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Abstract

We study social choice functions that are robustly implemented in sequential
equilibria of extensive-form games on all common prior type spaces. We show that
the combination of strategy-proofness, Maskin monotonicity, and no veto power is
a suficient condition for these implementation. Unlike robust implementation by
normal-form games, desirable social choice functions can be implemented even in
single-peaked voting or quasi-linear preferences environments.

JEL Classification Number€72, C79, D78, D82
Keywords Implementation; Extensive-form games; Robustness; Extensive-form
implementation; Maskin monotonicity

1 Introduction

This paper considers the problem of fully implementing a social choice function (SCF)
in incomplete information environments. In the spirit of “Wilson doctrine” (Wilson
[1987]), we consider full implementation where mechanisms do not rely on the features
of agents’ common knowledge about probability distributions on the agents’ types in
the same way of “robust implementation” by Bergemann and Morris [2005a,b]. We ex-
amine implementation by extensive-form games, where the mechanism designers con-
struct extensive-form games as their mechanisms not only normal-form games. Until
now, robust implementation has been studied only in implementation by normal-form
games. However, in the literature of full implementation, it is known that if designers
can design extensive-form games, then the larger class of SCFs can be implemented.
Our purpose is to determine whether this valuable property is applicable in the case of
robust implementation.

In the literature of full implementation with complete information Maskin [1999]
analyses implementation problems where an SCF must be attained by all Nash equilib-
ria refereed to as “Nash implementation”. He provides a necessary and alffig#tisti

*The author appreciates the financial support from the Japanese Ministry of Education, Culture, Sports,
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condition for Nash implementation, known E&skin monotonicity Since Maskin’s
formulation assumes that the agents have perfect information, the researches has been
dealing with implementation theory with incomplete information (see Postlewaite and
Schmeidler [1986], Palfrey and Srivastava [1989], Jackson [1991]). In incomplete in-
formation environments, the agents’ types are private information and they have beliefs
about the other agents’ types.

In the literature of incomplete information environments, the designers has been
allowed to use the information what beliefs the agents had. Many researchers have
criticized these assumptions about information since, in realistic implementation prob-
lems, the mechanism designers may not have the detail information of the agents’ prior
beliefs. In a novel approach, Bergemann and Morris [2005b,a] propose a new imple-
mentation concept, referred to as robust implementation. Robust implementation re-
quires that the implementation result of a mechanism must be robust to the assumption
of the information about the agents. They show that strategy-proofness is a neces-
sary condition for robust implementation of SCFs with private valués.addition,

Saijo et al. [2007] reveal a necessary anflisient condition for robust implementa-

tion. Strategy-proofness in itself does not imply the negative results for social decision

in some economic problems such as auction environments or single-peaked prefer-
ences environments. However, Saijo et al. [2007] reveal that robust implementation is
stronger than strategy-proofness; in fact, no SCFs can be robustly implemented in the
above two environments.

On the other hand, implementation by extensive-form games is an well-known
method to fully implement the larger class of SCFs than implementation by normal-
form games. If the agents have sequential rationality and the designer can design the
mechanisms as extensive-form games, the designer can exclude undesirable equilib-
ria by the equilibrium refinement and fully implement the larger class of SQBar
purpose is to study robust sequential implementation; it is robust implementation in
sequential equilibria, which is a common solution concept of extensive-form games
developed by Kreps and Wilson [1982]. It corresponds to robust implementation in
Bergemann and Morris [2005a], which alternatively employs the Bayesian equilibria
of normal-form games. In the literature of extensive-form implementation with in-
complete information, many of the studies reveald@icgent conditions on SCFs to be
implemented by extensive-form games by restricting their analyses to the environments
such as economic or private values environments.

Some researchers point out that implementation by extensive-form games is more
suitable in order not to depend on the agents’ prior beliefs than normal-form games.
Bergin and Sen [1998] emphasize that, in extensive-form implementation, the designer
can use posterior beliefs even if the SCF cannot be implemented by using only prior
beliefs. Duggan [1998] analyzes, with quasi-linear and private values preferences. a
suficient condition to implement the designer’'s second best outcomes in sequential

1Bergemann and Morris [2005b] show that ex post incentive compatibility is necessaayrfial imple-
mentatiorwith robustness, which requires that there exists at least one equilibrium that achieves the SCF. In
private value environments, ex post incentive compatibility is equivalent to strategy-proofness.

