
PARSING KOREAN BASED ON REVISED PTQ

Key-Sun Choi & Gil Chang Kim

Department of Computer Science

Korea Advanced Institute of Science and Technology

P.O.Box 150 Cheongryang, Seoul 131 Korea

Abstract

The natural language parsing has two aspects: the linguistic

aspect and the computational aspect. The interaction between two

aspects should be also considered, and a model is required to

preserve two structures representing them. In this paper, a model

called SPN (Structure Preserved Net), which is an extended version

of the Petri net, is proposed for the purpose of preserving those

two structures. In the linguistic aspect, SPN is based on the RPTQ

(Revised PTQ) to handle several phenomena of Korean. In the

computational aspect, the Determinism Hypothesis is considered to

parse korean deterministically. It is shown that SPN is a model

which represents the syntax of RPTQ and also satisfies the

Determinism Hypothesis.

59

1. Introduction

This paper proposes a model called SPN (Structured Preserved

Net) for parsing Korean. We concentrate on representing the syntax

to recognize the well-formed sentences. The parsing problem of

natural languges generally has two aspects: the linguistic aspect

and the computational aspect (Robinson 1981).

To handle the linguistic aspect of Korean, SPN is based on a

grammatical framework, called RPTQ (Revised PTQ) (Lee

1981a, 1981b, 1982). By using the case assignment, Lee (1981a)

argues that RPTQ explains phenomena of free word-order languages

such as Korean, Japanese, Latin and so on. SPN is designed to

represent the syntactic rules of RPTQ naturally.

In the computational aspect, the Determinisallypothesis (Marcus

1980) is considered. He claims that natural languages are designed

to be deterministically parsed from left to right and that writing

a grammar should consist in finding out local clues which enable

the parser to select properly what to do next. Bien and Szpakowicz

(1982) also says that this idea seems even more advantageous for

free word-order languages. SPN is designed such that Korean can be

parsed deterministically.

We considered two aspects, which are the RPTQ in the linguistic

aspect and the Determinism Hypothesis in the computational aspect.

The interaction between two aspects should be also considered, and

there is the need to bridge gaps between two structures

representing each aspect. SPN reflects both structures, and

preserves both characteristics of them. The SPN (Structure

Preserved Net) is named in this sense.

In section 2, we introduce RPTQ briefly, and describe the

characteristics of Korean. Section 3 shows the motivation and the

definition of SPN. SPN is an extended version of the Petri net

(Peterson 1981). The fundamental definitions of the Petri net is

introduced for the sake of completeness. Next, the SPN realization

of RPTQ will be shown, and simple parsing example be presented.

Section 4 gives a proof that SPN satisfies the Determinism

Hypothesis for Korean.

60

2. Introduction to Revised PTQ
RPTQ is a revised version of Montague's (1974) PTQ. RPTQ

accomodates case assignment and free concatenation in Korean (Lee

1981a, 1981b, 1982). The word order of Korean is relatively free,

resulting from free concatenation of a verb phrase with its

argument term phrases. This concatenation is, however, strictly

constrained in RPTQ by case indexing of verb phrases. RPTQ

consists of three devices for case indexing, case marking, and

case shifting. By the case indexing, both basic and derived verb

phrases are subcategorized such that what cases are known to be

admissible for concatenation. Case marking assigns cases to term

phrases, and case shifting reassigns case indices to derived

complex verb phrases.

By these devices, RPTQ provides a simple base for treating some

complex constructions in Korean: (1) double case constructions,

(2) derivation of adjectival phrases or relativization, and (3)

passive and causative formations. We introduce basic concepts of

RPTQ, which are handled in this paper.

The syntactic part of RPTQ contains (1) categories, (2) basic

expressions, and (3) syntactic rules. The semantic part includes

translation rules, which corresponds to syntactic rules in the

one-to-one manner. RPTQ defines denumerably many basic categories

and derives other categories recursively.

Definitim_2.1 (Categories

(i) 0 is a category.

(ii) Any natural number n is a category.

(iii) If A is a category, then A' is a category.

