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Abstract

In this paper, we provide a new solution in a cooperative game with a coalition structure. The
collective value of a player is defined as the summation of equal division of pure surplus which his
coalition obtained from the coalitional bargaining and his Shapley value for the internal coalition. The
weighted Shapley value applied for a game played by coalitions with coalition-size weights, is assigned
to each coalition, reflecting the size-asymmetries among coalitions. On the surface, this solution appears
to lie in the very different line from existing studies, but we show that the collective values matches
endogenous and exogenous interpretations of coalition structures. In addition to the potential function
which derives the solution, two axiomatic characterizations of the collective value are also presented.
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1 Introduction

This paper studies a distribution rule of a cooperative surplus among players when they already partition
themselves into ‘coalitions’ before realizing cooperation. A distribution rule, a solution concept in a frame-
work of a cooperative game with a coalition structure, considered in this paper departs from the existing
solution concepts in two major directions. One is to take into account the mutual-aid tendency of groups
or generous reallocation among members in the internal cooperation.1 This point is expressed through a
two-step approach introduced by Kamijo (2007). The other is to treat the asymmetric sizes of coalitions as
a factor affecting the bargaining outcome. From the theoretical point of view, Kalai (1977) and Thomson
(1986) show that in the context of bargaining problems, purely replications of players generate the size-
dependent asymmetric weights of the Nash solution. On the other hand, from an empirical point of view,
Metcalf, Wadsworth, and Ingram (1993) reported that in the observations of British manufacturing industry,
strike incidence rose with the size of bargaining group, and it is known that the strike activity affects the
bargaining outcome between employers and employees.2

The Aumann and Dreze’s (1974) value and the Owen’s (1977) coalitional value, two traditional solution
concepts in cooperative games with coalition structures and each of which is an extension of the Shapley
value to a cooperative game with a coalition structure, do not satisfy both requirements mentioned above.
On the one hand, both solutions give nothing to a player with no effective contribution whatever cooperation
relationship he belongs to. Thus, according to these solution concepts, it does not happen that such player
receives some portion of the cooperation surplus from his coalition due to a strong position of his coalition,
thus these solutions not having an essence of mutual assistance within the internal members. On the other
hand, these solutions treat two distinct coalitions equally even if these are different in their sizes. As pointed
out by Hart and Kurz (1983) and Winter (1992), a solution concept of a cooperative game with a coalition
structure assumes the two levels interaction among players,i.e., interactions inter- and intra- coalitions.
In fact, the Owen’s coalitional value satisfies the condition that the sum of the coalitional values of the
players in a coalition coincides with the Shapley value of the coalition obtained from the game which is
played by inter-coalitions. Thus, the coalitional value well describes a two levels interaction but not reflects
an asymmetry in the interaction among coalitions pointed out by Kalai and Samet (1987) and Levy and
McLean (1989), caused by the sizes of the coalitions.

The definition of our new solution concept, named acollective value, is established relying on a two-
step bargaining process among players, a bargaining inter-coalitions in the first step and a bargaining intra-
coalition in the second, and generous reallocation tendency among the internal members. In the first step,
each coalition obtains itsweightedShapley value applied for a game among coalitions. The pure surplus
of a coalition in the first step bargaining (its weighted Shapley value obtained from the first step minus
the worth of the coalition) is divided equally among players in the coalition. In the second step, players
in the coalition receive their Shapley value applied for their own internal game. Thus, the collective value
gives the sum of the payoffs in the first step and the second to each player. This definition means that

1Such tendency of groups is examined and explained in various contexts. Kropotkin (1972) explains this from a human
evolution in the struggle for life. In a context of rent-seeking problem among two groups, Noh (1999) demonstrates that the group
members can agree with egalitarian-like sharing rule among them to resolve a free rider problem in the group. Researchers in
community psychology argue that recent development of a number of mutual assistance organizations is due to divergent stressful
situations around ourselves (Levine 1988). Further, in the study of labor-management, reasons for and usefulness of profit sharing
among employer and employees are examined (FitzRoy and Kraft 1986, 1987; Drago and Turnbull 1988; Kandel and Lazear
1992).

2One reason is that most union power is partly derived from the threat of the strike (Ashenfelter and Johnson 1969).
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the collective value is involved with the egalitarian solution as well as the Shapley value: the egalitarian
solution is used for the bargaining surplus of a coalition and the Shapley value for the worth of the coalition.

On the surface, our solution concept appears to lie in the very different line of research from exist-
ing studies. However, the collective value matches endogenous and exogenous interpretations of coalition
structures. Aumann and Dreze (1974) consider that the existing coalition structure arises from theen-
dogenousformation of coalitions, given the game itself. They consider that lack of the superadditivity of
the game leads to the formation of coalition structures. Here, we provide a different condition, aquasi-
partnership decomposition, which is also considered as a reason of forming coalition structures and show
that the collective value is consistent with this this condition. Furthermore, in the line of Myerson (1977,
1980), a coalition structure can be considered asexogenouslygiven communication restriction among play-
ers. We introduce a new interpretation of the coalition structure as restriction of communication among
players and show that the collective value coincides with the Shapley value applied for the game appropri-
ately derived from the original game. Thus, the collective value is consistent with these interpretations of
coalition structures.

Further, with the aid of research by Calvo and Santos (1997) and Bilbao (1998) on potential theory in
cooperative games with communication restriction, we obtain a potential function for games with coalition
structures, which is quite different from the one of Winter (1992). The collective value is expressed as
the marginal contribution relative to this potential function. The potential function behind the solution
concept inspires one of its properties similar to the balanced contributions of the Shapley value. We show
that this property, called acollective balanced contributions, with some moderate additional conditions
characterizes our solution. An axiomatization by theadditivityaxiom is also presented.

The rest of this paper is organized as follows. In the next section we give the basic notations and
definitions used in this paper. The exact definition of a new solution concept is provided in Section 3. In
Section 4, other expressions and interpretations of the solution are explained. In Section 5, we show that
the collective value admits a potential function. Axiomatic characterizations of this solution are given in
Section 6. Section 7 gives concluding remarks.

2 Preliminary

A cooperative gameor a simplygameis a pair(N,v) whereN = {1, . . . ,n} is a finite set of players and
v : 2N → R is a characteristic function withv( /0) = 0. A subsetSof N is called acoalition andv(S) is the
worth of coalition S. The set of all the games is denoted byG. We use the short-cut notations ofS− i
andS∪ i instead ofS\{i} andS∪{i} for convenience. Given(N,v) ∈ G and a coalitionS, we denote the
subgame of(N,v) to Sby (S,v) if there is no risk of confusion.

A game(N,v) is superadditive if for any two coalitionsSandT with S∩T = /0, v(S∪T) = v(S)+v(T).
A game(N,v) is zero-monotonic if for any playeri and for any coalitionS⊆ N− i, v(S∪ i) = v(S)+v({i}).
A superadditive game is, of course, zero-monotonic but the inverse is not true.

Player i ∈ N is a null player if v(S∪ i) = v(S) for any S⊆ N− i and adummy playerif v(S∪ i) =
v(S)+ v({i}) for anyS⊆ N− i. Clearly a null player is also dummy but the converse does not hold. It is
said thati ∈ N and j ∈ N aresymmetricin (N,v) if v(S∪ i) = v(S∪ j) for anyS⊆ N\{i, j} andi ∈ N and
j ∈ are symmetric in(T,v), T ⊆ N, if v(S∪ i) = v(S∪ j) for anyS⊆ T \{i, j}.

