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Abstract

In this paper, we provide a new solution in a cooperative game with a coalition structure. The
collective value of a player is defined as the summation of equal division of pure surplus which his
coalition obtained from the coalitional bargaining and his Shapley value for the internal coalition. The
weighted Shapley value applied for a game played by coalitions with coalition-size weights, is assigned
to each coalition, reflecting the size-asymmetries among coalitions. On the surface, this solution appears
to lie in the very different line from existing studies, but we show that the collective values matches
endogenous and exogenous interpretations of coalition structures. In addition to the potential function
which derives the solution, two axiomatic characterizations of the collective value are also presented.
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1 Introduction

This paper studies a distribution rule of a cooperative surplus among players when they already partition
themselves into ‘coalitions’ before realizing cooperation. A distribution rule, a solution concept in a frame-
work of a cooperative game with a coalition structure, considered in this paper departs from the existing
solution concepts in two major directions. One is to take into account the mutual-aid tendency of groups
or generous reallocation among members in the internal coopetafitiis point is expressed through a
two-step approach introduced by Kamijo (2007). The other is to treat the asymmetric sizes of coalitions as
a factor affecting the bargaining outcome. From the theoretical point of view, Kalai (1977) and Thomson
(1986) show that in the context of bargaining problems, purely replications of players generate the size-
dependent asymmetric weights of the Nash solution. On the other hand, from an empirical point of view,
Metcalf, Wadsworth, and Ingram (1993) reported that in the observations of British manufacturing industry,
strike incidence rose with the size of bargaining group, and it is known that the strike activity affects the
bargaining outcome between employers and emplofees.

The Aumann and Dreze’s (1974) value and the Owen’s (1977) coalitional value, two traditional solution

concepts in cooperative games with coalition structures and each of which is an extension of the Shapley
value to a cooperative game with a coalition structure, do not satisfy both requirements mentioned above.
On the one hand, both solutions give nothing to a player with no effective contribution whatever cooperation
relationship he belongs to. Thus, according to these solution concepts, it does not happen that such player
receives some portion of the cooperation surplus from his coalition due to a strong position of his coalition,
thus these solutions not having an essence of mutual assistance within the internal members. On the other
hand, these solutions treat two distinct coalitions equally even if these are different in their sizes. As pointed
out by Hart and Kurz (1983) and Winter (1992), a solution concept of a cooperative game with a coalition
structure assumes the two levels interaction among playersinteractions inter- and intra- coalitions.
In fact, the Owen’s coalitional value satisfies the condition that the sum of the coalitional values of the
players in a coalition coincides with the Shapley value of the coalition obtained from the game which is
played by inter-coalitions. Thus, the coalitional value well describes a two levels interaction but not reflects
an asymmetry in the interaction among coalitions pointed out by Kalai and Samet (1987) and Levy and
McLean (1989), caused by the sizes of the coalitions.

The definition of our new solution concept, namedadlective valueis established relying on a two-
step bargaining process among players, a bargaining inter-coalitions in the first step and a bargaining intra-
coalition in the second, and generous reallocation tendency among the internal members. In the first step,
each coalition obtains itweightedShapley value applied for a game among coalitions. The pure surplus
of a coalition in the first step bargaining (its weighted Shapley value obtained from the first step minus
the worth of the coalition) is divided equally among players in the coalition. In the second step, players
in the coalition receive their Shapley value applied for their own internal game. Thus, the collective value
gives the sum of the payoffs in the first step and the second to each player. This definition means that

1Such tendency of groups is examined and explained in various contexts. Kropotkin (1972) explains this from a human
evolution in the struggle for life. In a context of rent-seeking problem among two groups, Noh (1999) demonstrates that the group
members can agree with egalitarian-like sharing rule among them to resolve a free rider problem in the group. Researchers in
community psychology argue that recent development of a number of mutual assistance organizations is due to divergent stressful
situations around ourselves (Levine 1988). Further, in the study of labor-management, reasons for and usefulness of profit sharing
among employer and employees are examined (FitzRoy and Kraft 1986, 1987; Drago and Turnbull 1988; Kandel and Lazear
1992).

20ne reason is that most union power is partly derived from the threat of the strike (Ashenfelter and Johnson 1969).



the collective value is involved with the egalitarian solution as well as the Shapley value: the egalitarian
solution is used for the bargaining surplus of a coalition and the Shapley value for the worth of the coalition.

On the surface, our solution concept appears to lie in the very different line of research from exist-
ing studies. However, the collective value matches endogenous and exogenous interpretations of coalition
structures. Aumann and Dreze (1974) consider that the existing coalition structure arises frem the
dogenoudormation of coalitions, given the game itself. They consider that lack of the superadditivity of
the game leads to the formation of coalition structures. Here, we provide a different conditjoasia
partnership decompositignvhich is also considered as a reason of forming coalition structures and show
that the collective value is consistent with this this condition. Furthermore, in the line of Myerson (1977,
1980), a coalition structure can be consideredxagyenouslgiven communication restriction among play-
ers. We introduce a new interpretation of the coalition structure as restriction of communication among
players and show that the collective value coincides with the Shapley value applied for the game appropri-
ately derived from the original game. Thus, the collective value is consistent with these interpretations of
coalition structures.

Further, with the aid of research by Calvo and Santos (1997) and Bilbao (1998) on potential theory in
cooperative games with communication restriction, we obtain a potential function for games with coalition
structures, which is quite different from the one of Winter (1992). The collective value is expressed as
the marginal contribution relative to this potential function. The potential function behind the solution
concept inspires one of its properties similar to the balanced contributions of the Shapley value. We show
that this property, called aollective balanced contributionsvith some moderate additional conditions
characterizes our solution. An axiomatization by &aglitivity axiom is also presented.

The rest of this paper is organized as follows. In the next section we give the basic notations and
definitions used in this paper. The exact definition of a new solution concept is provided in Section 3. In
Section 4, other expressions and interpretations of the solution are explained. In Section 5, we show that
the collective value admits a potential function. Axiomatic characterizations of this solution are given in
Section 6. Section 7 gives concluding remarks.

2 Preliminary

A cooperative gamer a simplygameis a pair(N,v) whereN = {1,...,n} is a finite set of players and
v: 2N — R is a characteristic function wit(®) = 0. A subsesSof N is called acoalition andv(S) is the
worth of coalition S The set of all the games is denoted ®y We use the short-cut notations $f- i
andSUi instead ofS\ {i} andSu i} for convenience. GivefN,v) € G and a coalitiors, we denote the
subgame ofN, V) to Shy (S v) if there is no risk of confusion.

A game(N, V) is superadditive if for any two coalitiorandT with SNT =0, v(SUT) = v(S) +Vv(T).

A game(N, V) is zero-monotonic if for any playernd for any coalitiorS8C N —i, v(SUi) = v(S) +V({i}).
A superadditive game is, of course, zero-monotonic but the inverse is not true.