(iv) If A and B are categories, then (A,B) is a category.

The natural number n and 0 are basic categories. The category 0

corresponds to the category t (=truth value) of PTQ, and the

natural number n corresponds to the category e (=entity). The

derived category (A,B) corresponds to B/A in PTQ. Some of the

typical categories of RPTQ are listed in Table 2.1 (Lee 1982).

61

RPTQ
	

AbbreviatiQn _PTQ
	

Descriptim
0
	

t
	

sentence

n	 entity category

(n,0)
	

IV
	

t/e
	

intransitive verb

(c,0)
	

CN
	

t//e	 common noun

(n',0)
	

DV
	

description verb

((n,0),0)
	

T or n*
	

t/(t/e)	 term phrase

(m*,.(xl 0)1
	

IV/T	 transitive _verb

Table 2.1 Categories in RPTQ

Basic expressions of RPTQ may be lexical items in a lexicon:

(. 2=1) BaSiC Expressions __of _Korean

B=tJohn,Mary,Seoul,...)

B -tauk-die, not-play,...}10-
cloudy, yep'i-be pretty,..B1,o-

Bc0=
B2*0= tmak-eat, Cap-catch, salangha-love,

B3*2*10={Cu-give • •

The case indexing of RPTQ uses categories of the natural number.

Term phrases without the case marking belongs to the category n*.

If they are assigned the specific case marking, n* takes a value

of the natural number. For example, the term phrase 'Mary' of the

category n* can be postpositioned by a nominative case particle

'ka'; then, n* becomes 1*, the value of the nominative case. The

following is such a case marking rule:

(2-2)	 Case __Marking

•
Sl- F1 m ([4*)=[ok,-K]m*,

where K=ka (Nominative case) if m=1,

=lil (Accusative case) if m=2,

=eke (Dative case)	 if m=3.

tnamaa-male, yaca-female, holangi-tiger,...}

62

This case marking rule simply adjoins a case particle to a term

phrase of the category n*, replacing the parameter n with a case

index. This process may be represented by the following tree:

(2-3)	 [Mary-ka]

[Mary]nom

Concatenated with an appropriate type of verb phrase,

case-marked term phrases form more complex phrases. For example, a

verb phrase of the category (1,0) may concatenate with a term

phrase of the category 1* and form a sentence of the category 0.

The following is an example representing such a derivation:

(2-4)	 [Nary-ka]
	

[nonta] oho	 'Mary plays'

play

[Maryjn*

Concatenating a verb phrase with a term phrase is strictly

constrained in RPTQ. It operates only when one of the case indices

contained in the category of a verb phrase is erased by the same

case index of a term phrase. Thus the following derivations are

ill-formed:

(2-5) *[[Mary-lil] * [nonta] io

However, the followng concatenations are both acceptable:

(2-6)	 HJohn-il],*[salanghantal-9*10110	 'love John'

[[Mary-ka]	 21020Nary-kal * [salanghantal-*J	 'Mary loves'i.

These concatenations are well-formed because the case index of

each term phrase occurs in the category of the verb phrase and

erases the corresponding case index in the verb category. These in

turn derive the following well-formed sentences:

(2-7)	 [(Mary-kali.* [John-il salanghanta]lo]o

'Mary loves John'.

[[John-il] 2* [Mary-ka salanghanta] nio
'Mary loves John'.

*

63

RPTQ contains the following rules of concatenation:

(2-8)	 Sentence .Formation
S4: F4([0(1*, [In0)41‘1$"]0
where p" is the present tense declarative

(2-9)	 IV7.Derivaticm
S5: (i) F	 (*3[(31 *)4c)(Pl k05,1	 1	 k 10

(ii) F	 ([0(1 * ,[N * 0) --4 105,k	 k	 k 1

form of (3.

