a formula of Li, reducing it by my of reduction

rules, every branch of the tableau ends in a finite number of steps 

with a formula of the form F (A+, A.. ) or with a Hintikka formula ,

whereby a branch is not extended if the application of a reduction rule

gives rise to a formula which is already in occurrence as its negative 

part in the formula to be reduced. And, in case a branch ends with a

Hintikka formula, every constituent formula of the branch constitutes 

a positive part of the Hintikka formula.

The proof is not given formally, and we shall rest content with

the presentation of an example, which, we hope, will be sufficient

for taking care of the general case.

Let the given formula be:

--( — Eaaveba)V— Eac ,

with the different name variables a, b and c, which could possibly

be combined in the course of the reduction by way of E= 1, E= 2, and E3

only in the following ways giving rise to an atomic formula involving

the indicated variables in this order, namely,

(a,a), (a,b), (a,c), (b,a), (b,b), (b,c),

(c,a), (c,b), (c,c).

Now, by reduction the given formula we obtain the following

tableau:
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aa Ve ba)V—Eac

(1) (3)

E-	 (aa)	
E2 	

(2) (4) (bc) 
E3
ei  (5) Cab) 

(6) (aa) 

(7) (bb)

where

(1) =	 eta VE ba)	 eac )	 aa,

(2) =	 aa Ve ba)V---eac)	 aa). V—Eaa,

(3) =	 aa Ve ba)V— E ac)	 ba,

= ((—(---eaaVe ba)V—Eac)V--E ba) VI E bc,

(5) = (((—	 aa Ve ba)V--•eac)V—eba)

(6) = ((((--(--Eaa V e ba)V--eac)V—E ba)	 bc)

V---eab) V^-E9.a,

(7) =

	

	 (—a aaVe ba)v---eac)v—eba)V—ebc)

VIE ab) V.€ aa) V—ebb.

Each reduction by E1, E= 2 , or E=3 uses, every time, one possible

combination of (orderd) pairs of name variables a, b and c as indicated

on the left hand of each constituent formula of the tableau, and any

combination once used is never employed again, because this would

be against the restriction imposed upon the extension of a formula.

And, in the case of\/- any prin ipal formula of v- used as such is

never employed again in the same branch. If V_ were applied to the

formula once used as its principal formula, this application would

be against the requirement of the Theorem. Since there are only

finite number of subformulas of the given formula and the combination

of name variables, in this case, nine in total, the extension of a

branch come to the end in a finite number of steps even if we do not

come across a formula of the form F( A+, A..) .

Once we come across a formula, which is not of the form F LA + , A..)

and to which no reduction rule is applicable any more without violating

the requirement of the Theorem, the formula already constitutes a
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Hintikka formula. In fact, if the formula contained a formula of the

form AV B as a negative part without having neither A nor B as its

negative parts	 would remain to be applicable to the formula extending

the branch against the assumption. The other properties of the Hintikka

formula are dealt with similarly.

The second statement of the Theorem is proved by induction on the

length of the branch which ends with a Hintikka formula.

This completes the proof of Theorem 3.2.

A tableau constructed subject to the requirement of the Theorem

is called a normal tableau. The tableaux shown in § 2 are all normal.

For reference we wish to present hereunder a tableau which isnot normal:

El —eab

—eab V''E as

ab v-e aa) V—e ab ,

where the application of E2 gives rise to E ab as a negative part,

which already occurs in the second line to be reduced.

As will be demonstrated in what follows, if a formula is provable

at all by the tableau method, it is proved by a normal tableau.

§ 4 Translation and Soundness In preparation for the soundness

and completeness of Li, we wish to define a translation denoted by T:

Definition 4.1 The translation T, which transforms every formula

of Li into that of first-order predicate logic with equality, is

defined as follows:

4.11 T eab == Fb cx172 x ,

4.12 T A V B == Ta NITB ,

4 .13 T''A == --Ta ,

where Fa, Fb,... are the monadic predicate variables of first-order

logic corresponding to the name variables a, b, ... of Li. Fbj.xFax

is the Russellian-type definite description, namely,

EZ
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gx(Fax A Fb x) A \betif Y(Fa xA Fa y. X = y).

As easily seen the translation T is defined by induction on the

length of the formula of Li. It is also not difficult to see that the

T-transforms of the formulas of Li do not exhaust the formulas of

first-order logic.

Lemma 4.2 The formulas of the following  forms are provable in

forst-order predicate logic with equality:

T F	 )„	 F C A+ ) V A ,

T G ( A... 1 s T G A...	 .

For proving the Lemma it suffices to demonstrate the following

two implications :

I-TA DTF(A+)

T — A	 T G(A- )

which are proved simultaniously by induction on the number of the

procedures applied for specifying A as a positive (negative) part of

• F C A+ ) (G(A- ) ) -

The basis does not present any difficulties since TA D TA is a

tautology.

For taking care of induction steps , suppose F C A+ )= Fl C A.VB+ ) •

We, then, have T A VBDT F1 ( A V B+ ) by induction hypothesis. This,

in conjunction with T A. T A V T B (= T AV B) , gives rise to I

-T A DT Fl ( A V B+) as required. The case that F ( A+ ) = Fi 1,13 v A+)

is taken care of analogously.