Playeri € N is anull playerif v(SUi) = v(S) for any SC N —i and adummy playeiif v(SUi) =
v(S) +v({i}) foranySC N —i. Clearly a null player is also dummy but the converse does not hold. It is
said that € N and j € N aresymmetridn (N,v) if v(SUi) =v(SuU j) foranySC N\ {i, j} andi € N and
j € are symmetric ir{T,v), T C N, if v(SUi) =v(SU j) foranySC T\ {i, j}.

Assuming that the grand coalitidw will be formed, the question arises how to divide the watN)
among the players. Thus, a solution of a game is a fun@ti@rhich assigns to every ganidl,v) € G a



payoff vectorg(N,v) = (@ (N,V))ien € RN that satisfies ey @(N,v) < v(N). If @ always distributes just
v(N) to the players, it is called an efficient solution.

A well-known solution was provided by Shapley (1953b). BeN — N denote a permutation dwiand
©(N) denote a set of all the permutationsenA permutationd is identified as an ordéiy,...,in) onN if
6(j) = kimpliesix = j, andvice versaA set of players preceding tat order6 is A,-e ={jeN:0(j) <
6(i)}. A marginal contribution of playeirat order in (N,v) is defined bym® (N, v) = v(A? Ui) — v(A?).
The Shapley value Sh @N,v) is defined as follows:

Sh(N,v) = mP(N,v), forallieN,

1
[O(N)| o510
where|- | represents the cardinality of the set. Thus, the Shapley value is an average of marginal contribution
vectors where each ord@re ©(N) occurs in an equal probability, that is/|®(N)|.

The Shapley value is characterized by the four properties: (i) efficiency, (ii) additivity, (iii) symmetry
and (iv) null player. Letp be a solution orG. The efficiency requires that the solution distributes the
worth of the grand coalition to the players. The additivity is that for any two gaiNeg) and (N,V'),
@(N,v+V) = @(N,v) + @(V) holds where the additive game- V' is defined by(v+V)(S) = v(S) + V(9
for anySC N. The symmetry means that two symmetric player§Nnv) receive the equal payoffs, thus,
@(N,v) = ¢(N,v) holds whenever and j are symmetric ir{N,v). The null players axiom is that the null
player always obtains nothing.

In various applications of cooperative games, it seems to be natural that players partitions themselves
into some ‘coalitions’ such as labor union, syndicate of firms, customs unions in international economics,
and so on. Such coalitions form a coalition structdtre- {Cy,...,Cn}, which is partition oiN, i.e., it holds
thatC,NCp, = 0 for anyk and anyh with k = hand(J" ; Cx = N. Such a situation, called a cooperative game
with a coalition structure, is first considered by Aumann and Dreze (1974) and developed by a number of
authors. A counterpart of the Shapley value for such games was defined by Owen (1977) and given the
axiomatic foundation from the viewpoint of coalition formation by Hart and Kurz (1983).

A game with a coalition structures a triple(N,v, %) where(N,v) is a game an&” = {Cy,...,Cn} is
a coalition structure. We usually use notatdn= {1,...,m} to denote the set of coalitional indicesd#h
The set of all the games with coalition structures is denote@byAn orderf € ©(N) is consistenwith
¢ ifforanyi € Che ¥ andj € C, € ¥ andke N, 6(i) < (k) < 6( ) implies that playek also belongs to
coalitionC;, that is,k € C;,. Thus, in the consistent order, players line up in a way that players in the same
coalition are side-by-side. A set of all the ordersMrtonsistent with¢” is denoted byd(N,%’). Then,

Owen’s (1977) coalitional value CV is an average of player's marginal contributions when all the orders
consistent withg occur with equal probability, being defined by,

0

CVi(N,v,%) = my (N,v), for eachi € N.

1
[O(N,E)| o)
Thus, according to the coalitional value, playerfNimappear in a way that the players in the same coalition
appear successively. In other words, first coalitions enter subsequently in a random order and within each
coalition the players enter subsequently in a random order.

An external gamer a game played by the (representatives of the) coali(ibhsy ) is defined byM =



{1,...,m} andveg (H) = v(Uyen C) for eachH C M.2 For external gaméM, vi), the Owen’s coalitional
value satisfies the following: for arg € €,

CVi(N,Vv, %) = CVi(M, vz, {M}).

1eCy
This property is called the intermediate game property. The coalitional value is characterized by efficiency,
additivity, null player property, the intermediate game property and the restricted equal treatment property
which requires that if two players i@ € ¢ are symmetric inN,v), the two players should receive the
equal payoff (see Owen 1977 and Peleg and 8lteh2003). Here, the first three axioms are the ones
which are naturally extended to a game with a coalition structure. However, the null player property in this
case may be considered to be a bit strong requirement because it means that the null player gets nothing
even though the coalition he belongs to is in very strong position. Thus, the coalitional value does not
reflect a function of the formed coalition as system of mutual assistance. In Section 6, we provide a weaker
version of the null player property in a game with a coalition structure to characterize our new solution,
which is defined in the next section.

3 A new solution concept

As motivated by Hart and Kurz (1983) and Winter (1989), the coalitio@’ican be seen as a pressure
group for the division of/(N). So, van den Brink and van der Laan (2005) stated (p195):

to divide the worth of the grand coalition over all players, first this worth is distributed over the
coalitions in the a priori given coalition structure, and then the payoff assigned to a coalition is
distributed over its players.

The Owen'’s coalitional value describes the above two level interactions, which are an interaction among
coalitions and a one among players within a coalition, and has the consistent relation with the Shapley
value’s allocation. The coalitional value satisfies

CVi(N,V,%) = CVi(M, Ve, {M}) = Sh(M, vz

i€

for anyCy € ¥ because the coalitional value satisfies the intermediate game property and the coalitional
value for a game with the grand coalition structure coincides with the Shapley value for the game.

There is an asymmetry of players in external gaev,) since players in the game represent the
coalitions which may be different in size. In such a situation ilegghtedShapley value (Shapley 1953a)
can be appropriate to deal with such asymmetries. Kalai and Samet stated in their paper (Kalai and Samet
1987, p221) as follows:

It is important for applications in which the players themselves are, or are representing, groups
of individuals. Such is the case for example when the players are parties, cities, or management
boards. ... A natural candidate for a solution is the weighted Shapley value where the players
are weighted by the size of the constituencies they stand for.