Assuming that the grand coalitionN will be formed, the question arises how to divide the worthv(N)
among the players. Thus, a solution of a game is a functionφ which assigns to every game(N,v) ∈ G a

2



payoff vectorφ(N,v) = (φi(N,v))i∈N ∈ RN that satisfies∑i∈N φi(N,v) ≤ v(N). If φ always distributes just
v(N) to the players, it is called an efficient solution.

A well-known solution was provided by Shapley (1953b). Letθ : N→N denote a permutation onN and
Θ(N) denote a set of all the permutations onN. A permutationθ is identified as an order(i1, . . . , in) onN if
θ( j) = k implies ik = j, andvice versa. A set of players preceding toi at orderθ is Aθ

i = { j ∈ N : θ( j) <
θ(i)}. A marginal contribution of playeri at orderθ in (N,v) is defined bymθ

i (N,v) = v(Aθ
i ∪ i)−v(Aθ

i ).
The Shapley value Sh of(N,v) is defined as follows:

Shi(N,v) =
1

|Θ(N)| ∑
θ∈Θ(N)

mθ
i (N,v), for all i ∈ N,

where| · | represents the cardinality of the set. Thus, the Shapley value is an average of marginal contribution
vectors where each orderθ ∈ Θ(N) occurs in an equal probability, that is, 1/|Θ(N)|.

The Shapley value is characterized by the four properties: (i) efficiency, (ii) additivity, (iii) symmetry
and (iv) null player. Letφ be a solution onG. The efficiency requires that the solution distributes the
worth of the grand coalition to the players. The additivity is that for any two games(N,v) and (N,v′),
φ(N,v+v′) = φ(N,v)+φ(v′) holds where the additive gamev+v′ is defined by(v+v′)(S) = v(S)+v′(S)
for anyS⊆ N. The symmetry means that two symmetric players in(N,v) receive the equal payoffs, thus,
φi(N,v) = φ j(N,v) holds wheneveri and j are symmetric in(N,v). The null players axiom is that the null
player always obtains nothing.

In various applications of cooperative games, it seems to be natural that players partitions themselves
into some ‘coalitions’ such as labor union, syndicate of firms, customs unions in international economics,
and so on. Such coalitions form a coalition structureC = {C1, . . . ,Cm}, which is partition ofN, i.e., it holds
thatCk∩Ch = /0 for anyk and anyh with k ̸= h and

∪m
k=1Ck = N. Such a situation, called a cooperative game

with a coalition structure, is first considered by Aumann and Dreze (1974) and developed by a number of
authors. A counterpart of the Shapley value for such games was defined by Owen (1977) and given the
axiomatic foundation from the viewpoint of coalition formation by Hart and Kurz (1983).

A game with a coalition structureis a triple(N,v,C ) where(N,v) is a game andC = {C1, . . . ,Cm} is
a coalition structure. We usually use notationM = {1, . . . ,m} to denote the set of coalitional indices inC .
The set of all the games with coalition structures is denoted byGc. An orderθ ∈ Θ(N) is consistentwith
C if for any i ∈Ch ∈ C and j ∈Ch ∈ C andk∈ N, θ(i) < θ(k) < θ( j) implies that playerk also belongs to
coalitionCh, that is,k∈Ch. Thus, in the consistent order, players line up in a way that players in the same
coalition are side-by-side. A set of all the orders onN consistent withC is denoted byΘ(N,C ). Then,
Owen’s (1977) coalitional value CV is an average of player’s marginal contributions when all the orders
consistent withC occur with equal probability, being defined by,

CVi(N,v,C ) =
1

|Θ(N,C )| ∑
θ∈Θ(N,C )

mθ
i (N,v), for eachi ∈ N.

Thus, according to the coalitional value, players inN appear in a way that the players in the same coalition
appear successively. In other words, first coalitions enter subsequently in a random order and within each
coalition the players enter subsequently in a random order.

An external gameor a game played by the (representatives of the) coalitions(M,vC ) is defined byM =
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{1, . . . ,m} andvC (H) = v(
∪

k∈H Ck) for eachH ⊆ M.3 For external game(M,vC ), the Owen’s coalitional
value satisfies the following: for anyCk ∈ C ,

∑
i∈Ck

CVi(N,v,C ) = CVk(M,vC ,{M}).

This property is called the intermediate game property. The coalitional value is characterized by efficiency,
additivity, null player property, the intermediate game property and the restricted equal treatment property
which requires that if two players inCk ∈ C are symmetric in(N,v), the two players should receive the
equal payoff (see Owen 1977 and Peleg and Sudhölter 2003). Here, the first three axioms are the ones
which are naturally extended to a game with a coalition structure. However, the null player property in this
case may be considered to be a bit strong requirement because it means that the null player gets nothing
even though the coalition he belongs to is in very strong position. Thus, the coalitional value does not
reflect a function of the formed coalition as system of mutual assistance. In Section 6, we provide a weaker
version of the null player property in a game with a coalition structure to characterize our new solution,
which is defined in the next section.

3 A new solution concept

As motivated by Hart and Kurz (1983) and Winter (1989), the coalition inC can be seen as a pressure
group for the division ofv(N). So, van den Brink and van der Laan (2005) stated (p195):

to divide the worth of the grand coalition over all players, first this worth is distributed over the
coalitions in the a priori given coalition structure, and then the payoff assigned to a coalition is
distributed over its players.

The Owen’s coalitional value describes the above two level interactions, which are an interaction among
coalitions and a one among players within a coalition, and has the consistent relation with the Shapley
value’s allocation. The coalitional value satisfies

∑
i∈Ck

CVi(N,v,C ) = CVk(M,vC ,{M}) = Shk(M,vC )

for anyCk ∈ C because the coalitional value satisfies the intermediate game property and the coalitional
value for a game with the grand coalition structure coincides with the Shapley value for the game.

There is an asymmetry of players in external game(M,vC ) since players in the game represent the
coalitions which may be different in size. In such a situation, theweightedShapley value (Shapley 1953a)
can be appropriate to deal with such asymmetries. Kalai and Samet stated in their paper (Kalai and Samet
1987, p221) as follows:

It is important for applications in which the players themselves are, or are representing, groups
of individuals. Such is the case for example when the players are parties, cities, or management
boards. ... A natural candidate for a solution is the weighted Shapley value where the players
are weighted by the size of the constituencies they stand for.

3This game is referred to as an intermediate game in Peleg and Sudhölter (2003) and as a quotient game in Owen (1977).
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As the following definition will show, a new solution concept presented in this paper is the very solution
that reflects such a viewpoint in addition to the two level interactions.

Let wi(> 0) denote a positive weight for a playeri ∈ N. Given a collection of positive weightsw =
(wi)i∈N, let µw(.) represent a probability measure onΘ(N) such that for an orderθ = (i1, . . . , in), µw(θ) =
Πn

j=1
wi j

∑ j
k=1 wik

.4 Thew-weighted Shapley value Shw for (N,v) ∈ G is

Shw
i (N,v) = ∑

θ∈Θ(N)
µw(θ)mθ

i (N,v)

for any i ∈ N.5

Clearly, if wi = w j for any i ∈ N and for anyj ∈ N, thew-weighted Shapley value coincides with the
Shapley value. Given coalitionT of N, let (N,uT) denote aT-unanimity game defined byuT(S) = 1 if
S⊇ T anduT(S) = 0 otherwise. It is easily checked that Shw

i (N,uT) = wi
∑ j∈T w j

if i ∈ T and Shwi (N,uT) = 0
otherwise.

A solution conceptψγ in a game with a coalition structure is defined in the following.