We, next, suppose that F( A+ ) = Gi C —A-	 , from which obtains by

induction hypothesis	 T — A D T G 1 (—A_) . Since T	 7_-_- T A,

we easily obtain T A D er Gi (— A- ) as required.

Finally, assume G C A... = Fi ( —A+ ) . By induction hypothesis

T —A DT Fi — A+ , which is nothing but the looked for T— A

DT G(A_).
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We are now in a position to prove the soundness of Li with respect

to the proposed translation T.

Lemma 4.3 (Soundness theorem) If A is a theses of Li in its tableau

method (not necessarily proved la a n rmol tableau), then T A is provable 

in first-order predicate lo gic with equality.

The proof is carried out by induction on the length of the tableau

on the basis of the preceding lemma. (The proof proceeds upwards

beginning with the end of the branch.)

The basis is forthcoming from the following equivalences in first-

order logic.

T F A+ , A

FE T F A+ , A_ ) VA Lemma 4.2 ,

T (F C A+ , A_ )VA)V — A	 Lemma 4.2,

T (F ( A+ , A_) VT A) V — T A	 Definition 4.12, 4.13

We are proceeding to induction steps, which are taken care of

by the following equivalences:

For V_ :

T GCAVB_) V— A and 1-T GC AV B_ V—B induction hypothesis,

0	 T (GC AV13....) V~ A)V — (AVB)

and !---T (G ( A V B_W—B)V--(AVB) Lemma 4.2,

<=>	 T G AV B_) V—' (A V B) propositional logic,

4	 T G (A VB_ ) Lemma 4.2.

For E1 :

T G (eab_)V — E aa induction hypothesis,

T (G( E ab_	 aa) V— E ab Lemma 4.2 ,

T (GC E ab_)V — T E aa)	 T E ab	 Definition 4.12, 4.13,

T G( E ab_) V— Fa c xFa x V— Fb c xFa x Definition 4.11,

I- T GC E ab_) V— Fb L xFa x	 predicate logic,
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<=4. T G(Eab_	 Eab	 Definition 4.11,

T GEeab_ ) V — ab e Definition 4.12, 4.13,

(=> T G[Gab_ ) Lemma 4.2,

where in the equivalence of the fourth and fifth lines use is made

of the following theses of first-order predicate logic with equality.

Fb c xF a x	 •. Fa t xFax A-Fb C x FaX

The cases corresponding to E= 2 and e3 are similarly taken care of,

and we rest content with presenting the following equivalences in

first-order logic, which are employed in the proof.

F Fb c xF'a x n Fc c xFb x. 	 . Fb c xFax A Fc t xFb xA Fe c xFa x,

Fb t xFa x A Fc c xFb x. . Fb c xFa x n Fc t xFb x A Fa t xFb x.

§5. Completeness With a view to proving the completeness of LI in

its tableau method version with respect to the translation T,

namely, the converse of the soundness theorem just proved, we first

prove in advance the following lemma.

Lemma 5.1 Every Hintikka formula contains at least one atomic 

formula as its positive or negative part.

This is easily proved by reductio ad absurdum by supposing to

the contrary.

Assume, if possible, a formula of the form AVB were the shortest

positive part of the given Hintikka formula. By Definition 2.12,

then, A and B would be both positive parts of the formula against

the hypothesis. Again, if possible, suppose AVB were the shortest

negative part of the formula. By Definition 3.12, then, A or would

be a negative part of the formula against the hypothesis. If-- A

were the shortest positive part of the formula, A would be a negative

part thereof (2.13) against the hypothesis. If — A were a negative

part of the given formula, A would be a positive part thereof (2.14)
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against the hypothesis.

We next introduce the notion of chains thus:

Definition 5.2 Given a Hintikka formula, a chain is a finite

series of name variables al, a2,..., an (1 S n) such that:

5.21 al, a2,..., an are connected by the relation R(Ai , ai) to

be defined as the occurrence of eai aj and eaj ai (1 � i , j �n) as

negative parts in the Hintikka formula,

5.22 The series a1 , a2,..., an is maximal.

As easily seen, the relation as above defined is reflexive,

symmetric and transitive. This obtains from the properties of the

Hintikka formula.

For the purpose of illustration a number of Hintikka formulas

will be presented along with the chains associated thereto:

5.31 ((--eaLV--ebc)V( — EacV —Eba))\/ (^-E as V.—Ebb),

where the series consisting of a and b constitute a chain if c is

different from a and b.

The following one, however, does not contain any chain:

5.32 (
	

ab Ve aa) V----n.Eab) V e ba,

where no name variables are connected by a chain.

5.33 (( ~E ab V	 as V	 ca) )	 cc ) v—eac ,

where the series consisting of a and c is the only chain with b'different

from a and c.