These rules along with the case marking rule derive the
following analysis tree:

Mar -ka
[Mary-ka

[Mary-ka]1*
[Mary]n*

(2-10) [John:11y
[John-i1] 2*
[John]n*

salanghanta]o
salanghanta120
[salanghanta] 2*10

3. Structure Preserved Net
Structured Preserved Net (SPN) is an extended version of Petri

net. SPN structure and SPN graph follow definitions and

terminologies of Petri net structure and graph. The Parsing in SPN

is an application of the execution rules for Petri net.

3.1 Introduction to Petri Net

In this section, we introduce the basic concept of Petri net

which is used to define the SPN. Petri net is a four-tuple

(P,T,I,0): a set of places P, a set of transitions T, an input

function I, and an output function 0. Input and output functions

relate places with transitions. Input function I is a mapping from

a transition t, to a collection of places I(t,), and output

function 0 is a mapping from a transition t, to a collection of

places 0(t,).	 The	 definition	 of Petri net is as follows

(Peterson 1981):

DefinitiQn_3t1 A Petri net structure, C, is a four-tuple

C=(P,T,I,0). P=tp l ,p 2 ,...,pnl is a finite set of places, nn.
64

T=Itt2"'" tmi is a finite set of transitions, r0.0. The set of
places and the set of transitions are disjoint, PrIT=0. I:T4P 0° is
the input function, a mapping from transitions to bags of places.

0:T-Poo is the output function, a mapping from transitions to bags

of places.

While a set allows only one occurrence of each element in the

set, a bag allows multiple occurrences. The use of bags allows one
place to be a multiple input or a multiple output of a transition.

Example_3.1, Consider the next Petri net which has three places

p l , p2 and p3 , and two transitions t	 and1
output of tl.

P-4131,P2,P31	 ,

0(t1)=1102,P21
I(t 2)---ip 2 ,p 31 	0(t2)=U)1,p31

t2• p2 is the multiple

The SPN parsing is based on the execution rules of Petri net.

The execution is carried out on marked Petri nets. The following

is quoted from Peterson (1981):

"A marking g is an assignment of tokens to the places of a Petri
net. A token is a primitive concept of Petri nets (like places and

transitions). Tokens are assigned to, and can be thought to reside

in the places of a Petri net. The number and position of tokens

may change during the execution of a Petri net. The marking ja, is
defined as an n-vector, 1,,L=(pl ,p2 ,..., pn), where n=LPI and each

i=1,...,n. The vector 1U gives for each place pi in a Petri

net the number of tokens in that place. A Petri net executes by

firing transitions. A transition may fire if it is enabled. A
transition is enabled if each of its input places has at least as

many tokens in it as arcs from the place to the transition. The

tokens in the input places which enable a transition are its

enabling _tokens. A transition fires by removing all of its

enabling tokens from its input places and then depositing into

each of its output places one token for each arc from the

transition to the place."

65

A Petri net structure has the corresponding graphical version,

Petri net graph. A Petri net graph has two types of nodes. A

circle 0 represents a place, and a bar I represents a transition.

Directed_ arcs ---> connect the places and the transitions. Input

function for a transition is represented by the arrows directed

from places to the transition. Similarly, output function is the

directed arcs from a transition to places. A token is represented

by a dot • in a circle place.

Examp1e_3,2 In the Petri net structure of example 3.1, if each

of places p and p 3 has one token, its marking4=(1,0,1). In thisl
case, t 1 is enabled and fires; then one token is removed from pl,

and since the output bag is 0(t 1	2)=113,p2i. , two tokens are

deposited in p, that is,A=(0,2,1). Since each of places p2 and2

p 3 has at least one token, t 2 fires removing one token from each

of p2 and p3 and then depositing one token in p l and one token

again in p 3 . In that case, the corresponding marking isg--(1,1,1).

The resulting marked Petri net structure is represented by the

Petri net graph of Figure 3.1.

t 1

Figure 3.1 A marked Petri net graph as a result of example 3.2.

3.2 Motivation of SPN

In PTQ, a syntactic rule forming a complex expression contains

three sorts of information (Dowty et al. 1979): (1) a bag of input

categories, that is, the category or categories of expression(s)

that serve as "input" to the rule, (2) the output category, that

66

is, the category of the complex expression that is the "output" of

the rule, and (3) the structural, operation for the rule.
We consider an analogy between the syntactic rules of RPTQ and

Petri net. Each category of RPTQ can be considered to be a place
of Petri net, and each rule of RPTQ is a transition of Petri net.