Definition 1. For (N,v,C ) ∈ Gc, let wk denote the weight for k∈ M such that wk = |Ck| and w= (wk)k∈M.
Then, the collective valueψγ for (N,v,C ) is defined by

ψγ
i (N,v,C ) =

Shw
k (M,vC )−v(Ck)

|Ck|
+Shi(Ck,v)

for any i∈Ck ∈ C .

The definition of the collective value shows the relation with a two step approach introduced in Kamijo
(2007): the first step is a negotiation among coalitions for the division ofv(N) and the second step is a nego-
tiation among players for the division of the assignment of the coalition from the first step. The bargaining
surplus of the coalition from the first step, Shw

k (M,vC )− v(Ck), is equally divided among its members.
Moreover they obtain the Shapley value for their own game in the second step, Sh(Ck,v). Thus, this ex-
pression indicates thatψγ has a flavor of egalitarian rule in addition to the Shapley value: the egalitarian
solution for the bargaining surplus of his coalition and the Shapley value for the worth of the coalition. As
the result of this egalitarian part,ψγ does not satisfy the usual null player axiom but the weaker version of
null player axiom. This point is considered in section 6 to characterize the collective value by the additivity
axiom.

The particular difference from Owen (1977) and Kamijo (2007) is that in the definition above, each
coalition, sayCk, receives Shwk (M,vC ), i.e., thew-weighted Shapley value of the external game, instead of
the usual Shapley value. Further, the weights are the sizes of each coalition,i.e., wk = |Ck| for eachCk ∈ C .

4To obtain this probability, consider the following model of choosing an order(i1, . . . , in). First, a player inN, say in, is
randomly selected, due to a probability distribution such that the probability for a player to be selected is proportional to his
weight and put in the last of the order. Next, another playerin−1 is selected by the same process forn−1 players and put in the
second last of the order. Repeating the same process byn−2 times, we have an order(i1, . . . , in) and the probability of occurrence
of this order is this formula.

5Kalai and Samet (1987, 1988) generalized positive weights to a weight system which is a pair of weights and an ordered
partition onN in order to allow a weight of zero for some of the players.
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From the definition, it easily confirmed thatψγ satisfies

∑
i∈Ck

ψγ
i (N,v,C ) = Shw

k (M,vC ),

reflecting the asymmetries in the sizes of coalitions.
One may consider that the definition of the collective value is a bid strange because it applies incon-

sistent treatment between a negotiation among coalitions and a negotiation within a coalition. This is
not true, however; rather the collective value treats the two types of bargaining in consistent manner in
terms of the players’ sizes because in the subgame(Ck,v), each player inCk has an equal size and the
weighted Shapley value with equal weights among the players coincides with the Shapley value, that is,
Shw(Ck,v) = Sh(Ck,v), givenwi = 1 for all i ∈Ck.

To obtain a better understanding on a two-step interpretation ofψγ , we introduce a “redistribution
game” defined below. Letφ be a solution onG andCk ∈ C . Define a functionvr(.|φ) : 2Ck → R by, for all
S⊆Ck,

vr(S|φ) =
{

φk(M,vC ) if S= Ck,
v(S) otherwise.

A game(Ck,vr(.|φ)) is called aredistribution gamefor Ck over the coalitional bargaining surplus at distri-
bution ruleφ . Let (N,v,C ) ∈ Gc, Ck ∈ C , andM = {k : Ck ∈ C }. Let w = (wk)k∈M with wk = |Ck| for any
k∈ M. The following theorem is easily derived from the definition ofψγ .

Theorem 1. For Ck ∈ C and for i∈Ck,

ψγ
i (N,v,C ) = Shi(Ck,v

r(.|Shw)).

Proof. Define(Ck,u) by u(S) = Shw
k (M,vC )−v(Ck) if S= Ck andu(S) = 0 otherwise. Then,vr(.|Shw) =

v+u. Since the Shapley value satisfies the additivity,

Shi(Ck,v
r(.|Shw)) = Shi(Ck,v)+Shi(Ck,u).

Furthermore, since the Shapley value satisfies the symmetry and the efficiency, Shi(Ck,u) = Shw
k (M,vC )−v(Ck)

|Ck| .

Remark 1. The Owen’s coalitional value is also described as the Shapley value for the other type of
redistribution game. For Ck ∈ C , (Ck,vc(.|φ)) is defined by vc(S|φ) = φk(M,vS

C ) for all S⊆ Ck where
(M,vS

C ) is a game played by coalitions with Ck being replaced by S⊂ Ck. That is, vSC (H) =
∪

h∈H Ch if
k /∈ H and vSC (H) =

∪
h∈H\{k}Ch ∪S if k∈ H. Then,CVi(N,v,C ) = Shi(Ck,vc(.|Sh)) holds (see, Owen

1977 and Winter 1992).

Remark 2. Kamijo (2006, 2007) considers another two-step Shapley value in which the Shapley value is
applied for both intra- and inter- coalitions. In other words, not the weighted Shapley value but the usual
Shapley value is applied to the external game. Thus, a solutionψδ onGc is defined by

ψδ
i (N,v,C ) = Shi(Ck,v

r(.|Sh)) =
Shk(M,vC )−v(Ck)

|Ck|
+Shi(Ck,v)

6



for any Ck ∈ C and for any i∈Ck.

4 Interpretations of the value and coalition structures

In this section, we consider an endogenous interpretation and an exogenous interpretation of coalition
structures and show that the collective value fits these interpretations.

4.1 A value onC -communication restricted situation

An exogenous interpretation of coalition structures is that they represent the some kinds of constraint on
communication among players (see Aumann and Dreze 1974). Myerson (1977) considers a situation that
a communication between players is restricted on an undirected graph ofN (such game is called a graph-
restricted game). Myerson (1980) considers more generalized situation that there is a sequence of confer-
ences in which players communicate with each other and this communication restriction is expressed as the
hyper-graph onN. Since Myerson’s works, there are various kinds of research on games with restriction
or constraint on communication among players (e.g., a permission structure by Gilles, Owen, and van den
Brink 1992; restricted coalitions by Derks and Peters 1993; a weighted hyper-graph by Amer and Carreras
1995, 1997; a probabilistic graph by Calvo, Lasaga, and van den Nouweland 1999; a partition system by
Bilbao 1998).

Along this line of research, Aumann and Dreze’s (1974) value, which is defined by ADi(N,v,C ) =
Sh(Ck,v) for all i ∈ Ck ∈ C , assumes a situation that a coalition structure describes a communication re-
striction such that players in the same coalition communicate with each other, but each coalition is phys-
ically separated. This situation is also described as the graph such that each maximal component of the
graph corresponds to a coalition in the coalition structure and each subgraph on the component is a com-
plete graph. Thus, Aumann and Dreze’s value coincides with the Myerson value for such a graph situation.
However, this interpretation of coalition structure does not fit the view that players form coalitions for the
division of v(N) since Aumann and Dreze’s value does not satisfy the efficiency but the relative efficiency
(∑i∈N AD i(N,v,C ) = ∑k∈M v(Ck)). This motivates another view of communication restriction by a coalition
structure below.

Given a coalition structureC onN, assume thatC represents the communication restricted situation as
follows:

(i) players in the same coalitionCk ∈ C can freely communicate with each other, and

(ii) players inCk can communicate with players in the other coalitions if there is a permission of all the
players inCk.