3This game is referred to as an intermediate game in Peleg an@!8rd2003) and as a quotient game in Owen (1977).
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As the following definition will show, a new solution concept presented in this paper is the very solution
that reflects such a viewpoint in addition to the two level interactions.
Let w;(> 0) denote a positive weight for a playee N. Given a collection of positive weights =
(W )ien, let u%(.) represent a probability measure ®(N) such that for an orded = (i1, ...,in), u"(0) =
ne_, ,W"' 4 Thew-weighted Shapley value 8tor (N,v) € G is

2 k=1Wig

SH(Nv) = § u"(@)m(N,v)
0€O(N)

for anyi € N.5

Clearly, if w; = w; for anyi € N and for anyj € N, thew-weighted Shapley value coincides with the
Shapley value. Given coalitiof of N, let (N, ur) denote aT-unanimity game defined byr (S) = 1 if
SO T andur (S) = 0 otherwise. It is easily checked that'$N, ur) = z,-:vTiwj if i € Tand SK(N,ur)=0
otherwise.

A solution conceptpY in a game with a coalition structure is defined in the following.

Definition 1. For (N,v, %) € G°, let w, denote the weight for & M such that w = |Cy| and w= (W )kem-
Then, the collective valug” for (N,v, %) is defined by

SH (M, ve) —V(Cy)
ICi]

W (NvE) = +Sh(C,v)

foranyie Gy € 7.

The definition of the collective value shows the relation with a two step approach introduced in Kamijo
(2007): the first step is a negotiation among coalitions for the divisimidf and the second step is a nego-
tiation among players for the division of the assignment of the coalition from the first step. The bargaining
surplus of the coalition from the first step, M, vi) — v(Cy), is equally divided among its members.
Moreover they obtain the Shapley value for their own game in the second st&h, \Bh Thus, this ex-
pression indicates that¥ has a flavor of egalitarian rule in addition to the Shapley value: the egalitarian
solution for the bargaining surplus of his coalition and the Shapley value for the worth of the coalition. As
the result of this egalitarian pat¥ does not satisfy the usual null player axiom but the weaker version of
null player axiom. This point is considered in section 6 to characterize the collective value by the additivity
axiom.

The particular difference from Owen (1977) and Kamijo (2007) is that in the definition above, each
coalition, sayC, receives Sfi(M, vy ), i.e., thew-weighted Shapley value of the external game, instead of
the usual Shapley value. Further, the weights are the sizes of each coaétjan, = |Cy| for eachCy € ¥

4To obtain this probability, consider the following model of choosing an ofdgt..,in). First, a player inN, sayin, is
randomly selected, due to a probability distribution such that the probability for a player to be selected is proportional to his
weight and put in the last of the order. Next, another player is selected by the same processrier 1 players and put in the
second last of the order. Repeating the same process-I3times, we have an ordéin, .. .,in) and the probability of occurrence
of this order is this formula.

S5Kalai and Samet (1987, 1988) generalized positive weights to a weight system which is a pair of weights and an ordered
partition onN in order to allow a weight of zero for some of the players.



From the definition, it easily confirmed thei satisfies

l’Uiy(vaa(g) = SHQV(NLV‘K%
1eCy
reflecting the asymmetries in the sizes of coalitions.

One may consider that the definition of the collective value is a bid strange because it applies incon-
sistent treatment between a negotiation among coalitions and a negotiation within a coalition. This is
not true, however; rather the collective value treats the two types of bargaining in consistent manner in
terms of the players’ sizes because in the subgéper), each player irCi has an equal size and the
weighted Shapley value with equal weights among the players coincides with the Shapley value, that is,
Sh'(Cx,v) = SWCy, V), givenw; = 1 for alli € Cy.

To obtain a better understanding on a two-step interpretatiofi¥pfwe introduce a “redistribution
game” defined below. Lep be a solution o1 andCy € %. Define a function/' (.|@) : 2% — R by, for all
SC G,

B (ﬂK(M,V%)) if S= Ck,
V(Sle) = { v(S) otherwise

A game(Cy, V' (.|@)) is called aredistribution gamdor Cy over the coalitional bargaining surplus at distri-
bution ruleg. Let (N,v,%¢") € G, Cc € ¢, andM = {k: Cx € €'}. Letw = (W )kem With wy = |Cy| for any
k € M. The following theorem is easily derived from the definitionyof.

Theorem 1. For Cg € € and for i € C,

@ (N,v, %) = Sh(Cy, V' (.|SHY)).

Proof. Define(Cy,u) by u(S) = SH/(M,v¢) —v(Cy) if S=Cy andu(S) = 0 otherwise. Theny' (.|Sh") =
v+ u. Since the Shapley value satisfies the additivity,

Sh(Ci, V¥ (-|SH")) = Sh(Ci, ) + S (Ck, U).

SH!(M,ve ) —v(Cy)
[&X] :

Furthermore, since the Shapley value satisfies the symmetry and the efficieiiCy, Bh-
Remark 1. The Owen’s coalitional value is also described as the Shapley value for the other type of
redistribution game. For €€ %, (Ci,\V°(.|¢@)) is defined by Y(S¢) = @&(M, V) for all S C G, where
(M,v}}) is a game played by coalitions with,®eing replaced by & Cx. That is, @(H) = Uhen Cn if

k¢ Hand .(H) = Uner (g CrU S if ke H. Then,CV;i(N,v,¢) = Sh(C,V*(.|Sh)) holds (see, Owen
1977 and Winter 1992).

Remark 2. Kamijo (2006, 2007) considers another two-step Shapley value in which the Shapley value is
applied for both intra- and inter- coalitions. In other words, not the weighted Shapley value but the usual
Shapley value is applied to the external game. Thus, a solytfoon G€ is defined by

Sh(M, vig) — v(Cx)
|Gl

WP (N,v,%) = Sh(Cy, V' (.|Sh) = +Sh(Cx,V)



for any G € ¥ and for any i€ Cy.

4 Interpretations of the value and coalition structures

In this section, we consider an endogenous interpretation and an exogenous interpretation of coalition
structures and show that the collective value fits these interpretations.

4.1 A value ong-communication restricted situation

An exogenous interpretation of coalition structures is that they represent the some kinds of constraint on
communication among players (see Aumann and Dreze 1974). Myerson (1977) considers a situation that
a communication between players is restricted on an undirected graplisoich game is called a graph-
restricted game). Myerson (1980) considers more generalized situation that there is a sequence of confer-
ences in which players communicate with each other and this communication restriction is expressed as the
hyper-graph ofN. Since Myerson’s works, there are various kinds of research on games with restriction
or constraint on communication among playerg)( a permission structure by Gilles, Owen, and van den
Brink 1992; restricted coalitions by Derks and Peters 1993; a weighted hyper-graph by Amer and Carreras
1995, 1997; a probabilistic graph by Calvo, Lasaga, and van den Nouweland 1999; a partition system by
Bilbao 1998).