5.34 In the next example a formula is reduced by reduction

rules with one branch ending with a Hintikka formula. (All themame

variables involved are assumed to be different from each other.):

aa — ebb) v (( — E abV—Edc)Ve cb)
v_ 	   

(1) EL
(2)

E3

EL
E1

(3)  
(4)

(5)
(6)
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where

(1) aa vebb) V—e ab

(2) =	 aa VEbb) V- -E ab V—E

(3) = —(—E aa VEbb) v —e ab v—E
(4) aa VEbb) VIE ab V—'E

dc VE cb	 aa ,

dc v e cbv–eaa

dc VE cb v .—ebb ,
dc V E cb V — e bb	 E ba ,

(5) = (—e aa vebb) V—e ab v—e dc VE cb V- Ebb v— e ba V—Eaa,

(6) =	 aa VEbb) \p-e ab v—e dc V e cb va--e bb	 e ba

What	 \P–Eaa	 .

(Here and in follows the association of disjuncts will not be

indicated since it is easily recoverable.)

The end formula of the right branch of the above tableau is a

Hintikka formula, where the series consisting of a and b constitues a

chain, while d also happens to be another consisting of only one

name variable.

Before going to the construction of a model of first-order predicate

logic with equality, through which the T-transform of this Hintikka

formula (6) is falsified, it is remarked that the Hintikka formula

itself is falsified by a model for Li in the following way.

With this in view, every atomic formula, which occurs in the

Hintikka formula as a positive (negative) part, is made false (true).

Such an atomic formula is certainly in existence by Lemma 5.1.

Thus,

5.41 Ecb is made false,

5.42 eat), EEdc, Ebb, E ba, Eaa and E dd are made true with

other atomic formulas assigned any truth value, say, falsity.

In terms of these truth value assignments, every positive

(negative) part (of the Hintikka formula) takes the value false

(true) as easily proved by induction on the length of the positive

(negative) parts.



It is also observed on the basis of the properties of

Hintikka formulas that the model thus constructed with the countable

domain consisting of all the name variables constitutes a model for

LI. For example, if E ab happens to be true in the model, it occur

as a negative part of the Hintikka formula. Then, by the property

of Hintikka formulas eaa also occurs there as such, and this makes

Eiaa true in the model. Thus, every formula of the form 2.21 is

true in this model. The axioms of other forms are analogously

.shown true in this model.

By induction on the length of the branch which ends with the

Hintikka formula, it is easily proved that all the constituent for-

mulas of the branch including the given formula are made false since

they respectively constitutes positive parts of the Hintikka f ormula.

In the proposed (countable) model every name variable is interpreted

by itself, although some of them, say, a and b might be identical in

the sense that Eab a.Ad eba is true in the model. For example,

all the members of a chain are identical in this sense.

On the basis of the modelling as described above, we are proceeding

to construct a model for first-order predicate logic with equality,

in which the T-transform of every positive (negative) part of the

Hintikka formula is false (true).

The right branch of the tableau 5.34, it is recalled, ends with

the Hintikka formula (6), which contaL.-ts two chains, one consisting

of a and b and the other of d only.

Now, we are assigning a set of natural number to the (monadic)

predicates corresponding to the members of these chains in the

following way :



To Fa and Fb we assign { 0 } 1

To Fd we assign (1 ),

To Fc, which is the predicate corresponding to a name variable

not belonging to any chain, but constituting a name variable with which

the second chain ends, we assign { 1, 2}, where 2 is a number not used

so far for the assignment to the member of any chain. To the predicates

corresponding to all other name variables we are assigning 96, i.e.,

the empty set.

On the basis of such assignments we obtain a model M for first-order

predicate logic with equality such that M = <:N, =, Fa, Fb, Fc, Fd,... > ,

where N is the set { 0, 1, 2 }, = the identity relation between these

natural numbers, and Fa, Fb , Fc, Fd,... the sets of natural numbers

as above specified.

We wish to show that the T^-transforms of positive (negative) parts

of the given Hintikka formula is false (true) in the model M.

With this in view the T-transforms of E aa is evaluated on the

basis of the model M and we have

Teaa = Fa c xFa x = 3 x(Fa xAFa x) A V x V y(Fa xAFa	 D x = y)

= .( (o) o No} o)vc fol 1A{oli)vc (0} 2A(012).
A ( 0 } 0A{0} O. DO = 0)

A ( CO} 0A{O} 1.DO 1)

A ( (0)0AtO) 2.D0 = 2)

( {0) 1A{O} 0.D1 = 0)

A C to} lAto} 1.01 = 1)

A ( to} 1A(0} 2.D1 2)

A ( 0 } 2A(0} 0.m2 = 0)

A (0)2A{O} 1.D2 = 1)

A ( {0) 2A[01 2.D2 = 2) I

where all the conjuncts are true, and this makes the T-transform

of E aa true in the model M. The T-transforms of eab, EEbb and E ba

are analogously shown true in M.
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The evaluation of T E dd proceeds as follows:

T e dd = Fd c XFd x = 3 x(Fd x A Fd x) Av x y(Fd xAFd

—A(0) on f } o v(fi}iAt i}i)v({1}2Af

A( (1} GA f1 0,D 0=o)

Acti}oA{	 1.D 0=1)

{t} oA {i} 2.D o =2 )
A( { 1A{i}o.D =o)

A( { 1 1 A 1)1.D 1=1)

A( { 1)1 A { 1} 2. D 1 = 2 )

(1}2A{ 1) 0.D 2=0)

A( { 1 } 2 A [ 1} 1„D 2 = 1)

A([1)2A{1}2.D2z---2)

Y• D x=Y) •

which is obviously true in M.