The number of categories and rules equals to that of places and

transitions respectively. A place corresponds to a category in the

one-to-one manner, and also a transition uniquely corresponds to a

rule of RPTQ. Next, we can easily make an analogy between input

categories of a rule and input places of the transition

corresponding to the rule, and similarly between output categories

and output_places. Tokens of Petri net correspond to expressions

of RPTQ. An expression is either a word (or lexical item) or a

constituent (or phrase). While tokens of Petri net are simply one

kind of 'marker (i.e., dots), each expression belongs to one of

categories. SPN is constructed based on Petri net, with using

these analogies between RPTQ and Petri net.

3.3 Definition of Structure Preserved Net

SPN is an extended version of Petri net. The basic definition of

SPN follows that of Petri net introduced in section 3.1. Places,

transitions, and tokens of SPN represent categories, rules, and

expressions of RPTQ respectively. The nomenclature for transitions

and places of SPN follows the names of rules and categories of

RPTQ as it is.

Consider the rule S1: F
1,m(

[g]
n*

)
=

[10(-K]
m**

This rule generates

a case marked term phrase m* from a term phrase n*. Although

functional words like K do not belong to any syntactic category

(Table 2.1), we assign a place to each type of functional words.

Such a place is called a functional place, and is represented by a
squarer- . For parsing a case marked term phrase m*, input places

of SI should be a term phrase n* and a case particle K, and output

place be m*. A bag with a single element may be represented

without braces; for example, we write m* instead of {m*}. SPN

represents S1 as follows:

(3-1)	 0(S1).--rn*

67

K represents a case particle. Since it is postpositioned after an

input string of term phrase n*, there is a fixed word-order

relation between n* and K. However, since elements in a bag do not

have the fixed order relation between them, tn*,K1 and iK,n*1 make

no difference. In order to describe the fixed word-orderness

between places in a bag, we introduce the concept of ordered_bag.
The ordered bag (n*,K) is the representation for a term phrase n*

postpositioned by a case particle K. In the SPN graph, the order

of each two neighboring input places is represented by a dotted

directed arc --> between them.

(3-1')	 I(S1)=(n*,K)	 0(S1)=m*

Consider the rule S4: F4([a]m*, [P]rno)=[d(3 11] 0. Since m

natural number variable, and its value is restricted to 1,

due to the rule S1 (2-2), S4 can be described as follows:

(3-2)	 I(S4,1)=I1*,10)	 0(S4,1)=0

I(S4,2)=(2*,20)	 0(S4,2)=0

I(S4,3)=0*,20)	 0(S4,3)=0

is a

or 3

However if every variable must be realized to its possible values,

it is inconvenient and reduces the expression power of SPN. We

solve this problem to prepare a special place, called the testing
place. Its notation is to be xFy, whose meaning is the question

whether x=y or not. Its graphical representation is the triangle

A. If the question of x=y is true, that testing place has a

token (i.e., a dot). Hence we can simply describe the rule S4 in

SPN as follows:

(3-2')	 I(S4)=m*,k0,m=k1	 0(S4)=0

Consider the rule S5 (2-9) and its SPN representation (3-3):

(2-9)	 S5: (i) F	 ([10(][p])=[dp] k05,1	 14'	 k-10

(ii) F5,k ([G]k*' [P] k*10)=[(A1 10

68

(3-3)	 I(S5,1)={1*,k*101	 0(S5,1)=k0

I(S5,k)=tk*,k*101	 0(S5, k)=10

In this case, since k is a variable, 1* and k* places can be

combined to one place m*, and m* is tested whether m=1 or m=k.

Hence,

(3-3')
	

I(S5,1)=Im*,k*10,m=11 0(S5,1)=k0

I(S5,k)=tm*,k*10,m=k) 0(S5,k)=10

Consider the following rule S2 for the NP-derivation from a

common noun:

(3-4)	 S2: F ([0(] c0)).[okjn* or2	 (,
[modun 0(in*

where 'modun' is a universal determiner.