2|n the literature of implementation by extensive-form games, Moore and Repullo [1988] and Abreu and
Sen [1990] study implementation with complete information and Baliga [1999] and Brusco [2006] study
implementation with incomplete information.



equilibria on all the agents’ prior beliefs when the designer permits arbitrarily small
perturbations of his SCF. their approaches are actually independent of robust imple-
mentation but their aim is the same as ours. We would like to answer the question
whether extensive-form implementation is robust to the assumption on information.

We provide a relatively simple flicient condition for robust sequential implemen-
tation by restricting our analysis to the case of private values; an SCF can be robustly
sequentially implemented if the SCF satisfies strategy-proofness, Maskin monotonic-
ity, and no veto power. This flicient condition implies that robust sequential imple-
mentation is significantly weaker than robust implementation by normal form games.
The mechanism in the proof of fiiciency theorem is similar to those of the studies in
this literature; it is composed of at most two rounds of announcements by the agents
and needs only one round in any equilibrium path§Ve consider the implication of
our suficient condition in two kinds of economically important environments: the envi-
ronments with single-peaked preferences and quasi-linear preferences. We show that,
with single-peaked preferences, the median voter rule environments can be robustly
sequentially implemented, and, with quasi-linear preferences, there exists at least one
surplus-maximizing SCF that can be robustly sequentially implemented. These results
contrast with the previously described results of robust implementation with normal-
form games.

The paper is organized as follows. Section 2 discusses the basic notation and de-
fines robust implementation by extensive-form games. Section 3 providéicesi
condition for this implementation and considers ouffisient condition in single-
peaked preference environments and quasi-linear preferences environments. Section
4 concludes the paper.

2 Notation and Definitions

We consider a finite set of agenty, = {1,2,...,N}. LetN > 3. X is the set of
outcomesthe objects of social choice. For eacke N, agenti’s utility function
isu : X — R, and the class of the possible utility functions of ageig U;. Let
U = (Ug,Uy...,uy) andU = xicaUi. U is a countable set. It should be clear that
preferences depend only on an agent’s own information and not those of other agents.
We assume that preferences satisfy the von Neumann and Morgenstern axioms.

An SCFis a functiorf : U — X, which associates with eacie U a unique social
optimal f(u) in X.

A Type space

t € T; is agenti's type, whereT; is a countable set for eadh Let T = XjenT;.

A type of agent includes a description of his preference. Thus, there is a function
G : Ti — U; with G;(t;) being agent’s utility function when his type ig;. LetG(t) =
(01(t2), Op(t2), . .., On(tn))- A type of ageni also includes a description of his beliefs

3In this regard, our mechanism is not a multi-stage game with complete information unlike many of the
studies. Brusco [1995] and Brusco [2006] also uses the mechanism that is not a multi-stage game in his
suficiency theorem.



about the types of the other agents; we descrif)[t_i] as the probability assigned
by typet; to the other agents’ type profite,. Now, atype spacés a collection:

T = (Ti, O, W )ien-

We assume that a type spa€e= (Ti, G, 71)ien Satisfies theommon prior assump-
tion.* That is, there existp € A(T) such that, for eachandt;,

D, Pty >0

teT

and
p(ti, t-;)

Y et Pt )

Note that there is generally no relation between a preference typeaad a type
setT, which is defined by a type spa@e = (T;, i, 7j)ien; It depends on the property
of a type spac@ . That is, there may exist a profilee U such thau(t) # u for each
t € T and there may exist a distinct pair of type profilgs € T such thau(t) = G(t’).°

The concept of a type space helps us to analyze the implementation problems sig-
nificantly robust to the assumption on the agents’ private information, as we will see
later.

mit)[ti] =

Extensive-form games and equilibrium

A mechanismM is an extensive-form game with incomplete information. A detailed
description of extensive-form game is provided in Selten [197B]e H is a history
in the M, whereH constitutes the set of histories. The set of terminals is a subset
H € H. An outcome function assigns an elemenkKito each terminal. For agentan
information setl; € 7; is a subset of; each non-terminal history is an element of
exactly one information set of some agent. Each information set of an agent identifies
the set of histories that are indistinguishable for the agent when he reaches one of the
histories. An action set is assigned to each information set of the agents.