T E dc is evaluated in M in the following way:

TEdc = Fc c xrd x = 3 x(Fd xAFc x) A yx y y(Fdx AFd y.Dx = 5r)

= (fijoAti,2)o)v({1}1A{1,2}i)v([1}2A(1,2}2)

A(t1}0A{1} 0.D 0 = 0)

A({1}0A{1} 1.D0 =1)

A([1)0A(1)2.D0 =2 )

A({1)1A(1)0.D 1 = 0)

A([1}1Af1}1.D1 = 1)

A({1}1A{1}2.D1 2 )

A({1} 2A {1) 0.D 2 = 0)

A({1)2A{1}1.D	 = 1)

A({1}2A{1}2.D2 = 2),

which is true in M. We, next, evaluate in M the T-transform of

EEcd, which is the only atmlic formula occurring in the Hintikka

formula as a positive part thereof:



T e cb = F b c xFc x = 3 x(Fc x AFb x) A vx Ify(Fc xAFc y. Dx=

([1,2}0A{0)0)V({1,2}1A{0}1)\/(0,2}2A{0}2)

A({1, 2} 0A(1,210. DO =0)

A(f1, 2} OA{ 1, 2 } 1. DO =1)

A(f1, 2)0A 1, 2 2. DO = 2)

A({1, 2}1A(1.2)0. D1 =0)

A ({1.2)1A(1,2}1. Di =1)

A({1, 2}1A{1,2}2. Di = 2 )

A({1,2)2A{1,2)0. D2=0)

AC(1,2)2A{1,2)1. D2 =1)

A( {1,2)2A{1,2}2. D2	 2 )

which is false in M.

Lastly, we wish to evaluate T E=ef, where e and f are any name

variables not occurring in the given Hintikka formula (being not

necessarily different):

'reef = Ff r XFe X = 3 x(Fe xAFf x) A ifx vy(Fe xA Fe y. x= 7)

= (160A00)\/(01A01)V(02A(62 ).

A(00A/$0. DO = 0)

A(IS0A01. D = 1)

A(00A462. = 2)

A( 01 A00. .D = 0)

A(01A01. D1 = 1)

A(01A02. D 1 = 2 )

A( 02A0 0. D2 = 0)

A(02A01. D2 = 1)

A(02A02. D2 = 2),

which is false in M.

Thus, the T-transform of every atomic formula (of Li) has been

evaluated in tie model M, and every atomic positive (negative) part of

the given Hintikka
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formula are evaluated false (true). By induction on the length of

positive (negative) parts of the Hintikka formula it is, then,

proved that the T-transform of every positive (negative) part of

Hintikka formula is evaluated false (true) in M. Since the given

formula constitutes a positive part of the Hintikka formula, its

T-transform is false in M. In other words, the given formula, which

is not proved by the tableau method for LI is falsified by the model

M for first-order predicate logic with equality.

In this Hintikka formula, c, intuitively speaking, contains only

one atom, namely, d, but itself does not constitute an atom. In

other words, d is a unit set without being an atom. In Ishimoto (2),

(3) and Kobayashi and Ishimoto (5) , this singularity turned out to be

an obstacle for constructing a model for predicate logic, and it was

remedied by a rattler complicated device. But, here, the singularity

was overcome almost automatically.

In the above construction of the model, Fa and Fb were assigned

{0} , and Fd assigned (1), while Fc, which is not a member of any chain,

assigned {1,2

Nevertheless, we could assign to Fc such sets (of intrgers) as

{ 1,2,3 }, (1,2,3,4 } and the like with the domain of the model consisting

of all the numbers involved. Such nodeln again falsify the T-trans-

form of the given Hintikka formula. Another model which is easily

envisaged would be that with the domain consisting of all the natural

number::, the predicates involved being properly defined.

We, next. wish to construct a model for the T-transform of 5.32, namely:

5 .32 Is-	 ab V Eaa) V-E ab V E ba,

which happens to be a Hintikka formula, but does not contain any atoms.

Thus, there is not in existence any chain in this Hintikka formula.



As in the preceding example, every predicate corresponding to a name

variable of L1 , whether it occur in the Hintikka formula or not, is given

the value 0, i.e., the empty set (of natural mumbers). Nevertheless,

the domain of the model for first-order predicate logic is defined to

consit of any non emntz set of natural numbers, and it is easily seen

that T 5.32 is falsified alike in any of these models (for first-order

predicate logic with equality).

In Ishimoto (2) , (3) and Kobayashi and Ishimoto (5) we had some

difficulties in taking care of such a singularity, namely, the absence

of atoms. But, here, this kind of singularity is again solved almost

automatically.

We are, now, in a position to generalize the model construction

thus far exemplified.

With this in.view a formal procedure will be described for constructing

a model for first-order predicate logic with equality in which the

T-transform of the given Hintikka formula is falsified.