In Korean, a common noun without a determiner can become a noun.

'modun' is optional in S2. An optional place is represented by a

bracket [] in the SPN structure and by dotted lines in the SPN

graph. Since 'modun' is an optional functional word, then it is
-1

drawed by a dotted square	 •	 The following is the SPN

representation of (3-4):

(3-5)	 I(S2)=(['modun'],c0)

0(S2)=n*

Consider the following rule S3 for the adjectival phrase (AP)

modification or relativization:

(3-6)	 S3: F ([(N	 [0(13	 k0'	 c0)46-1°Qc0
where 6" is the present tense adjectival form of S.

This rule says that a common noun is composed of a verb phrase

kO, its present tense adjectival ending form 'nun', and another

common noun cO. Its SPN representation is as follows:

(3-7)	 I(S3)=(k0,'nun',c0)
O(S3)=c0

69

In this stage, we can make the full SPN structure (3-8) for the

rules Si, S2, S3, S4 and S5 of RPTQ to combine (3-1'), (3-2'),

(3-3'), (3-5) and (3-7). Figure 3.2 shows its corresponding SPN

graph.

(3-8)	 I(S1,m)=(n*,K)
I(S2)=(['modun'],c0)
I(S3)=(k0,'nun',c0)

I(S4)= m*,k0,m=k

I(S5,1)= m*,k*10,m=1

I(S5,k)= m*,k*10,m=k

0(S1,m)=m

0(S2)=n*

0(S3)=c0

0(S4)=0

0(S5,1)=k0

0(S5,k)=10

3.4 Parsing in SPN

The parsing method in SPN resembles the execution rules for

Petri net. A token in a place corresponds to an expression which

is either a lexical item or a constituent of input data. First,

Figure 3.2 A SPN graph for the syntactic rules S1,S2,S3,S4, and

S5 of RPTQ. ":=" is the assignment operator. Hence "k:=1" means

that 0(S5,k) is the place (1,0).

70

the parser recognizes a lexical item from input string with

reference to a lexicon. This means that the lexical item is

assigned a syntactic category. That recognized word resides in the

corresponding category place in SPN. Hence, there are two types of

places. One is the places which accept lexical items. Those places

are called lexical _places. The other is non-lexical places where

complex expressions reside. Those non-lexical places are just

output places of transitions. For example, a common noun (c,0) and

an intransitive verb (n,0) are categories which are lexical places

in SPN. However, because (n,0) is the output place of the rule S5,

(n,0) may be a non-lexical place; in that case, (n,0) represents a

verb phrase which is the concatenation of a term phrase n* and a

transitive verb n*m0 (or m*n0).

More than one token may reside in one place. In this case, that

place acts like a stack. For example, if m* place accepts two

tokens, say, first 'Mary-ka' of 1* and the next, 'John-il' of 2*,

then the notation is [John-i1(2*),Mary-ka(1*)] . The last accepted

token 'John-4l' resides at the top of the stack place m*. If the

above place m* belongs to I(S) given a rule S and the rule S

fires, the token 'John-il' is removed from m*.

For instance, we show steps for parsing a simple sentence.

Consider the SPN structure and graph in (3-8) and Figure 3.2. We

can draw the parsing tree (Figure 3.3) and make a table of parsing

steps (Table 3.1) for the below sentence:

(3-9)	 John-il Mary-ka salanghanta.

However, since the input places of transitions S4 and S5 are not

in ordered bags, the SPN structure (3-8) can parse the following

sentences besides (3-9):

(3-10)	 Mary-ka John-il salanghanta.

(3-11)	 Mary-ka salanghanta John-il.

(3-12)	 John-il salanghanta Mary-ka.

(3-13)	 salanghanta Mary-ka John-4l.

(3-14)	 salanghanta John-il Mary-ka.