Condition (i) means that players in any sub coalitionS⊆ Ck ∈ C can communicate with each other
and thus obtain their worth of coalition,v(S). In addition to (i), (ii) implies that there is a possibility of
cooperation among players in the different coalitions. This is possible only if all the players in the relevant
coalitions agree. Leti ∈Ck andCh ∈ C ,Ch ̸= Ck. WhileCk andCh obtain their worthv(Ck∪Ch), Ck− i and
Ch obtain the sum ofv(Ck− i) andv(Ch) because there is no permission by playeri or there is no permission
of the party which the coalition represents and which requires the unanimous agreement.6

6Carreras (1992) refers the similar restriction of coalition as “voting discipline” in the context of simple games.
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Definition 2. Let (N,v,C ) ∈ Gc. C -communication restricted game(N,vC ) is defined as follows. For all
S⊆ N,

vC (S) = v(
∪

Ck∈C (S)

Ck)+ ∑
T∈C 0(S)

v(T)

whereC (S) = {Ck ∈ C : Ck ⊆ S} andC 0(S) = {Ck∩S : Ck∩S ̸= Ck,Ck ∈ C }.

Then,ψγ is interpreted as a value on theC -communication restricted game.

Theorem 2. Let (N,v,C ) ∈ Gc. For i ∈ N,

ψγ
i (N,v,C ) = Shi(N,vC ).

Proof. Take any orderθ ∈ Θ(N). Let θ [Ck] denote an order onCk induced fromθ such that for any
i, j ∈Ck, θ [Ck](i) < θ [Ck]( j) exactly if θ(i) < θ( j), and letθM denote an order onM induced fromθ such
that for anyk,h∈ M, θM(k) < θM(h) exactly if there is a playeri ∈Ch such thatθ( j) < θ(i) for all j ∈Ck.
According to marginal contributions inC -communication restricted gamevC at orderθ , i ∈ Ck obtains,
wheni is not the last in the orderθ [Ck],

v(Aθ [Ck]
i ∪ i)−v(Aθ [Ck]

i ),

and wheni is the last in the order, he obtains

[v(AθM
k ∪Ck)−v(AθM

k )]−v(Ck)+ [v(Ck)−v(Ck− i)].

Because in the situation that eachθ ∈ Θ(N) occurs in equal probability,θ [Ck] coincides with one order
on Ck in probability 1/|Θ(Ck)|, thus irrelevant to the selection of the order, and eachi ∈ Ck has a equal
probability to be the last, it suffices to show that∑i∈Ck

Shi(N,vC ) = Shw
k (M,vC ).

We denote by Prob(·) the probability that some phenomena happen in the situation that eachθ ∈ Θ(N)
occurs in equal probability 1/|Θ(N)|. We will show that for any given orderσ ∈ Θ(M), Prob(θM = σ) is
µw(σ) wherewk = |Ck| for eachk ∈ M. For simplifying explanation, letσ = (σ1, . . . ,σm) be (1, . . . ,m).
First, we consider the probability thatθM(m) coincides withσm = m, that is, Prob(θM(m) = m). Since this
probability is equal to the probability that some player inCm is the last position in orderθ , we obtain

Prob(θM(m) = m) =
|Cm|
|N|

=
wm

∑h∈M wh
.

Further, assume that Prob(θM(h) = h,h = k+1, . . . ,m) = Πm
h=k+1

wh

∑h
h′=1 wh′

. Then, given the condition that

θM(h) = h,h = k+1, . . . ,m, the conditional probability thatθM(k) coincides withk is

|Ck|
∑k

h′=1 |Ch′ |
=

wk

∑k
h′=1wh′

,

because this probability is equal to the probability that somei ∈Ck is the last player in the order that players
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in Ch,h = k+1, . . . ,m are extracted from. Thus,

Prob(θM(h) = h,h = k, . . . ,m) = Prob(θM(h) = h,h = k+1, . . . ,m)
×Prob(θM(k) = k | θM(h) = h,h = k+1, . . . ,m)

= Πm
h=k

wh

∑h
h′=1wh′

.

Therefore, repeating this, we obtain Prob(θM = σ) = Πm
h=1

wh

∑h
h′=1 wh′

= µw(σ).

Remark 3. ψδ is also considered as a value forC -communication restricted game(N,vC ). However, we
use the weighted Shapley value instead of the usual Shapley value. Given(N,v,C ) ∈ Gc, let w= (wi)i∈N

be such that wi = 1
|Ck| for i ∈Ck ∈ C . Then,

ψg(N,v,C ) = Shw(N,vC ).

See Kamijo (2007).

The communication situation considered in this sub section can be seen as a partition system of Bilbao
(1998). A pair(N,F ), whereF ⊆ 2N, is called a partition system if (P1) /0∈ F and for all i ∈ N,
{i} ∈ F , and (P2) for allS⊆ N, the maximal components ofSby F , which are defined by{T ⊂ S : T ∈
F and¬∃T ′ ∈ F such thatT ⊆ T ′ ⊆ S}, form a partition ofS (see definition 1 of his paper). Given a
coalition structureC , defineFC by

FC =
∪

Ck∈C

2Ck ∪{
∪
k∈L

Ck : L ⊆ M}.

Then,(N,FC ) becomes a partition system.
Given a partition system(N,F ), the restricted game(N,vF ) is defined by

vF (S) = ∑
T∈ΠS

v(T),

whereΠS is a partition ofSwhich the maximal feasible subsets ofSon F , are called components, form.
By the definition ofvC , we have the following proposition.

Proposition 1. (N,vC ) = (N,vFC
) holds.

Proof. For anyS⊆ N,
C (S)∪C 0(S)

is a partition ofSandC (S)∪C 0(S) = Π(S) holds. By the definitions ofvC andvFC
, vC = vFC

holds.

4.2 An endogenous interpretation of a coalition structure

Aumann and Dreze (1974) consider that one of the transparent explanations for the formation of coalition
structures from games themselves is by the lack of the superadditivity (see the discussion of their paper).
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However, from the viewpoint that players form coalition structures for the bargaining of division ofv(N),
we have to introduce another endogenous argument for the formation of coalition structures.

Let (N,v) ∈ G. A coalition S is called a partnership in(N,v) if for any T ( Sand for anyR⊆ N \S,
v(T ∪R) = v(R). Further,S is called a quasi-partnership in(N,v) if for any T ( Sand for anyR⊆ N \S,
v(T∪R) = v(T)+v(R). Thus, players in a quasi-partnership coalitionT seem to have some rationale to act
together.

Let (N,v) be a game andC be a coalition structure onN. Then,C is called aquasi-partnership
decompositionwith respect tov if everyCk ∈C is a quasi-partnership in(N,v). The next theorem indicates
thatψγ is consistent with this endogenous view of the coalition structure and the allocation of the Shapley
value.

Theorem 3. Let(N,v,C )∈Gc and w= (wk) such that wk = |Ck|. If C is a quasi-partnership decomposition
with respect to v, then

Sh(N,v) = ψγ(N,v,C ).

Proof. If (N,v) = (N,vC ), Theorem 2 implies that Sh(N,v) = Sh(N,vC ) = ψγ(N,v,C ). Thus, it suffices
to show(N,v) = (N,vC ). For anyS⊆ N,

vC (S) = v(
∪

Ck∈C (S)

Ck)+ ∑
T∈C 0(S)

v(T)

= v(S)

where the first equality is by the definition ofvC and the second is by the quasi-partnership ofCk ∈ C .

5 A potential function for games with coalition structures

Hart and Mas-Colell (1989) are the first to introduce a concept of a potential to cooperative game theory and
show that a potential for a game exists (with an additional condition of the normalization, it is unique) and
it derives the Shapley value. After Hart and Mas-Colell, the concept of potential was introduced to a non-
cooperative game by Monderer and Shapley (1996) and has been considered for a cooperative game with
several frameworks such as a game with a coalition structure by Winter (1992), a partition system by Bilbao
(1998), a finite type continuum by Calvo and Santos (1997). Calvo and Santos (1997) also characterized
the family of solutions which admitted a potential function.