Along this line of research, Aumann and Dreze’s (1974) value, which is defined h{NADE) =
Sh(Cy,v) for all i € Gy € ¥, assumes a situation that a coalition structure describes a communication re-
striction such that players in the same coalition communicate with each other, but each coalition is phys-
ically separated. This situation is also described as the graph such that each maximal component of the
graph corresponds to a coalition in the coalition structure and each subgraph on the component is a com-
plete graph. Thus, Aumann and Dreze’s value coincides with the Myerson value for such a graph situation.
However, this interpretation of coalition structure does not fit the view that players form coalitions for the
division of v(N) since Aumann and Dreze’s value does not satisfy the efficiency but the relative efficiency
(SienADi(N,Vv, %) = Y kem V(Ck)). This motivates another view of communication restriction by a coalition
structure below.

Given a coalition structure on N, assume tha#” represents the communication restricted situation as
follows:

(i) players inthe same coalitidx € ¢ can freely communicate with each other, and

(ii) players inCx can communicate with players in the other coalitions if there is a permission of all the
players inCy.

Condition (i) means that players in any sub coalit®a Cy € ¥ can communicate with each other
and thus obtain their worth of coalition(S). In addition to (i), (ii) implies that there is a possibility of
cooperation among players in the different coalitions. This is possible only if all the players in the relevant
coalitions agree. Ldte Cy andCy, € ¢, Cy, # Cx. While C, andC;, obtain their worthv(CyUC;,), Cx —i and
C;, obtain the sum 0¥(Cy — i) andv(C;,) because there is no permission by playarthere is no permission
of the party which the coalition represents and which requires the unanimous agréement.

6Carreras (1992) refers the similar restriction of coalition as “voting discipline” in the context of simple games.



Definition 2. Let (N,v,%) € G°. ¥-communication restricted gani&l,v?) is defined as follows. For all
SCN,
Vi =v( |J G+ v(T)
Ce%(9) Te? (9
where?'(S) = {Ck € € : C« C S} and€(S) = {CkN'S: CcNS# Cy,Ck € €}
Then, Y is interpreted as a value on tl#&communication restricted game.

Theorem 2. Let(N,v,%¢) € G%. Fori e N,

LI"iy(N7Van) = Sh<N7V%7)

Proof. Take any ordei® € ©(N). Let 6[Cy] denote an order of induced from8 such that for any
i,j €C, B[C(i) < B]C]()) exactly if 8(i) < 8(j), and letBy denote an order okl induced fromé such
that for anyk,h € M, 6u (k) < 6w (h) exactly if there is a playare Cy, such thad(j) < 6(i) for all j € C.
According to marginal contributions i#-communication restricted ganvé at order8, i € C, obtains,
wheni is not the last in the orde?[Cy],

9 . 9[C
V(A S Uiy —v(al ),
and when is the last in the order, he obtains

V(AN UGC) — VIAM)] = V(Gi) + [V(Ci) — V(G — )]

Because in the situation that eaére ©(N) occurs in equal probabilityg[Cy] coincides with one order
on Cy in probability 1/|©(Cy)|, thus irrelevant to the selection of the order, and daelCy has a equal
probability to be the last, it suffices to show th@atc, Sh(N,v?) = SH'(M,vg).

We denote by Prgb) the probability that some phenomena happen in the situation thaBea®®(N)
occurs in equal probability J©(N)|. We will show that for any given order € ©(M), Prol(6y = 0) is
1" (o) wherewy = |Cy| for eachk € M. For simplifying explanation, letr = (01,...,0m) be (1,...,m).
First, we consider the probability th&t (m) coincides witho, = m, that is, Prob6y (m) = m). Since this
probability is equal to the probability that some playeCinis the last position in orde#, we obtain

(Gl
N[ ShemWh
Further, assume that Pro@y(h) =hh=k+1,....m) = I'Ihm:kﬂﬁ. Then, given the condition that
=1
6w (h) =h,h=k+1, ..., m, the conditional probability tha (k) coincides withk is
Cd Wk
Sho1lCnl S

because this probability is equal to the probability that som€; is the last player in the order that players

Prob(6yv (m) = m)




inCh,h=k+1,...,mare extracted from. Thus,

Prob(6u (h) =h,h=Kk,...,m) = Prob(6w(h) = h,

x Prob(6u (k) =
Wh

th Wy

Therefore, repeating this, we obtain P{éh = o) = M- 127 =u"(o). O

h=k+1,...,m)
k| 6u(h )_h,h:k+1,...,m)

=Mp

Remark 3. 9 is also considered as a value f@t-communication restricted gant®l,v¢). However, we
use the weighted Shapley value instead of the usual Shapley value. (River’) € G, let w= (W )ien
be such that w= ﬁ fori € Cc e €. Then,

WI(N,v,%) = SH'(N,v?).

See Kamijo (2007).

The communication situation considered in this sub section can be seen as a partition system of Bilbao
(1998). A pair(N,.%), where.# C 2\, is called a partition system if (P1) @.# and for alli € N,
{i} € .#, and (P2) for alSC N, the maximal components &by .%, which are defined byT CS: T €
F and—3JT' € .Z suchthafl C T/ C S}, form a partition ofS (see definition 1 of his paper). Given a
coalition structurez’, define.Z“ by

“=J &u{JG LT M}

Ce? kel

Then,(N,.#?) becomes a partition system.
Given a partition systerfN,.%), the restricted gamgN,v” ) is defined by

v7(s) = T;SV(T),

wherellgis a partition ofSwhich the maximal feasible subsets®6n .7, are called components, form.
By the definition ofv?, we have the following proposition.

Proposition 1. (N,v¢) = (N,v7") holds.

Proof. For anySC N,
F(SUEY(S)

is a partition ofSand%(S) U%°(S) = M(S) holds. By the definitions of¢ andv””,v¢ =vZ* holds. [
p y

4.2 An endogenous interpretation of a coalition structure

Aumann and Dreze (1974) consider that one of the transparent explanations for the formation of coalition
structures from games themselves is by the lack of the superadditivity (see the discussion of their paper).



However, from the viewpoint that players form coalition structures for the bargaining of divisiaiNof
we have to introduce another endogenous argument for the formation of coalition structures.

Let (N,v) € G. A coalition Sis called a partnership i(N,v) if for any T C Sand foranyRC N\ S
V(T UR) = v(R). Further,Sis called a quasi-partnership {iN,v) if for any T C Sand foranyRC N\ S,
V(TUR) =Vv(T)+V(R). Thus, players in a quasi-partnership coalitioeeem to have some rationale to act
together.

Let (N,v) be a game an&” be a coalition structure oN. Then, % is called aquasi-partnership
decompositionvith respect tor if every Cy € Cis a quasi-partnership ifN,v). The next theorem indicates
thatyV is consistent with this endogenous view of the coalition structure and the allocation of the Shapley
value.

Theorem 3. Let(N,v,%") € G® and w= (w) such thatw= |C|. If ¢ is a quasi-partnership decomposition
with respect to v, then
ShN,V) = YY(N,v,%).