71

5 m=2 S1,1

Cat

Step n*	 m*

2

.3-

_il,

.J7i1(2*)

__k*10 kO m=k

fired

rule

8

7

M-ka(1*)

M-ka(1*)

J-I1(2*) M-ka s m=2

A201

m=1

m=1 S5,1

S4

J-il M-ka s.

This shows that SPN can handle the complete free word-order

languages. The SPN graph of Figure 3.2 can parse the following

sentence (3-15), and Figure 3.4 is its parsing tree.

(3-15)	 John-il salangha-nun ya6a-ka yep'ita.

John	 love	 who woman is pretty

'A woman who loves John is pretty.'

0

20

2*	 1*

S11 , 1S1,2

n* K n=2	 n* K,n=11,1	 1	 1
John-il	 Mary-ka

Figure 3.3 Parsing tree for (3-9).

2*10

salanghanta

Table 3.1	 Parsing steps for (3-9). In steps 6 and 7, 'M-ka' is

at the top of the stack place m*. J=John, M=Mary, s=salanghanta.

72

1'0

0

S4

n*	 K,m=1

S2

c0

S3

10	 REL

5,2
2*	 2*10

n* K,n=2

John-il	 salangha-nun	 y96a -ka	 yep'Ita

Figure 3.4 Parsing tree for (3-15).

4. Determinism Hypothesis and SPN

4.1 Introduction to Determinism Hypothesis

The Determinism Hypothesis is defined as follows (Marcus 1980):

"the syntax of any natural language can be parsed by a mechanism

which operates strictly_ deterministicaLly in that it does not

simulate a nondeterministic machine."

Taking the Determinism Hypothesis as a given, Marcus proposes

three properties of any deterministic parser: (1) it must be

partially data driven; (2) it must be able to reflect expectations

that follow from general grammatical properties of the partial

structures built up during the parsing process; and (3) it must

have some sort of look-ahead facility, even if it is basically

left-to-right.

4.2 Korean and Determinism Hypothesis

Figure 4.1 shows examples for explaining three properties of the

deterministic parser in Korean.

73

The parser must:

Be partially data driven

(la) [[Mary]n* [ka] . 1 1*	 (nominative case)1

(lb) [[Mary] J1111] ,(accusative case)n^	 n=2 2x
Reflect expectations

(2a) Mary-ka [nonta1 1	'Mary plays'0

(2b) Mary-ka note-111 [John-eke] 3* [6untal-3*2*10
'Mary gives John a note'

Have some sort of look-ahead

(3a) [Mary-ka John-11 salanghanun sasil-il]2*

nae-ka anta. 'I know the fact that Mary loves John'

(3b) Mary-ka [John-11 salanghanun name/a-111] 2*

salanghanta. 'Mary loves a man who loves John'

Figure 4.1 Some examples which motivate the structure of

a parser in Korean.

First, before the parser recognizes the case particle, it cannot

determine the case for 'Mary' in (la) and (lb) of Figure 4.1. The

deterministic parser must determine the case when it recognizes

the postpositioned case particle after 'Mary'. In a

hypothesis-driven parser, it may first assume that the first term

phrase has a nominative case particle among other alternatives. If

that rule is applied to (lb), then the parser becomes to find that

it is the wrong hypothesis, and must make a backtracking in order

to apply another alternative rule. Hence, any determinisc parser

must be partially data driven.

Second, in (2a) and (2b) of Figure 4.1, 'Mary-ka' belongs to the

1* category. In the SPN graph of Figure 4.1, an input place m* of

the transitions S4 and S5 becomes 1*. 1* place is one of input

places of transitions S4 or S5. Having that information, we can

expect that the next input word belongs to (1,0) or k*10 category,

and S4 or S5 may be the next firing rule. On the other hand, in

(2b), after recognizing 'John-eke', we can expect that its main

verb belongs to one of categories (3,0), 3*10, 3*m*10, or m*3*10.

74

But because only 3*2*10 category exists in Korean, a deterministic

parser must be able to apply the rules which have 3*2*10 place as

one of its input places. This property says that a deterministic

parser can not be entirely bottom-up. It must reflect expectations

based on the information which follows from the partial structures

built during the parsing process.