Let us assume that the given Hintikka formula contains n chains

(0 S n) as defined in Definition,5.2:

a l , a2 , •••, ae (i � e ),

f5.41	 b i , b 2 , •••, bin, (1 � m,),	 n

C 1 , c 2 , . . . , ch (15 h ),

• • • J
to which are asoociated the following atomic formulas occurring in the

Hintikka formula as negative parts:

5. 1+11 Eat a j , E bi 1)1. Ecj C

where a i and a , b i and ba, c and ci... are respectively ranging over chains

(a l , a 2 , ae ),	 b 1 , b 2 ,	 b m.	 C1	 C2 , • • • , C -h	 • • •

There could be name variabl zs with which a chain ends without being

a member of a chain. S .1c:-. name variables called tails will be designated as:
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5.42 di , d2 ,	 dk (0 � /e),

where, it is remarked, some chains might not have such a name variable,

i.e., a tail. The atomic formulaS 7 which occur in the Hintikka formula

as negaive parts involving these name variables, are:

Eat d i , ea 2 d 1 ,...	 eaedi

E b i d i , eb 2 d 1 ,... , ebmd/

ec i d i , ec 2 d 1 ,... , echdi

ea i d2 , e a2	 , E a e d2

eb i d2 , e b2 d 2 ,... , e bm. d 2

ec i d 2 , e C 2 d 2 ,... , E ch d 2 ,

of which some could be not present.

With this, we conclude the listing up of all the atomic formulas

occurring in the Hintikka formula as negative parts. In view of the

properties of the Hintikka formual the listing up is exhaustive.

The atomic formulas, which occur in the Hintikka formula as positive

parts, are as follows:

b (1 <i � e	 sis ao,'
c •(1 � i �e, 1 SiSh),

• • •

1 � is €),

1 Si< h),

c i ai (isi�h, I � is e),

e C i bi (1 � i �h, 1 � j< m),

• • •

i.e., every atomic formula listed above is made up of two name

variables (along with e) taken from different chains.

tEa; di (1<i Se, 1 � j � k ),

5.52	 eln, di (1 � i �no 1 j k ),

eci di (1<i � h, 1 � j � k ),

...	 ,

5.421

E

Eai

5.51
b i a (1 � i� M,1
b i c; (1<i � m,

• • •
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where d i (1!;i<ck ) is a name variable not associated with a i , b I

Ci3O00

5.53 e ai e, Ebb e,... (1 � i �z,	 ...),

where a i , bj, ... are the members of chains, but e is' any name

variable which is neither a member of a chain nor a tail.

5.54 edi f (1<i<k),

where d i is a tail and f is any name variable occurring in the

Hintikka formula.

5.55 eef,

where e constitutes neither a member of a chain nor a tail, while

f is any name variable occurring in the Hintikka formula.

5.56 egf,

where g and f are the name variables ranging over the countablly

infinite collection of name variable not occurring in the Hintikka

formula.

Now, the assignments of values to the predicate corresponding

to the name variables as above listed proceeds in the following

way:

To each F a	Fat , • • • , Fa  is assigned	 },

To each Fb	 Fb2 ,	 , Fbm is assigned (1 },

To each Fc ,	 Fch is assigned	 ,,	 { 2 }

• • •

In other words, to each predicate associated with a member

of a chain is assigned {n} , the unit set consisting of the

natural number n (preferably, beginning with 0), with predicates

corresponding to the members of different chains assigned different

unit set. Thus, if there are five chins, {0 , fi 1	 (21 , (31

and {4} will be the unit sets assigned to the predicates associated



with the respective members of the five different chains.

To the predicates corresponding to the tails d1, d2, 	 , dk

say, di , we are assigning a finite set consisting of numbers corres-

ponding to the predicates Fat with aj being a member of a chain which

ends with di along with another number not used as such. Thus, if a,

b, and c are members of different chains all ending with di and Fa ,

Feb and Fc are, respectively, assigned {2} , {4} and (5) , then

Fdi is interpreted as { 2,4,5, k} with k different from any numbers

used for the predicates corresponding to the members of a ch

There still remain a number of name variables, to the predicate

logic correspondents of which have not been assigned any set (of

natural numbers).

For this purpose, we wish to propose a very simple assignments.

Namely, 0 , i.e., the empty set (of natural numbers) is assigned

to the predicate logic counterpart of any of these name variables.

On the basis of these assignments, a model M = 	 ,=,114,,F12

is constructed in the following way:

5.61 N is a finite set of the natural numbers introduced

so far in the proces of assignments,

5.62 Fa , Fb ,... are the sets (of natural numbers) assigned to the

predicate logic counterparts of the name variables ( of L t ) as

described above.

5.63 = is the identity relation between natural numbers.

In the model M all the positive (negative) parts of the given

Hintikka formula are made false (true).

With this in view it is noticed in the first place that the

predicate logic counterparts of the atomic formulas belonging to

5.411 are all true, since

• • •



F5 c xFa x ={n} ex { n.} x

= (3x) C {n} xA {n} x) A Yxli y( {n} xA(n) y. 	 = y),

is true in M with a being a member of a chain.

The predicate logic counterparts of the atomic formulas coming

under 5.421 are also proved true, since

Fd c xFa x = { 0,1, ..., k c x{ n} x

= Cs x) C {0,1,...,k} xA{n}x) AV xY Y( {a}xA{n}
	

x = y)

is true in M with d being a tail and a a member of a cbAin which ends

with d. This is because n is a member of {	 k) with n different

from h.