Let P denote a real valued function onG which is normalized toP( /0,v) = 0. Given(N,v) ∈ G and
i ∈ N, define a marginal contribution of playeri relative toP by

DiP(N,v) = P(N,v)−P(N− i,v).

Thus, this marginal contribution is the difference of two situations measured byP which playeri is there
and he leaves. FunctionP is called apotentialfor games if it satisfies

v(N) = ∑
i∈N

DiP(N,v)
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for any(N,v)∈G. Thus, a potential function is such that the allocation of marginal contributions (according
to the potential function) always adds up exactly to the worth of the grand coalition. Hart and Mas-Colell
(1989) show (in theorem A, p591) that (i) potential functionP is uniquely determined, and (ii) the marginal
contribution vector relative to the potential coincides with the Shapley value payoff vector,i.e., DiP(N,v) =
Shi(N,v) for all i ∈ N.

They also consider a non-symmetric generalization of a potential approach. Letw= (wi)i be a collection
of the positive weights andPw denote a real-valued function onG with Pw( /0,v) = 0. FunctionPw is called
aw-weighted potentialif it satisfies

v(N) = ∑
i∈N

wiDiP(N,v)

for any(N,v) ∈ G. They show (in theorem 5.2, p603) that (i)w-weighted potential functionPw is uniquely
determined, and (ii) the marginal contribution relative to the potential multiplied by the corresponding
weight coincides with thew-weighted Shapley value,i.e., wiDiP(N,v) = Shw

i (N,v) for any i ∈ N.
According to Calvo and Santos (1997) and Bilbao (1998), a potential function for a game with a re-

stricted communication is Hart and Mas-Colell’s potential function (hereafter, the HM potential function.
Similarly we use the term, the HMw-weighted potential function.) for the corresponding game which is
appropriately defined to reflect the restriction on communication. Thus, the next theorem is an immediate
consequence of Theorem 2.

Theorem 4. Let P: G→ R denote the HM potential function. Then, given any(N,v,C ),

ψγ
i (N,v,C ) = DiP(N,vC ) = P(N,vC )−P(N− i,vC )

for any i∈ N.

Bilbao (1998) also shows (in theorem 2, p135) that given a partition system(N,F ), for S /∈ F ,

P(S,vF ) = ∑
T∈ΠS

P(T,vF ).

Hence, this result together with(N,vC ) = (N,vFC
) by Proposition 1 implies that fori ∈Ck ∈ C ,

DiP(N,vC ) = P(N,vC )−P(N\Ck,v
C )−P(Ck− i,vC ). (1)

The next proposition gives another formula ofP(N,vC ) which seems to describe the restriction of
communication byC well and which is specific expression of the potential for the particular subclass of
games with permission systems, which is different from the class Bilbao (1998) mainly considers.

Proposition 2. Let (N,v,C ) ∈ Gc and M= {k : Ck ∈ C }. Define a game(M,u) by

u(L) = v(
∪
k∈L

Ck)− ∑
k∈L

v(Ck)+ ∑
k∈L

|Ck|P(Ck,v)

for each L⊆ M. Then,
P(N,vC ) = Pw(M,u),

where Pw is the HM w-weighted potential function and w= (wk)k∈M is such that wk = |Ck| for any k∈ M.
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Proof. Let (N,v,C ) ∈ Gc be given. PutM = {k : Ck ∈ C }. The proof proceeds by the way of mathematical
induction of the number of|M|. For anyCk ∈ C ,

P(Ck,v
C ) = P(Ck,v) =

1
|Ck|

u({k}) = Pw({k},u),

where the first equality is by(Ck,vC ) = (Ck,v), the second is by the definition ofu, and the last is by the
definition of the HMw-weighted potential function andwk = |Ck|.

Assume that for anyL ( M andN′ =
∪

k∈LCk, (N′,vC ) = Pw(L,u) holds. We consider the case for
(N,vC ). By the definition of the potential function,

v(
∪

k∈M

Ck) = v(N)

= ∑
i∈N

DiP(N,vC )

= ∑
k∈M

∑
i∈Ck

(
P(N,vC )−P(N\Ck,v

C )−P(Ck− i,vC )
)

= ∑
k∈M

|Ck|
(

P(N,vC )−P(N\Ck,v
C )

)
− ∑

k∈M

|Ck|P(Ck,v
C )+ ∑

k∈M
∑
i∈Ck

(P(Ck,v
C )−P(Ck− i,vC ))

= ∑
k∈M

|Ck|
(

P(N,vC )−P(N\Ck,v
C )

)
− ∑

k∈M

|Ck|P(Ck,v
C )+ ∑

k∈M
∑
i∈Ck

Shi(Ck,v
C )

= ∑
k∈M

|Ck|
(

P(N,vC )−P(N\Ck,v
C )

)
− ∑

k∈M

|Ck|P(Ck,v)+ ∑
k∈M

v(Ck),

where the third equality is by Equation (1), the second last equality is by the result of the HM potential
function, and the last is by the efficiency of the Shapley value and(Ck,vC ) = (Ck,v). Hence we obtain

∑
k∈M

|Ck|
(

P(N,vC )−P(N\Ck,v
C )

)
= v(

∪
k∈M

Ck)+ ∑
k∈M

|Ck|P(Ck,v)− ∑
k∈M

v(Ck),

By the assumption of the induction and the definition ofu, this is equivalent to

∑
k∈M

wk

(
P(N,vC )−Pw(M \{k},u)

)
= u(M),

wherewk = |Ck| for anyk∈ M. Therefore the uniqueness of the weighted potential impliesP(N,vC ) must
bePw(M,u).
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6 Axiomatic characterizations

6.1 Collective balanced contributions

The balanced contributions property for the Shapley value was first considered by Myerson (1980). It
means that any two players’ marginal contributions to the other measured by the Shapley value balance.
In other words, the Shapley value satisfies, given two playersi ∈ N and j ∈ N, Shi(N,v)−Shi(N− j,v) =
Shj(N,v)−Shj(N− i,v). Myerson (1980) showed that the efficiency and this property characterize the
Shapley value.

Extensions of the balanced contributions to a game with a coalition structure is considered by Calvo,
Lasaga, and Winter (1996). They introduce two counterparts of the balanced contributions to that case and
show that a unique efficient solution onGc satisfying these two properties is the Owen’s coalitional value.
These two are:

Individual Balanced Contributions: For i ∈Ck and j ∈Ck, Ck ∈ C ,

ψi(N,v,C )−ψi(N− j,v,C − j) = ψ j(N,v)−ψ j(N− i,v,C − i)

whereC − i = C \{Ck}∪{Ck− i}.

Coalitional Balanced Contributions: ForCk ∈ C and forCh ∈ C ,

∑
i∈Ck

(ψi(N,v,C )−ψi(N\Ch,v,C \{Ch})) = ∑
i∈Ch

(ψi(N,v,C )−ψi(N\Ck,v,C \{Ck})) .

However, we introduce different extensions of the balanced contributions for games with coalition
structures. One is just the same requirement as the condition for the Shapley value, and the other is easily
interpreted.

Balanced Contributions: For i ∈ N and j ∈ N,

ψi(N,v,{N})−ψi(N− j,v,{N− j}) = ψ j(N,v,{N})−ψ j(N− i,v,{N− i}).

Collective Balanced Contributions: If |C | = 2, for everyi ∈Ck ∈ C and for everyj ∈Ch ∈ C , Ck ̸= Ch,

ψi(N,v,C )−ψi(N\Ch,v,C \{Ch}) = ψ j(N,v,C )−ψ j(N\Ck,v,C \{Ck}).