Proof. If (N,v) = (N,v?), Theorem 2 implies that $N,v) = Sh(N,v?) = ¢¥(N,v,%). Thus, it suffices
to show(N,v) = (N,v?). For anySC N,

Vi =v( |J C)+ Z v(T)
Ce? (9 Te?%(9)

—v(s)

where the first equality is by the definition ¢f and the second is by the quasi-partnershifof €. [

5 A potential function for games with coalition structures

Hart and Mas-Colell (1989) are the first to introduce a concept of a potential to cooperative game theory and
show that a potential for a game exists (with an additional condition of the normalization, it is unique) and
it derives the Shapley value. After Hart and Mas-Colell, the concept of potential was introduced to a non-
cooperative game by Monderer and Shapley (1996) and has been considered for a cooperative game with
several frameworks such as a game with a coalition structure by Winter (1992), a partition system by Bilbao
(1998), a finite type continuum by Calvo and Santos (1997). Calvo and Santos (1997) also characterized
the family of solutions which admitted a potential function.

Let P denote a real valued function @ which is normalized td®(0,v) = 0. Given(N,v) € G and
i € N, define a marginal contribution of playerelative toP by

DiP(N,v) = P(N,v) — P(N—i,v).

Thus, this marginal contribution is the difference of two situations measurétvidyich playeri is there
and he leaves. Functidnis called gpotentialfor games if it satisfies

V(N) = ‘%DiP(N,v)
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forany(N,v) € G. Thus, a potential function is such that the allocation of marginal contributions (according
to the potential function) always adds up exactly to the worth of the grand coalition. Hart and Mas-Colell
(1989) show (in theorem A, p591) that (i) potential funct®is uniquely determined, and (ii) the marginal
contribution vector relative to the potential coincides with the Shapley value payoff vieetdd; P(N,v) =
Sh(N,v) for alli € N.

They also consider a non-symmetric generalization of a potential approach L@t ); be a collection
of the positive weights anB"™ denote a real-valued function @with P"(0,v) = 0. FunctionP" is called
aw-weighted potentialf it satisfies

V(N) = .%WiDiP(NN)

for any(N,v) € G. They show (in theorem 5.2, p603) that{jweighted potential functio”R" is uniquely
determined, and (ii) the marginal contribution relative to the potential multiplied by the corresponding
weight coincides with thev-weighted Shapley valuége., w;DiP(N,v) = SH'(N,v) for anyi € N.

According to Calvo and Santos (1997) and Bilbao (1998), a potential function for a game with a re-
stricted communication is Hart and Mas-Colell's potential function (hereafter, the HM potential function.
Similarly we use the term, the HM~weighted potential function.) for the corresponding game which is
appropriately defined to reflect the restriction on communication. Thus, the next theorem is an immediate
consequence of Theorem 2.

Theorem 4. Let P: G — R denote the HM potential function. Then, given @Nyv, %),
Lpiy(N7V7Cg) = DiP(Nav(g) - P<N7V(g) - P(N - iavg)
foranyie N.

Bilbao (1998) also shows (in theorem 2, p135) that given a partition sydterr ), for S¢ .7,

P(SV”) = ; P(T,v7).
Tellg

Hence, this result together witiN,v®) = (N,\f’w) by Proposition 1 implies that fare Cy € ¢,
DiP(N,v%) = P(N,v?) — P(N\ Cy,v%) — P(Cc—i,V?). 1)

The next proposition gives another formula®fN,v?) which seems to describe the restriction of
communication bys well and which is specific expression of the potential for the particular subclass of
games with permission systems, which is different from the class Bilbao (1998) mainly considers.

Proposition 2. Let (N,v,%) € G°and M= {k: Cx € ©¥'}. Define a gaméM, u) by

u(L) =v({J G0 - ELV(Ck) + kEL IClP(C,v)

kel k

for each LC M. Then,
P(va%)) = PW(M,U),

where P is the HM w-weighted potential function and=n(w)kewm is such that w= |Cy| for any ke M.
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Proof. Let (N,v,%) € G° be given. PuM = {k: Cy € ¢’}. The proof proceeds by the way of mathematical
induction of the number gM|. For anyCy € ¢,

@ 1
P(Ci,v*) = P(Ci,V) = @LJ({k}) =P"({k},u),
where the first equality is byCy,v®) = (Cy, V), the second is by the definition af and the last is by the

definition of the HMw-weighted potential function ans = |Cy|.

Assume that for ang. € M andN’ = [J, C«, (N/,v%) = P¥(L,u) holds. We consider the case for
(N,v?). By the definition of the potential function,

v({J G =v(N)
keM
:_%DiP(N,vf)
-3 %(P(N,v‘é’)—P(N\ck,v(f)—P(ck—i,v‘b"))
keMie
_ ka ICl (P(N,v‘g) —P(N \ck,v%’))
- 3 (GG + 3 5 (PG —P(C—iv)

keM keMie
= 3 16 (PIN.V¥) = P(N\ G, V"))
keM
= Y IGPCV ) + 5 5 Sh(Cev")
keM keMie
= 3 [Gd (P(N.VF) = P(N\Gev¥)) = 3 [GIP(Cv) + 3 (G,
keM keM keM

where the third equality is by Equation (1), the second last equality is by the result of the HM potential
function, and the last is by the efficiency of the Shapley value(@d/*) = (Cy,Vv). Hence we obtain

kzm Gl (P(N,v%) “P(N \ck,v%’)) —v(lJ &) +kzm IC|P(Ci,v) — ka‘V(Ck)7

keM

By the assumption of the induction and the definitiomugthis is equivalent to

> wi(P(N.V) = PY(M\ {k},u)) = u(M),

keM

wherewy = |C| for anyk € M. Therefore the uniqueness of the weighted potential imjpli&& v¢ ) must
bePY(M,u). O
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6 Axiomatic characterizations

6.1 Collective balanced contributions

The balanced contributions property for the Shapley value was first considered by Myerson (1980). It
means that any two players’ marginal contributions to the other measured by the Shapley value balance.
In other words, the Shapley value satisfies, given two playemd andj € N, Sh(N,v) —Sh(N— j,v) =

Sh;(N,v) —Shj(N —i,v). Myerson (1980) showed that the efficiency and this property characterize the
Shapley value.

Extensions of the balanced contributions to a game with a coalition structure is considered by Calvo,
Lasaga, and Winter (1996). They introduce two counterparts of the balanced contributions to that case and
show that a unique efficient solution @f satisfying these two properties is the Owen’s coalitional value.
These two are:

Individual Balanced Contributiond-ori € Ccandj € Cy, Cx € €,

(N, v, €)= (N = J,v, € — ]) = g(N,v) —j(N—i,v, & —i)
where? —i =%\ {CJU{Ck—1i}.
Coalitional Balanced Contributiond=orCy € ¥ and forC,, € €,

Z (G(N, v, E) = g (N\Ch, v, G\ {Ch})) = Z (N, v, ) — gi(N\ G, v, €\ {Ci})) -

However, we introduce different extensions of the balanced contributions for games with coalition
structures. One is just the same requirement as the condition for the Shapley value, and the other is easily
interpreted.