Finally, if a deterministic parser is to correctly analyze such

a pair of sentences as (3a) and (3b), it must have a sufficient

look-ahead facility. After we see only 'Mary-ka', we cannot

determine whether it is the subject of the verb 'salangha' or not.

The syntactic structures can not be determined until we see a word

after 'salanghanun'. Thus a deterministic parser must have a large

enough window on the clause to see sufficient input data.

4.3 SPN and Determinism Hypothesis

First, the parser based on SPN analyzes a word and the

corresponding lexical place gets the token. Hence the SPN parser

is partially data-driven.

Second, if a place p is filled with a token, every transition

of pEI(t i) has the possibility that they are enabled and fire.

Those transitions are just expected rules which follow from the

partial structures built during the parsing process. Thus the SPN

parser can reflect expectations.

Finally, in order to apply a transition, all of its input places

must have tokens. Such input places of SPN play the role of the

look-ahead facility.

5. Conclusion

The rules and categories of RPTQ have the one-to-one

correspondence to the transitions and places of SPN; hence SPN

naturally represents the structure of syntactic rules of RPTQ.

Next, since SPN satisfies three parsing principles for the

Determinism Hypothesis, SPN also represents the structure of a

deterministic parser. In these sense, SPN bridges gaps between the

structure of a linguistic framework RPTQ and the structure of a

deterministic parser. From the above mentioned facts, we can say

75

that these two structures are preserved by SPN, and it connects

the linguistic aspect with the computational aspect.

The semantic part should be considered in order to complete the

parsing. Since each syntactic rule of RPTQ has its corresponding

translation rule, the semantics may be easily included in SPN.

References

J.S. & S. Szpakowicz (1982): "Toward a Parsing Method for

Free Word Order Languages", MUNOZ Abstracts, Charles

University, Prague, Czechoslovakia.

Dowty, D.R., R.E. Wall & S. Peters (1981): Introduction .to

Montague_Semantics, D.Reidel Publishing Company, Holland.

Lee, K. (1981a): "Case Assignment in Korean", Language Education,

Language Institute, Jeonnam University, Kwangjoo, Jeonnam

Korea, Vol.12, 269-285.

Lee, K. (1981b): "On Free Word Order and Case in Korean: A

Montague Grammar Approach", MAL: The Journal_of_Korean_Lan#uage

Institute, Yonsei University, Seoul, Korea, Vol.6, 51-87

/in Korean/.

Lee, K. (1982): "On Case Shifting", Linguistic. Journal of_Korea,

The Linguistic Society of Korea, Vol.7, No.2, 497-517.

Marcus, M.P. (1980): A Theory_of Syntactic_Recognition for Natural

Language, MIT Press, Massachusetts.

Montague, R. (1974): "The Proper Treatment of Quantification in

Ordinary English", In R.Thomason (ed.), Formal Philosophyt

selected Tapers_of Richard_Montague, 247-270, New Haven: Yale

University Press.

Peterson, J.L. (1981): Petri ..Net_. Theory_and_the.Modeling_of
Systems, Prentice-Hall Inc., Englewood Cliffs.

Robinson, J.J. (1981): "Perspectives on Parsing Issues",

Proceedings:...._ 	 Annual_Meeting of_the Association_for

Computational_Linguistics, 95, Stanford University.

76

	KYOTO83-059.pdf
	KYOTO83-060.pdf
	KYOTO83-061.pdf
	KYOTO83-062.pdf
	KYOTO83-063.pdf
	KYOTO83-064.pdf
	KYOTO83-065.pdf
	KYOTO83-066.pdf
	KYOTO83-067.pdf
	KYOTO83-068.pdf
	KYOTO83-069.pdf
	KYOTO83-070.pdf
	KYOTO83-071.pdf
	KYOTO83-072.pdf
	KYOTO83-073.pdf
	KYOTO83-074.pdf
	KYOTO83-075.pdf
	KYOTO83-076.pdf