The predicate logic counterparts of the formulas belonging to

5.51 are proved false in M, since in this case the unit set corresponding

to the members of different chains are all different as stipulated above.

The predicate logic correlates corresponding to the formulas listed.

in 5.52 are again falsified in M. In fact, Fa t and Fdj are disjoint,

since the chain { a l , a2 ,...,ae } does not end with di .

The predicate logic counterparts of the atomic formulas falling

under 5.53 ,5.56 are easily proved false in M. More specifically,

the predicate logic correlates of 5.53 are of the form c xFa i x,

which is false in M in view of the definition of definite descriptions.

Analogously, the correspondents of 5.53 and 5.56 are shown false,

although the latter, which does not take place in the Hintikka formula,

has nothing to do with the evaluation of the Hintikka formula.

On the other hand, the formulas of the form Ff txF di x correlated

to 5.54 are also false, since Fdi is not a unit set.

On the basis of the truth values thus assigned, it is shown that the

predicate logic counterparts of the positive (negative) parts of the given

Hintikka formula is false (true)in M. Since the given formula constitutes

a positive part of the Hintikka formula as stated in Theorem 3.2,
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the T-transform of the given formula comes to be false in M.

This concludes the proof of the completeness of L1, which is

stated as:

Lemma 5.7 If TA is a thesis of first-order predicate logic with

equality, then A is provable in Li in its tableau method version.

It is remarked in passing that use is made of the soundness

result of predicate logic in passing from semantics to syntax.

Combining the soundness and completeness results (Lemma 4.3 and

Lemma 5.7), we have:

Theorem 5.8 A is a thesis of LI in its tableau method version 

iff TA is provable in first-order predicate logic with equality.

It is not difficult to see that a predicate logic model constructed

before for falsifying the T-transform of the given Hintikka formula was

defined following the general setting here described.

As mentioned earlier, this was the result obtained by Ishimoto

(2), (3) and Kobayashi and Ishimoto (5) , the proofs of which were,

however,.more complicated.

Theorem 5.9 (Cut elimination theorem) If BV A and 	 A V C are

provable in LI in its tableau method version, then 8 ,1 C is also a

thesis thereof. (Here B or C Could be the empty expression.)

By Lemma 4.3.(soundness theorem), TB V TA and -- TA V TC are

provable in first-order predicate logic with equality. From this

follows the thesishood of TB V TC, namely, T B V C in predicate

logic. In view of Lemma 5.7 (Completeness theorem) B VC is provable

in L 1 in its tableau method. (The cut elimination theorem for L I was

also proved by Mr. N. Kanai syntactically)

From the completeness theorem (Theorem 5.7) and the construction

of a Hintikka formula for a formula (of L1) not provable there, it

follows that for every formula (of L 1 ), if it is provable at all,
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it is proved by a nomal tableau. Suppose, if possible, there were

such a formula. Then, by reducing it following the procedure as

described in Theorem 3.2 (Fundamental theorem) there would obtain a

Hintikka formula, on the basis of which we could falsify the

T-transform of the formula against the soundness theorem (Theorem 4.3).

This is also the result announced earlier.

On the basis of the cut elimination theorem, we can prove that

any thesis of L 1 in its Hilbert-type version is provable in Li in

its tableau method version. Conversely, any formula of LI in Ibs

tableau method version constitutes a thesis of L 1 in its Hilbert-

type version. This is proved by the length of tableaux.

Theorem 5.10 (Separation theorem) If a quantifier-free formula

A is provable in L, i.e., Lesniewski's (elementary) ontology, A is

already a thesis of Li

If such an A is not provable in L 1 , by Completeness theorem,

a predicate logic model could be constructed falsifying its T-trans

form. On the basis of the model we could obtain a model for L

which falsifies A. (Details are omitted.)

Before concluding this section we wish to remark that the construc-

tion of a predicate logic model is by no means unique. For example,

the domain N of the model could be the infinite set of natural

numbers, and to the tail we could assign any set (finite or infinite)

which contains at least all the members of unit sets assigned to

predicate logic counterpart of the members of a chain which ends

with the tail.



6 Grammar We are going to take up in this section the relevancy

to grammar or grammatical theory of our Li, which has hitherto been

developed only as a logical theory.

With this in view a number of lexicons of a fragment of a

natural language, say English are identified with their counterparts

of Lesniewski's higher-order ontology. The proposed identifications

proceeds in the following way:

the	 A x	 exy

a	 x Ay (3z) (EzxAEzy),
(an, some)

is (copula)	 AT 2 xP (A y x= y),

or	 etyP Ax x = y),

andA'p A'q (p Aq),

or	 =	 2 1) A • ci (pV q),

not	 p,

Socrates	 =	 y e Socrates y,

Bill	 =	 A'fy. E Bill y,

Mary	 = 2'y E Mary y,

man	 = man

boy	 = boy

Here, A x...x..., intuitively, stands for the collection

(or set) of atoms or atomic names x's such that ... x 	 while

x ... and the like represents the collection of 	 x's

satisfying	 x	 A x • • • x ..., it is emphasized, is always assumed

to represents a name, while A'x	 x ... and the like do not necessarily

stand for a name. In particular,	 P	 is, if interpreted,

a collection of P's such that	 P ... with P ranging over the

denotations of noun phrases, in our case, those corresponding to

the expressions of the form A'y Ea y or A 'y ( 3 z) eza Aezy),

where a is constant name, not necessarily, atomic.	 readenring of
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copula is after Montague (8).) a = b, on the other hand, is an

abbreviation of E ab AEE ba.