Balanced ContributionsFori e Nandj € N,
i(N,VAND) = (N = v, AN = j}) = (N, v, {N}) — (N =i, v, {N —i}).

Collective Balanced Contribution$f |¢’| = 2, for everyi € C € ¥ and for everyj € C, € €, Cy # Ch,
W(N,V,€) — G (N\Ch, v, E\{Cn}) = (N, v, E) — g (N\ G, v, T\ {Ci}).

Since(N,v, {N}) is looked as the same situation @¢,v),” Balanced Contributions is the same con-
dition as the one which the Shapley value satisfies, and thus we use the same name. Collective Balanced
Contributions requires that ‘my group’s contribution for your payoff measured by the solution balances
with your group’s contribution for my payoff measured by the solution.’

On the relationship between our axioms and ones of Calvo, Lasaga, and Winter (1996), Individual
Balanced Contributions implies Balanced Contributions. Collective Balanced Contributions induces Coali-
tional Balanced Contributions only €] = |C,|. However, in general, there is no general relationship

In fact, all the values for games with coalition structures considered in this paper, ADwé;Vand gY, for (N,v,{N})
coincide with the Shapley value foN, v).
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between Collective Balanced Contributions and Coalitional Balanced Contributions. The next proposition
shows that” satisfies Balanced Contributions and Collective Balanced Contributions instead of Individual
Balanced Contributions and Coalitional Balanced Contributions.

Proposition 3. Y satisfies Balanced Contributions and Collective Balanced Contributions.

Proof. First consider the case ¢f| = 1. By definition of ¥, ¢Y(N,v,{N}) = Sh(N,v) holds. We obtain
the desired result because of the result of Myerson (1980).
Next we consider the case [6f | = 2. Note that by the definition &’-communication restricted game,
(N\ Cx,v*) which is a subgame aiN,v*) on N\ Cy, coincides with(N \ C,v? \{G) which is % \ {C}-
restricted game for gam@& \ {Ci},v, ¢ \ {C«}). By Theorem 2, the property of the HM potential function
and Equation (1)
LI"iV(N7V7 Cg)_LMV(N \Ch7vacg\ {Ch})
= Sh(N,v*) — Sh(N\ Cn,v*)
=P(N,%) —P(N\ Cy,V*) — P(Cc—i,v%)
— (PIN\Gr, V) — PN\ (GUCH), V) — PG —1,V))
P(N,v¥) ~ P(N\ Ci,v) = (P(N\ Gy, V) — P(N\ (GUCy), V7))
P(N.v*) = P(N\ Cn, V) = (P(N\ G V) — P(N\, (GcUC), V¥) )
P(N,v") — P(N\ Cp,v*) = P(Ch — j,V*)
- (P(N \ G, V) — P(N\ (G(UCh), V) — P(Ch — j,v“f))
= Shj(N,v®) — Sh(N\ C,v?)
= wj)/(Nﬂ\/v(g) - L»UJV(N \Ckvvv(g\ {Ck})

This proposition means that, by the definitiongf, for everyCy € ¥ and for evenC, € ¢,
SH!(M, v) — SH!(M\ {h},vie) _ SH(M, ve) — SH(M\ {K}, vie)
Gl Chl

This is the special case of the properties of theveighted Shapley value: FdN,v) € G, its weight
(W)ien, and for everyi, j € N,8

SﬁN<N7V) _SWV(N\{J}7V) _ SHJN(N7V) _SHJN(N \ {I},V)
W Wi '

Next theorem shows that Balanced Contributions and Collective Balanced Contributions are almost
sufficient to characterizegy”.

8This property is pointed out in Hart and Mas-Colell (1989) and Amer and Carreras (1997).
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Theorem 5. /¥ is a unique efficient solution satisfying the following two properties:

(i) Balanced Contributions.
(ii) Collective Balanced Contributions.

Proof. We have known thaty¥ satisfies the efficiency, Balanced Contributions and Collective Balanced
Contributions. Hence we will show the converse.

Let g be an efficient solution satisfying these two axioms. (Nxv, %) € G°. We first show thaty coin-
cides with the Shapley value whégi| = 1 orn. When|%'| = n, Collective Balanced Contributions coincides
with the balanced contributions. Because of the result of Myerson (1940),v, [N]) = Sh(N,v). More-
over, by Balanced Contributions, the same argument meang/{hat, {N}) = ¢/(N,Vv,[N]) = SH(N,v).

Next we show the following claims.

Claim 1: For allC, € €,
W(N,V, %) = |C| DkP"(M, viy) 2)
i€
whereP% is the HMw-weighted potential function with weight vecter= (wy)kem such thaw = |Cy| for
eachk € M.

Let (Ck,v,{Ck}) be a subgame dN, v, %) to coalitionCy. Then the left hand side of (2) is

D WGV A{C}) = V()

by the efficiency ofiy. The right hand side of (2) is

V(G _

ICi| DP*({k}, ver) = |Ci] o

V(Cy).

Thus, condition (2) holds true for any subgat@, v, {Cy}) of (N,v,%).

We assume that (2) is satisfied for at¥/,v,¢”) such that. C M, N’ = Uy Cc andé” = {Ci: ke L}.
We now show that it holds true f@gN, v, %").

Condition (2) is equivalent to

> WN,v%) =[Gl (P¥(M,vg) — PY(M\ {k}, vig)).
Then we obtain
zleCk l»UI (N v, %)

PY(M,vy) = G

+PY(M\ {k},vg).

We show thatM +PY(M\ {k},vy) is constant for everk € M. Take anyCy € € andCy, €
%,Ck # Ch. Then,

Bec MOME) o (i) - (ZERWREE) o . )
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equals
ZiGCk WI(vaan) _ zJGCh LtUJ (N,v,%)
[o Chl
The bracketed terms in (3) equals
PY(M\ {k},ver) — P"(M\ {k,h}, ver) — (P*(M\ {h},ve) — P"(M\ {k,h}, v¢r)).

By the definition of operatob and the assumption,

+ (PU(M\ {K},vie) ~ P"(M\ {h}.vy)). 3)

=DnP"(M\ {k},ver) — DkP¥(M 1\ {h}, ver)
2 WilNAC W EN{C))  Siea WIIN\{Ch} v €\ {Cn})
Chl Cd

Substitute the above for the bracketed terms in (3), and we obtain

ZieCk lpi(N7V7 cg) . ZjGCh w] (vafg)
|Ci| Ch

L 2icGy Yi(N\C, v, EN{C})  Fiec IN\{Ch}, v 4"\ {Ch})
Chl |C]

Note that by Collective Balanced Contributiong(N,v,%") — ¢(N\ {Cn},v,€ \ {Cn}) = ¢j(N,v,&) —
Wi (N\ {C},v, ¢\ {C«}) is constant for every e Cy and for everyj € C,. Hence the above expression is
zero and thus, (3) equals zero.