Since(N,v,{N}) is looked as the same situation as(N,v),7 Balanced Contributions is the same con-
dition as the one which the Shapley value satisfies, and thus we use the same name. Collective Balanced
Contributions requires that ‘my group’s contribution for your payoff measured by the solution balances
with your group’s contribution for my payoff measured by the solution.’

On the relationship between our axioms and ones of Calvo, Lasaga, and Winter (1996), Individual
Balanced Contributions implies Balanced Contributions. Collective Balanced Contributions induces Coali-
tional Balanced Contributions only if|Ck| = |Ch|. However, in general, there is no general relationship

7In fact, all the values for games with coalition structures considered in this paper, AD, CV,ψδ , andψγ , for (N,v,{N})
coincide with the Shapley value for(N,v).
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between Collective Balanced Contributions and Coalitional Balanced Contributions. The next proposition
shows thatψγ satisfies Balanced Contributions and Collective Balanced Contributions instead of Individual
Balanced Contributions and Coalitional Balanced Contributions.

Proposition 3. ψγ satisfies Balanced Contributions and Collective Balanced Contributions.

Proof. First consider the case of|C | = 1. By definition ofψγ , ψγ(N,v,{N}) = Sh(N,v) holds. We obtain
the desired result because of the result of Myerson (1980).

Next we consider the case of|C |= 2. Note that by the definition ofC -communication restricted game,
(N \Ck,vC ) which is a subgame of(N,vC ) on N \Ck, coincides with(N \Ck,vC \{Ck}) which isC \ {Ck}-
restricted game for game(N\{Ck},v,C \{Ck}). By Theorem 2, the property of the HM potential function
and Equation (1)

ψγ
i (N,v,C )−ψγ

i (N\Ch,v,C \{Ch})
= Shi(N,vC )−Shi(N\Ch,v

C )

= P(N,C )−P(N\Ck,v
C )−P(Ck− i,vC )

−
(

P(N\Ch,v
C )−P(N\ (Ck∪Ch),vC )−P(Ck− i,vC )

)
= P(N,vC )−P(N\Ck,v

C )−
(

P(N\Ch,v
C )−P(N\ (Ck∪Ch),vC )

)
= P(N,vC )−P(N\Ch,v

C )−
(

P(N\Ck,v
C )−P(N\ (Ck∪Ch),vC )

)
= P(N,vC )−P(N\Ch,v

C )−P(Ch− j,vC )

−
(

P(N\Ck,v
C )−P(N\ (Ck∪Ch),vC )−P(Ch− j,vC )

)
= Shj(N,vC )−Shj(N\Ck,v

C )
= ψγ

j (N,v,C )−ψγ
j (N\Ck,v,C \{Ck}).

This proposition means that, by the definition ofψγ , for everyCk ∈ C and for everyCh ∈ C ,

Shw
k (M,vC )−Shw

k (M \{h},vC )
|Ck|

=
Shw

h (M,vC )−Shw
h (M \{k},vC )

|Ch|
.

This is the special case of the properties of thew-weighted Shapley value: For(N,v) ∈ G, its weight
(wi)i∈N, and for everyi, j ∈ N,8

Shw
i (N,v)−Shw

i (N\{ j},v)
wi

=
Shw

j (N,v)−Shw
j (N\{i},v)

w j
.

Next theorem shows that Balanced Contributions and Collective Balanced Contributions are almost
sufficient to characterizeψγ .

8This property is pointed out in Hart and Mas-Colell (1989) and Amer and Carreras (1997).
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Theorem 5. ψγ is a unique efficient solution satisfying the following two properties:

(i) Balanced Contributions.
(ii) Collective Balanced Contributions.

Proof. We have known thatψγ satisfies the efficiency, Balanced Contributions and Collective Balanced
Contributions. Hence we will show the converse.

Let ψ be an efficient solution satisfying these two axioms. Fix(N,v,C )∈Gc. We first show thatψ coin-
cides with the Shapley value when|C |= 1 orn. When|C |= n, Collective Balanced Contributions coincides
with the balanced contributions. Because of the result of Myerson (1980),ψ(N,v, [N]) = Sh(N,v). More-
over, by Balanced Contributions, the same argument means thatψ(N,v,{N}) = ψ(N,v, [N]) = Sh(N,v).

Next we show the following claims.

Claim 1: For allCk ∈ C ,

∑
i∈Ck

ψi(N,v,C ) = |Ck|DkP
w(M,vC ) (2)

wherePw is the HMw-weighted potential function with weight vectorw = (wk)k∈M such thatwk = |Ck| for
eachk∈ M.

Let (Ck,v,{Ck}) be a subgame of(N,v,C ) to coalitionCk. Then the left hand side of (2) is

∑
i∈Ck

ψi(Ck,v,{Ck}) = v(Ck)

by the efficiency ofψ. The right hand side of (2) is

|Ck|DkP
w({k},vC ) = |Ck|

v(Ck)
|Ck|

= v(Ck).

Thus, condition (2) holds true for any subgame(Ck,v,{Ck}) of (N,v,C ).
We assume that (2) is satisfied for any(N′,v,C ′) such thatL ( M, N′ = ∪k∈LCk andC ′ = {Ck : k∈ L}.

We now show that it holds true for(N,v,C ).
Condition (2) is equivalent to

∑
i∈Ck

ψi(N,v,C ) = |Ck|(Pw(M,vC )−Pw(M \{k},vC )).

Then we obtain

Pw(M,vC ) =
∑i∈Ck

ψi(N,v,C )
|Ck|

+Pw(M \{k},vC ).

We show that
∑i∈Ck

ψi(N,v,C )
|Ck| +Pw(M \{k},vC ) is constant for everyk ∈ M. Take anyCk ∈ C andCh ∈

C ,Ck ̸= Ch. Then,

∑i∈Ck
ψi(N,v,C )
|Ck|

+Pw(M \{k},vC )−
(

∑ j∈Ch
ψ j(N,v,C )
|Ch|

+Pw(M \{h},vC )
)
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equals
∑i∈Ck

ψi(N,v,C )
|Ck|

−
∑ j∈Ch

ψ j(N,v,C )
|Ch|

+
(

Pw(M \{k},vC )−Pw(M \{h},vC )
)
. (3)

The bracketed terms in (3) equals

Pw(M \{k},vC )−Pw(M \{k,h},vC )−
(
Pw(M \{h},vC )−Pw(M \{k,h},vC )

)
.

By the definition of operatorD and the assumption,

=DhPw(M \{k},vC )−DkP
w(M \{h},vC )

=
∑ j∈Ch

ψ j(N\Ck,v,C \{Ck})
|Ch|

− ∑i∈Ck
ψi(N\{Ch},v,C \{Ch})

|Ck|
.

Substitute the above for the bracketed terms in (3), and we obtain

∑i∈Ck
ψi(N,v,C )
|Ck|

−
∑ j∈Ch

ψ j(N,v,C )
|Ch|

+
∑ j∈Ch

ψ j(N\Ck,v,C \{Ck})
|Ch|

− ∑i∈Ck
ψi(N\{Ch},v,C \{Ch})

|Ck|
.

Note that by Collective Balanced Contributions,ψi(N,v,C )−ψi(N \ {Ch},v,C \ {Ch}) = ψ j(N,v,C )−
ψ j(N \{Ck},v,C \{Ck}) is constant for everyi ∈Ck and for everyj ∈Ch. Hence the above expression is
zero and thus, (3) equals zero.