The presence of such variables as P and those ranging over

propositions makes our logical system into Lesniewski's higher-

order ontology with 2 -conversion as a rule. And, the derivations

in the sequel will take place in this higher-oder ontology.

The status of 2 x ...x... as a name is characterized by axioms

of the form:

6.1	 ea 2 x	 x . .	 . a ...AEEaa,

which is adjoined to L or Lesniewski's higher-order ontology as

additional axioms. In fact, the expression E a 2 x	 x ... is

meaningful only if A x . . x ... is of the category of names, and the

namehood of 2 x	 x ... is guaranteed by this axiom.

It is remarked in passing. that proper names such 'So:rates'

and 'Bill' are thought of as 'the Socrates', 'the Bill' and the like

as seen from the above identifications. It is noted that we are

following Cresswell (1) in identifying the expressions of natural

language with those taken from a logical system unlike the case of

PTQ, i.e., Montague (8), where the former are translated into their

logical correlates.

Now, there are all in all enght possible constituent analyses

for the simple sentences of the form:

Det + Noun + Copula + Det + Noun,

if Det is ranging over 'the' and 'a' as above identified.

Namely, we have:



	

6.21
	

((the Noun)(Copula (the Noun))),

	

6.22
	

(((the Noun) Copula) (the Noun)),

	

6.31
	

((the Noun)(Copula (a Noun))),

	

6.32
	

(((the Noun) Copula)(a Noun)),

	

6.41
	

(( a Noun)(Copula (the Noun))),

	

6.42
	

(((a. Noun) Copula)(the Noun)),

	

6.51
	

((a Noun)(Copula (a Noun))),

	

6.52
	

(((a Noun) Copula)(a Noun)).

Hereby, Nouns are assumed synonimous with Tams in the sense of 1,1

with the same category. Although the above list exhausts all the possible

constituent analyses from the logical point of view, it remains a problem

whether a simple sentence (of natural language) having the above forms

is susceptible of one of these analyses from the linguistic point of

view.

We are, now, in a position to present a number of sample sentences

(taken from English) and transform them within Lesnewski's higher-order

ontology. Each of these sentences coreesponds to one of the constituent

analyses 6.21--6.52 as described above.

6.61	 (Bill (is John))

==(( A'y eBill y)

(( 'I.) A xP( A y x =y))	 e John y)))

==-7(( l'y E Bill y)	 x (( A ' y E John y) ( Ay x = y))))

( y E Bill y) ( A xE John ( A y x = y)))

ss((	 EiBill y) (1xx= John))

EEEESill (2 x x = John)

= John

EE . Ei Bill John  AE:ohn Bill,

where operators are allowed to operate not only from left to right,

but also from right to left. This was alredy practiced in Gress-

well (1).
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6.62 I- ((Bill is) John)

((( 2'y E Bill y)	 P 2 x x = y))) ay e Joiln y))

((2 y (( 2' z e Bill z) ( 2x x = y))) A'y e John y))

(( yeBill ( x x = y)) C 25, e John y))

( 2y Bill = y) 25, e John y))

e John ( 2 y Bill = y)

Bill = John

=..E Bill John A E John Bill.

6.631- (Bill (is (a man)))

(( 2'y e Bill y)

(( 2'p 2 xP( 2 y x = y))(( A 'x A' yCE (	 Ae zy)) man)))

(( 2'y eBiLl y)

(C 2'P 2 xP(a y x =	 21y( 3z)(ez man Aezy))))

=.(( A ' y EBill y)

Ax( A t y(z)(ez manAezy))( y x = y))))

(( A'y e Bill y)( x( Rz)(EzmanAez (Ayz= y))))

(( 1'y EBill y)( x( z)( E z man AX = z)))

2'y EBill y)(A x e x man))

-is Bill (2 x ex man)

Es' EBill man.

Hereby, use is made of a lemma:

e ab (Be :0( exb A a = x),

which is easily proved in L. This and similar ones will be employed

in what follows without mentioning them.

6.64 1- ((Bill is) (a man))

(( ( 2'y eBill y)( A'P 2 yPC 2 x x = y)))

(( 2 'x 2'y(	 z)(E zx A E zy) man))

(C y(( ,l'y eBila y)( A x x = y)))

i'y(Sz)(ez man AE zy)))

( ye Bill ( A x x = y)) ( 2 ' y( z) CE z man A e zy) ))
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E.= ( 2 y Bill = y) ( 2'y (az) (e z man AezY)))
E.: (az) (ez man Aez 2y Bill = y))

===- (az) Ce Z man A Bill = z)

eBill man.

6.65 1-((a man) (is Bill))

((( 2'X 2'y ( 5 z) (ezxAezy)) man

(( l' p 2 zP( Ay x = y))	 2'y e Bill y)))

(( 2'y (F..z) (Ez man A ezy))

( 2 x(( A'y EBilly) 2y x = y))))

(( 2'y(3z) (ez man Ae zy)) (lx e Bill (Ayx=y)))

(( Py( 3z) (Ez man AE zy)) ( 2 x x = Bill))

--=""	 z) (e z man Ae z (2xx= Bill))
(3 z) (EZ man A z = Bill)

eBill man.