Therefore for some real numbir,

ZiECk L:UI(N7V7<5)
|Ci

+PY(MA (K} ve) =K

holds true for ank € M.
Then by efficiency ofy, we obtain that

VM) =VN) = 3 5 GNw) = 3 CIK PV {K)vi)
cMie eM

ThereforeK is exactly the HM weighted potential functid?'(M, v, ) because of its uniqueness.
Next we show the following claim.
Claim 2: 1 (N,v,%€) = C+ 44(Cy, v, {C«}) for everyi € C, whereC is a constant real number.

We prove Claim 2 by the induction on the cardinality®f When|%'| = 1, this is obvious because we
simply putC = 0.

Assume that the claim holds true when the number of elemefi#dsriess thamm(m= 2). For(N,v, %)
such that%’| = m, by Collective Balanced Contributions, giv€p € ¢, we have

W(N,,E) — gi(N\ %n,v, 6\ {Cn}) =C1  for evenyi € C,Cic # Ci
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By the assumption of the induction, the left hand side of the above equation is

Wi(Nv %) — (Co+ (G % {C)),
whereC;, is constant for all € Ck. Therefore we obtain
Yi(N.v.%) = Cy+Co+ (G V{Ci}) = C+ Y4 (G v {Ci})-
This is the desired result.

By Claim 1, we know that the summation g§(N,v,%) overi € Cy is exactly |Cy| DkPY(M,vy) =
ShY(M, v ). Then we conclude that

Sml(Mav(tf) - ZiECk Wi (Ck7V7 {Ck}) _ SHQI(M,V%) — V(Ck)
ICil Cil

by efficiency of . Therefore if 4 (Cy,Vv,{Ck}) is uniquely determinedy(N,v,%) is also determined.
However wher|¢’| = 1, we have shown thap equals the Shapley value Sh. Hence we obtain

SH'(M, ve) —v(Cy)
|Cx|

C=

Yi(N,v,€) =

+Sh(Cy, v).
O
As in the proof of Theorem 5, Balanced Contributions is necessary only to prove #iat N}, the

solution coincides with the Shapley value ft¥, v). Thus the following corollaries also hold.

Corollary 1. ¢ is a unique efficient solution satisfying the following two properties:

(i) w(N,v,{N}) =Sh(N,v) forall (N,v) €T.
(ii) Collective Balanced Contributions.

Corollary 2. ¥ is a unique efficient solution satisfying the following two properties:

(i) Coincidence between the Grand and the Singleton Coalition Structure: Fi¥al) e I', (N, v, {N}) =
w(N7V7 [N])’

(ii) Collective Balanced Contributions.
6.2 Additivity

In this subsection, we provide an axiomatization/dfthrough the additivity axiom. Lefy be a solution
onG°. Let(N,v,%),(N,V,%) € G°.

Theorem 6. (¥ is a unique efficient solution o&° satisfying the following four axioms.
(i) Additivity: ¢(N,v, %)+ @(N,V,€) = P(N,v+V,%), where(v+V)(S) = v(S)+V/(S) forall SC N.

(i) Equal Power of Partnership Members: IfT N is a partnership if{N,v) and M = {ke M : CcNT # 0}
is also a partnership itM, vz ), thenyi (N,v,€) = ;(N,v,%) forany i,j € T.

17



(iii) Strong Restricted Equal Treatment Property: IE£iCs and j € C are symmetric in(Cy,V), then
4’i(N7V7§9ﬂ) = thIJ(Nv\/’Cg)

(iv) Coalition Structure-Null Player: If €is a dummy coalition (i.e., k is a dummy playerM, v, )) and
i € Ccis anull player in(N,v), thengi(N,v,%) = 0. .

Equal Power of Partnership Members says that all the members of partnEmshigin the equal payoff
if its projection onM is also a partnership ifM, vi-). Theextendedhapley value defined (N, v, %) =
Sh(N,v) satisfies Equal Power of Partnership Members because all the playleesénrsymmetric if{N, v)
and the Shapley value assigns equal payoff to symmetric players.

Strong Restricted Equal Treatment and Coalition Structure-Null Player are the axioms introduced in
Kamijo (2007) to characterizg® (see Remark 2 of this paper). Strong Restricted Equal Treatment is
stronger than the restricted equal treatment property which both the extended Shapley value and the Owen'’s
coalitional value satisfy. Coalition Structure-Null Player is weaker than the usual null player axiom. Thus
the extended Shapley value satisfies the all the properties except for Strong Restricted Equal Treatment and
the Owen’s coalitional value does not satisfies Equal Power of Partnership Members and Strong Restricted
Equal Treatment.

The next lemma is from Kalai and Samet (1987).

Lemma 1. Let we R, be a weight vector of N. If T is a partnership {iN,v), thenSH'(N,v)/w; =
SH(N,v)/w; foralli,jeT.
Proof. See the proof of Theorem 2 of Kalai and Samet (1987). O

Lemma 2. Let ¢ be a solution or such that it satisfies the symmetry and the null player axiomsyLet
be a two step solution 0B defined by

SHY(M, Vi) — V(Gy)

Gi(N, Vv, %) = ‘Ck‘

+ (n(Ck,V)-

for all (N,v,%¢) € G* and for all i € Cx € ¢, where w= (W)kem is such that w= |Cy| for allk € M. Then,
Y satisfies Equal Power of Partnership Members.

Proof. LetT C N be a partnership itN,v) andM’ = {ke M : CxNT # 0} be also a partnership {iM, vy ).
SupposdM’| = 2. Letk € M'. SinceT is a partnership irfN,v), v(SUC) = v(S) for anySC G\ T and
CCTNCCT. Thus, for anySC Cy, v(S) = v(SN (C\ T)) and thus, any € TNCy is a null player
in subgameCy, V). So ¢;i(Cy,v) = 0 for anyi € TNCi since¢ satisfies the null player axiom. Because
Wi = |Cy| for anyk € M, SW%’:[V") = Sm‘(c'\:[v(‘”’) for anyk,h € M’ by Lemma 1. By the partnership bf’ in
(M, Ve), Ve ({k}) = v(C«) = O for eachk € M'. Thusyi(N,v, %) = ¢;(N,v,%) holds for anyi, j € T.
SupposeM’| =1 and letk € M’. SinceT C Cy is a partnership ir(N,v), all the players inT are
symmetric in(N,v) and, of course, they are symmetric(i@,Vv). Thus SKCy,V) is constant overe T.
Hencey satisfies Equal Power of Partnership Members. O

Proof of Theorem 6From Lemma 2, we have known thit satisfies Equal Power of Partnership Member
since the Shapley value satisfies the symmetry and the null player axioms. Furthermore, it is obvious that
it satisfies axioms (i) to (iii) by its definition.
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Next we show the converse part. Lgtbe an efficient solution oG°® which satisfies axioms (i) to
(iv). Let (N,v,%¢) € GC. Sincey satisfies Additivity, it is sufficient to show thagi(N, cur, %) is uniquely
determined for anyl C N, wherec € R andcur is a scalar multiple ofir by c. LetD ={ke M : GyNT #
0}. SinceCy € ¥, k ¢ D, is a dummy coalition ande Cy is a null player,yi (N, cur, %) = 0 by Coalition
Structure-Null Player. Thus, efficiency means thigtp Sicc, ¢i(N,cur, %) =c.