Therefore for some real numberK,

∑i∈Ck
ψi(N,v,C )
|Ck|

+Pw(M \{k},vC ) = K

holds true for anyk∈ M.
Then by efficiency ofψ, we obtain that

vC (M) = v(N) = ∑
k∈M

∑
i∈Ck

ψi(N,v,C ) = ∑
k∈M

|Ck|(K −Pw(M \{k},vC ))

ThereforeK is exactly the HM weighted potential functionPw(M,vC ) because of its uniqueness.

Next we show the following claim.

Claim 2: ψi(N,v,C ) = C̄+ψi(Ck,v,{Ck}) for everyi ∈Ck whereC̄ is a constant real number.

We prove Claim 2 by the induction on the cardinality ofC . When|C | = 1, this is obvious because we
simply putC̄ = 0.

Assume that the claim holds true when the number of elements inC is less thanm(m= 2). For(N,v,C )
such that|C | = m, by Collective Balanced Contributions, givenCh ∈ C , we have

ψi(N,v,C )−ψi(N\Ch,v,C \{Ch}) = C̄1 for everyi ∈Ck,Ck ̸= Ch
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By the assumption of the induction, the left hand side of the above equation is

ψi(N,v,C )− (C̄2 +ψi(Ck,v,{Ck})),

whereC̄2 is constant for alli ∈Ck. Therefore we obtain

ψi(N,v,C ) = C̄1 +C̄2 +ψi(Ck,v{Ck}) = C̄+ψi(Ck,v,{Ck}).

This is the desired result.

By Claim 1, we know that the summation ofψi(N,v,C ) over i ∈ Ck is exactly|Ck|DkPw(M,vC ) =
Shw

k (M,vC ). Then we conclude that

C̄ =
Shw

k (M,vC )−∑i∈Ck
ψi(Ck,v,{Ck})

|Ck|
=

Shw
k (M,vC )−v(Ck)

|Ck|

by efficiency ofψ. Therefore ifψi(Ck,v,{Ck}) is uniquely determined,ψ(N,v,C ) is also determined.
However when|C | = 1, we have shown thatψ equals the Shapley value Sh. Hence we obtain

ψi(N,v,C ) =
Shw

k (M,vC )−v(Ck)
|Ck|

+Shi(Ck,v).

As in the proof of Theorem 5, Balanced Contributions is necessary only to prove that ifC = {N}, the
solution coincides with the Shapley value for(N,v). Thus the following corollaries also hold.

Corollary 1. ψγ is a unique efficient solution satisfying the following two properties:

(i) ψ(N,v,{N}) = Sh(N,v) for all (N,v) ∈ Γ.
(ii) Collective Balanced Contributions.

Corollary 2. ψγ is a unique efficient solution satisfying the following two properties:

(i) Coincidence between the Grand and the Singleton Coalition Structure: For all(N,v)∈Γ, ψ(N,v,{N})=
ψ(N,v, [N]),
(ii) Collective Balanced Contributions.

6.2 Additivity

In this subsection, we provide an axiomatization ofψγ through the additivity axiom. Letψ be a solution
onGc. Let (N,v,C ),(N,v′,C ) ∈ Gc.

Theorem 6. ψγ is a unique efficient solution onGc satisfying the following four axioms.

(i) Additivity: ψ(N,v,C )+ψ(N,v′,C ) = ψ(N,v+v′,C ), where(v+v′)(S) = v(S)+v′(S) for all S⊆ N.

(ii) Equal Power of Partnership Members: If T⊆N is a partnership in(N,v) and M′ = {k∈M : Ck∩T ̸= /0}
is also a partnership in(M,vC ), thenψi(N,v,C ) = ψ j(N,v,C ) for any i, j ∈ T.
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(iii) Strong Restricted Equal Treatment Property: If i∈ Ck and j ∈ Ck are symmetric in(Ck,v), then
ψi(N,v,C ) = ψ j(N,v,C ).

(iv) Coalition Structure-Null Player: If Ck is a dummy coalition (i.e., k is a dummy player in(M,vC )) and
i ∈Ck is a null player in(N,v), thenψi(N,v,C ) = 0. .

Equal Power of Partnership Members says that all the members of partnershipT obtain the equal payoff
if its projection onM is also a partnership in(M,vC ). TheextendedShapley value defined bySh(N,v,C ) =
Sh(N,v) satisfies Equal Power of Partnership Members because all the players inT are symmetric in(N,v)
and the Shapley value assigns equal payoff to symmetric players.

Strong Restricted Equal Treatment and Coalition Structure-Null Player are the axioms introduced in
Kamijo (2007) to characterizeψδ (see Remark 2 of this paper). Strong Restricted Equal Treatment is
stronger than the restricted equal treatment property which both the extended Shapley value and the Owen’s
coalitional value satisfy. Coalition Structure-Null Player is weaker than the usual null player axiom. Thus
the extended Shapley value satisfies the all the properties except for Strong Restricted Equal Treatment and
the Owen’s coalitional value does not satisfies Equal Power of Partnership Members and Strong Restricted
Equal Treatment.

The next lemma is from Kalai and Samet (1987).

Lemma 1. Let w∈ RN
++ be a weight vector of N. If T is a partnership in(N,v), thenShw

i (N,v)/wi =
Shw

j (N,v)/w j for all i , j ∈ T.

Proof. See the proof of Theorem 2 of Kalai and Samet (1987).

Lemma 2. Let φ be a solution onG such that it satisfies the symmetry and the null player axioms. Letψ
be a two step solution onGc defined by

ψi(N,v,C ) =
Shw

k (M,vC )−v(Ck)
|Ck|

+φi(Ck,v).

for all (N,v,C ) ∈ Gc and for all i∈Ck ∈ C , where w= (wk)k∈M is such that wk = |Ck| for all k ∈ M. Then,
ψ satisfies Equal Power of Partnership Members.

Proof. Let T ⊆N be a partnership in(N,v) andM′ = {k∈M : Ck∩T ̸= /0} be also a partnership in(M,vC ).
Suppose|M′| = 2. Let k ∈ M′. SinceT is a partnership in(N,v), v(S∪C) = v(S) for anyS⊆ Ck \T and
C ⊆ T ∩Ck ( T. Thus, for anyS⊆ Ck, v(S) = v(S∩ (Ck \T)) and thus, anyi ∈ T ∩Ck is a null player
in subgame(Ck,v). Soϕi(Ck,v) = 0 for any i ∈ T ∩Ck sinceϕ satisfies the null player axiom. Because

wk = |Ck| for anyk∈ M, Shw
k (M,vC )
|Ck| = Shw

h (M,vC )
|Ch| for anyk,h∈ M′ by Lemma 1. By the partnership ofM′ in

(M,vC ), vC ({k}) = v(Ck) = 0 for eachk∈ M′. Thusψi(N,v,C ) = ψ j(N,v,C ) holds for anyi, j ∈ T.
Suppose|M′| = 1 and letk ∈ M′. SinceT ⊆ Ck is a partnership in(N,v), all the players inT are

symmetric in(N,v) and, of course, they are symmetric in(Ck,v). Thus Shi(Ck,v) is constant overi ∈ T.
Henceψ satisfies Equal Power of Partnership Members.

Proof of Theorem 6.From Lemma 2, we have known thatψγ satisfies Equal Power of Partnership Member
since the Shapley value satisfies the symmetry and the null player axioms. Furthermore, it is obvious that
it satisfies axioms (i) to (iii) by its definition.