6.66 I-- (((a man) is) Bill)

(((( 2'x	 1 'y (7. z) e zx AE zy)) man)

	

2yP (2 x x = y)))	 l'y E Bill y))

((( 'y ( a z) (Ez manAe zy))

	

C 2p 1 y? (1 x x = y)))	 2'y E Bill y))

(( A y(( 2' w(a z)(e z manAe van ( 2 x x = y)) l'y	 Bill y))

▪ ( ( 2 y(a z)(ez man AEz (A x x = y))) ( 2'y e Bill

((2 y( z) (EzmanAz= y))	 eBill y))

• ((2yey man) ( 2 y E Bill y))

E3i11 (Ay EY man)

= E3ill man.

6.67 H ((e. man) Cis (a student)))

((( l'x 1'y	 z)(e zx A szy)) man)

(( A'P 3c-1( Ay x = y))(( A'x 2'y( Fiz)(e zxAezy))) student))) )

(( A' yea	 (Ez rnmAezy);

(( A'P A xP( Ay x = y))( A l y( z)( ez studentAE zy))))

(( 2'y (s z)(a-z man Aezy))

( A x(( Py(E.-7z)(ez student Aezy))( A y x = y))))

(( 2'y(3z)(ez manAezy))

( 2 x(F z)(E z student AE z (Ayx=y))))



(( 2'y (a z) (ez manAe zy)) ( 2x( F. z)(e z student A3C = z)))

(( 2'y -(a z) (Ez manAezy)) ( 2 x(e x student))

z) (e z manAE z ( 2 xex student))

"=7	 z) CE z man AE z student).

6.68 1-(((a man) is) (a student))

(((( 2% 2'y (F-z) (ezxAezy)) man)

C 'P2 yt)( 2 x x = y)))((	 x2 1 y(-5 z)(e zx Aezy)) student))

((( 2 'y(F- z)	 z manAe zy))

2 • 1) A y1,)( A x x = y))) C A ' y(a z)(ez studentAezy)))

(( 2 y(( 2'y(0 z)(e z manAe zy))( 2 x x = y)))

2 1 y(= z)(e z studentAe zy)))

==- (( 2 y(a z)(e z manAe z (2 x x = y)))

( 'y(.3z)(e z student Ae zy)))
(( 1 y(3z)CE z man A z = y))

z)(E z student AEzy)))

11-= ( 2 Ye y man)( 2' y( 2)(E z student Ae zy)))

z)(e z studentAe z (2 yey man))

z)(e z studentAe z man)).

On the basis of these derivations we have

Theorem 6.7 I— 6.61 sE 6.62,

I-- 6.63 EE 6.64 SE 6.65 .2E6.66,

1- 6.67	 6.68.

The equivalence of 6.63, 6.64 and 6.65 might be rather surprising

in,view of their rather diverse constituent analyses. However, this holds

good at least, from the logical voint of view,not from the linguistic

point of view perhaps. It is also observed that excepting 6.67 and

6.68 all these sentences are eventually transformed into sentences

belonging to LI, namely, to those quntifier-free sentences of L. Among

them 6.61 and 6.62 are, however, not reduced to a simple or atomic sentence

of LI although they are for certain the sentences of L.



Lastly, it is observed that the T-transforms of these sample

sentences are exactly the same as their translations in the sense of

Montague (8) if we disregard intension.

§7 Conclusion There are two main results obtained in this paper.

In the first place, it was shown that a fragment of English, a very tiny

fragment though,could be accommodated to Li, namely, the propositional

fragment of Lesniewski's ontology. More specifically, it was found that such

sentences as 'Bill is a man' and 'a man is Bill' are reduced to an atomic

formula of L I . Further the T-transforms of these sentences were found to be

the translations in the sense of Montague (8).

Secondly, it was shown that the model for the sentences of Li is not

uniquely determined. As has been repeated many times, there are an infinite

number of models for the sentences of L 1 along with more diverse models for

the T-transforms of these sentences of Li. As a result, the notion of uniquely

determined model or semantics for natural language does not make sense, and

we are urgently requested to settle the matter if we wish to put the logical

grammar upon more secure foundations. One of the rescues, which inmediately

comes up to mind, would be to propose a canonical model for natural language as

has been successfully proposed in a variety of mathematical studies.

In view of the failure of uniquely determining the model of .natural

language, we are requested to scrutinize the status of individuals in the

model more carefully. For example, any noun, say, 'man' is represented by a

variety of the sets of natural numbers, by no means, uniquely determined.

By this, perhaps, we could explain the shadowy status of individuals.

In other words, individuals are called for only to support nouns and

other lexicons involved upon the world of anonymous individuals,

and these individuals never come up to the surface. From this also follows

the benefit to employ Lesniewski's ontology in place of traditional
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predicate logic, and there no privileged status is reserved for individuals.

Further, it would be interesting to explore how far we could proceed in

the logic of natural language confining ourselves to propositional logic

like L1.
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