ClearlyT is a partnership ifiN, cur ) andD is also a partnership ifM, (ur )« ). Thereforepi (N, cur,¢’) =
Y;(N,cur, @) foralli, j € T by Equal Power of Partnership Members.

Case a:|D| = 1. Letk e D. SinceCy is a dummy coalition ande Ci\ T is a null playerg; (N, cur, %) =
0 by Coalition Structure-Null Player. Thug;(N,cur, %) = %

Case b: |D| = 2. For eachCx € ¢, ke D, i € Cc andj € C, are symmetric in(Cy,V). Therefore
Yi(N,cur, %) = ¢j(N,cur,%) by Strong Restricted Equal Treatment Property. Moregy@lcur, %) =
Yi(N,cur,%) fori € TNCcand forj € TNCy,. As aresult, for any € UxepCy, Y4(N,cur, ) = m

L]
Remark 4. The efficiency of a solution is derived from the four axioms in Theorem 6. In fact, consider
a solution ¢ satisfying these four. The main logic is similar to Theorem 8.1.3 of Peleg andbBerdh
(2003). Let(N,W’) be zero-game such thaf(®) = 0 for any SC N and% be a coalition structure on
N. Then,@(N,\°, %) must beON € RN by Coalition Structure-Null Player. L&N,v,%) € G°. By Addi-
tivity, (N,v,€)+@W(N,—v, %) = (N,v—v,%) = ¢(N,\W0, %) = 0N and thus (N, v, €) = —(N, -V, %)
holds. Since the payoff proposed by a solution must be feaSibley: (N, v, %) < v(N) andyicn Y5 (N,v,€) =
—Yien Wi(N,—v, %) 2 —(=V(N)). Thus,3ien ¢i(N,Vv,4) = v(N) holds.

Example 1. The following solutions show the independence of each axiom from the others (except the
efficiency) in Theorem 6. LéN,v,%’) € G°.

(i) Consider a solutionp" defined by

SHI(V(M ) V%’)) - V(Ck)
|Cl

+ NUin(Ck, V)

where we R'\+"+ is such that w= |Cyx| andNu" is the nucleolus introduced by Schmeidler (1969). Since
¢" satisfies the symmetry and the null player axiogpissatisfies Equal Power of Partnership Member
by Lemma 2. Thusgy" satisfies Strong Restricted Equal Treatment, Equal Power of Partnership
Members and Coalition Structure-Null Player sinie satisfies the symmetry and the null player
axioms, but the additivity sinag" does not satisfy the additivity.

(i) The extended Shapley value satisfies all the axioms except for Strong Restricted Equal Treatment.

(iii) 2 is characterized by Additivity, Strong Restricted Equal Treatment, Coalition Structure-Null Player
and Coalitional Symmetry which is defined by, & M and he M are symmetric inM, v ), then
Yieca Yi(N,V,E) = Sicg, Wi(N,V, 7). Sincey?® and Y are the different solutions, Equal Power of
Partnership Members is independent of the other axioms.

(iv) The egalitarian solution defined y*(N,v, %) = "‘TNR for all i € N satisfies all the axioms except for

Coalition Structure-Null Player.
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7 Concluding remarks

Recently, Vidal-Puga (2005) considered another value on games with coalition structures from a viewpoint
of non-cooperative bargaining among the players. This solution also satisfies the condition that the sum of
the payoffs of the players i@k coincides with the weighted Shapley value of playéor the external game
with coalition-size weights. Vidal-Puga (2005) states that a generation of coalition size weights is due to
“right to talk” of players. In contrast, in this paper, we show that the generation of coalition size weights is
due to communication restriction by coalitions.

Finally, our solution can be extended to games with levels structures introduced by Winter (1989).
Levels structure ol is a finite sequence of coalition structur@®), ..., %" with ¥° = [N] and%¢’ = {N}
such that ifk < h, ¥ is a finer coalition structure tha@". Consider the levels structure for six person
game described by Table 1. Then, the payoff for player 1 is calculated as the following way.

level coalition structure

3 ¢ {{1,2,3,4,5,6}}
2 %2 {{1,2,3},{4,5},{6}}
1%t {{1,2},{3},{4},{5}.{6}}
0 % {{1},{2},{3}.{4}.{5}.{6}}

o

Table 1: Levels structure ad = {1,2,3,4,5,6}

First, in level %2, coalitions{1,2,3}, {4,5} and {6} bargain for the division of(N). As a result,
coalition{1,2,3} obtains SK(M? v,.) whereM? = {1,2,3} andw; = 3,w, = 2 andws = 1. Then, player
1 receives his dividend for this bargaining surplus, thaﬂg%% Next, in level#?, coalitions
{1,2} and{3} bargain for the division of({1,2,3}) and{1,2} obtains SK(M%,v,1) whereM} = {1,2}
andw; = 2 andw, = 1. Player 1 receivesw Finally, in level £, players 1 and 2 bargain
for the division ofv({1,2}) and player 1 obtains $f{1,2},v). Therefore, the payoff for player 1 is

SHf’(M]Z.?V‘é’Z) _V({lv 2, 3}) SW(MJ]:?VY/”) _V({17 2})
{1,2,3}] {1,2}|

Generally, let(N,v,.#) be a game with levels structure Whe(lfé v)eGand.?Z = {%°....¢"} is
a levels structure oll. For eachk =0,...,1, letg* = {CX,...,CK } andM¥k = {1,....mc}. For given
i €N, leti(k) denote a coalitional index of coalition of levelvhich playeri belongs toj.e., C|k<k) € ¢¥and

i € Cffy). Further, puM{‘= {he M¥ : C C Ckﬁl } andwk = |CK| for all h € MK. Of coursej(k) € MX.

Let (MK, v«) be a subgame dM¥, v.«) on MK,

+Sh({1,2},v).
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Definition 3. A valuey for (N,v,.%) is defined by

11 SHY (MK vige) —v(CFy)

WiNv.2) =5 o +v({i})
k=0 | |(k)|
-1 SHY (MK Vi) — v(CK,.)
(k) (Vi Veg! i(K) 1
- z ICK. | +Sh(c‘(1)’v)
k=1 i(k)
foralli € N.
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