18



Next we show the converse part. Letψ be an efficient solution onGc which satisfies axioms (i) to
(iv). Let (N,v,C ) ∈ Gc. Sinceψ satisfies Additivity, it is sufficient to show thatψ(N,cuT ,C ) is uniquely
determined for anyT ⊆ N, wherec∈ R andcuT is a scalar multiple ofuT by c. Let D = {k∈ M : Ck∩T ̸=
/0}. SinceCk ∈ C , k /∈ D, is a dummy coalition andi ∈Ck is a null player,ψi(N,cuT ,C ) = 0 by Coalition
Structure-Null Player. Thus, efficiency means that∑k∈D ∑i∈Ck

ψi(N,cuT ,C ) = c.
ClearlyT is a partnership in(N,cuT) andD is also a partnership in(M,(uT)C ). Thereforeψi(N,cuT ,C )=

ψ j(N,cuT ,C ) for all i, j ∈ T by Equal Power of Partnership Members.
Case a:|D|= 1. Letk∈D. SinceCk is a dummy coalition andi ∈Ck\T is a null player,ψi(N,cuT ,C )=

0 by Coalition Structure-Null Player. Thus,ψi(N,cuT ,C ) = c
|T| .

Case b: |D| = 2. For eachCk ∈ C , k ∈ D, i ∈ Ck and j ∈ Ck are symmetric in(Ck,v). Therefore
ψi(N,cuT ,C ) = ψ j(N,cuT ,C ) by Strong Restricted Equal Treatment Property. Moreoverψi(NcuT ,C ) =
ψ j(N,cuT ,C ) for i ∈ T ∩Ck and for j ∈ T ∩Ch. As a result, for anyi ∈ ∪k∈DCk, ψi(N,cuT ,C ) = c

∑h∈D |Ch| .

Remark 4. The efficiency of a solution is derived from the four axioms in Theorem 6. In fact, consider
a solutionψ satisfying these four. The main logic is similar to Theorem 8.1.3 of Peleg and Sudhölter
(2003). Let(N,v0) be zero-game such that v0(S) = 0 for any S⊆ N andC be a coalition structure on
N. Then,ψ(N,v0,C ) must be0N ∈ RN by Coalition Structure-Null Player. Let(N,v,C ) ∈ Gc. By Addi-
tivity, ψ(N,v,C )+ψ(N,−v,C ) = ψ(N,v−v,C ) = ψ(N,v0,C ) = 0N and thus,ψ(N,v,C ) =−ψ(N,−v,C )
holds. Since the payoff proposed by a solution must be feasible,∑i∈N ψi(N,v,C )5 v(N) and∑i∈N ψi(N,v,C )=
−∑i∈N ψi(N,−v,C ) = −(−v(N)). Thus,∑i∈N ψi(N,v,C ) = v(N) holds.

Example 1. The following solutions show the independence of each axiom from the others (except the
efficiency) in Theorem 6. Let(N,v,C ) ∈ Gc.

(i) Consider a solutionψn defined by

Shw
k (M,vC )−v(Ck)

|Ck|
+Nun

i (Ck,v)

where w∈RM
++ is such that wk = |Ck| andNun is the nucleolus introduced by Schmeidler (1969). Since

ϕn satisfies the symmetry and the null player axioms,ψn satisfies Equal Power of Partnership Member
by Lemma 2. Thus,ψn satisfies Strong Restricted Equal Treatment, Equal Power of Partnership
Members and Coalition Structure-Null Player sinceNu satisfies the symmetry and the null player
axioms, but the additivity sinceϕn does not satisfy the additivity.

(ii) The extended Shapley value satisfies all the axioms except for Strong Restricted Equal Treatment.

(iii) ψδ is characterized by Additivity, Strong Restricted Equal Treatment, Coalition Structure-Null Player
and Coalitional Symmetry which is defined by, if k∈ M and h∈ M are symmetric in(M,vC ), then
∑i∈Ck

ψi(N,v,C ) = ∑i∈Ch
ψi(N,v,C ). Sinceψδ and ψγ are the different solutions, Equal Power of

Partnership Members is independent of the other axioms.

(iv) The egalitarian solution defined byψe
i (N,v,C ) = v(N)

|N| for all i ∈ N satisfies all the axioms except for
Coalition Structure-Null Player.
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7 Concluding remarks

Recently, Vidal-Puga (2005) considered another value on games with coalition structures from a viewpoint
of non-cooperative bargaining among the players. This solution also satisfies the condition that the sum of
the payoffs of the players inCk coincides with the weighted Shapley value of playerk for the external game
with coalition-size weights. Vidal-Puga (2005) states that a generation of coalition size weights is due to
“right to talk” of players. In contrast, in this paper, we show that the generation of coalition size weights is
due to communication restriction by coalitions.

Finally, our solution can be extended to games with levels structures introduced by Winter (1989).
Levels structure onN is a finite sequence of coalition structures,C 0, . . . ,C l with C 0 = [N] andC l = {N}
such that ifk < h, C k is a finer coalition structure thanC h. Consider the levels structure for six person
game described by Table 1. Then, the payoff for player 1 is calculated as the following way.

level coalition structure
3 C 3 {{1,2,3,4,5,6}}
2 C 2 {{1,2,3},{4,5},{6}}
1 C 1 {{1,2},{3},{4},{5},{6}}
0 C 0 {{1},{2},{3},{4},{5},{6}}

Table 1: Levels structure onN = {1,2,3,4,5,6}

First, in levelC 2, coalitions{1,2,3}, {4,5} and{6} bargain for the division ofv(N). As a result,
coalition{1,2,3} obtains Shw1 (M2

1,vC 2) whereM2
1 = {1,2,3} andw1 = 3, w2 = 2 andw3 = 1. Then, player

1 receives his dividend for this bargaining surplus, that is,
Shw

1 (M2
1 ,vC 2)−v({1,2,3})
|{1,2,3}| . Next, in levelC 1, coalitions

{1,2} and{3} bargain for the division ofv({1,2,3}) and{1,2} obtains Shw1 (M1
1,vC 1) whereM1

1 = {1,2}
andw1 = 2 andw2 = 1. Player 1 receives

Shw
1 (M1

1 ,vC 1)−v({1,2})
|{1,2}| . Finally, in levelC 0, players 1 and 2 bargain

for the division ofv({1,2}) and player 1 obtains Sh1({1,2},v). Therefore, the payoff for player 1 is

Shw
1 (M2

1,vC 2)−v({1,2,3})
|{1,2,3}|

+
Shw

1 (M1
1,vC 1)−v({1,2})
|{1,2}|

+Sh1({1,2},v).

Generally, let(N,v,L ) be a game with levels structure where(N,v) ∈ G andL = {C 0, . . . ,C l} is
a levels structure onN. For eachk = 0, . . . , l , let C k = {Ck

1, . . . ,C
k
mk
} andMk = {1, . . . ,mk}. For given

i ∈ N, let i(k) denote a coalitional index of coalition of levelk which playeri belongs to,i.e., Ck
i(k) ∈ C k and

i ∈ Ck
i(k). Further, putMk

i = {h∈ Mk : Ck
h ⊆ Ck+1

i(k+1)} andwk
h = |Ck

h| for all h∈ Mk
i . Of course,i(k) ∈ Mk

i .

Let (Mk
i ,vC k) be a subgame of(Mk,vC k) onMk

i .
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Definition 3. A valueψγ for (N,v,L ) is defined by

ψγ
i (N,v,L ) =

l−1

∑
k=0

Shwk

i(k)(M
k
i ,vC k)−v(Ck

i(k))

|Ck
i(k)|

+v({i})

=
l−1

∑
k=1

Shwk

i(k)(M
k
i ,vC k)−v(Ck

i(k))

|Ck
i(k)|

+Shi(C1
i(1),v)

for all i ∈ N.
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