Given a type spac& = (T;, 0;, 7)ien, @ pair (M, 7)) denotes an (extensive-form)
game.

Let o € X be a behavior strategy of agentr; assigns a probability distribution
on the action set to each palr,{) € Z7; X Ti. Leto = (01,02,...,0N).

i is a belief system of agentlt assigns to each paili(t)) € Z; x T; a probability
distribution onl; x T_j. Letu = (ua, 42, - . ., UN)-

We state “a belief profile: is Bayes consisterwith a strategy profiler” if and
only if beliefs are updated from an information set to the next information set by using
Bayes’ rule whenever possible.

4Although we require the common prior in accordance with the standard definition of sequential equilib-
rium, our sifficient theorem can be obtained with larger type spaces. In fact, the proof does not depend the
commonness of the agents’ prior distributions.

5Bergemann and Morris [2005b] and Bergemann and Morris [2005a] provides a more detailed analysis
of type spaces

6For more details of an extensive-form mechanism, refer to Bergin and Sen [1998].



We write EG)[oui(li, 1), (1i, )] as the expected utility of typg with belief y;
when information sel; is attained and strategy profileare employed by the agents.

A sequential equilibrium (or equilibrium) assessmé@ntu) on game M, 7) is a
pair of a strategy profile and belief profile that satisfies the following two conditions:

Sequential rationality For each € N, I; € I;,t; € Tj, ando € X,
E@)[olwi (1i, 1), 1i, 6] = E@)[(o, o-)lwi (1, 1), 1i, ti].

Consistency There exists a sequenae”];’ ; of proper mixed strategies converging to

o with Bayes consistent beliefg);”, converging tqu.

A proper mixed strategy is a strategy that assigns positive probabilities to all actions
in each action set at each pdi, ) € 7; x T;.

Let SEO(M, 7), t) be the set of sequential equilibrium outcomes of gavie®")
at typet.”

Robust sequential implementation

Note that our definitions about an extensive-form mechanism and sequential equilib-
rium are basically equivalent to the definitions in the traditional studies of extensive-
form implementation, except we describe them with a concept typa spaceex-
pressly. In the traditional notation, a type space is treated as given; the description of
what type set each agent has and what beliefs each agent has on the other agents’ type
profiles are treated as a part of the environment. On the other hand, we separate the
descriptions from the environments and define a type space expressly.

The definition ofnon-robusteextensive-form implementation can be described with
a concept of a type space as follows:

Definition 1 (Sequential ImplementationA mechanism\ sequentially implements
an SCF f on a type spack = (T;, Ui, 7j)ien if @and only if SEQ(M, 7),t) = f(Q(t)) for
eachte S.

This definition corresponds to the implementation using sequential equilibria in
Bergin and Sen [1998] and Baliga [1999]t requires full implementation; every se-
quential equilibrium must attain the SCF. And, it is not robust; whether a mechanism
M sequentially implements an SCF depends on the type space, since a type space in-
fluences the game that the agents will play and the sequential equilibrium of the game.

Next, we consider robust implementation.

Definition 2 (Robust Sequential Implementation on Common Prior Type Spaées)
mechanismM robustly sequentially implements an SCF f if and onlylifequentially

“Although we define implementation by employing sequential equilibrium as the solution concept, our
results are also satisfied by employing slightly weak solution concepts such as weak perfect Bayesian equi-
librium Mas-Colell et al. [1995].

8Note that implementation is required only if type profiles is an elemer8.ifThat is, the designer
wants to implement at type profitee T only if t is considered possible by an agentNn Our definition
corresponds teobust Bayesian implementatiamSaijo et al. [2007].



implements f on all type spaces. An SCF f is robustly sequentially implementable if
and only if there exists a mechanism that robustly sequentially implements f on all type
spaces.

Robust sequential implementatimequires that the implementation result is robust
on the assumption of the type space.Robust implementation is stronger than implemen-
tation with all prior beliefs on preference type &ktSince each type space determines
a type set independently bf, robust implementation can consider more general struc-
tures of private information thad.

3 Implementation and Monotonicity

Now, we introduce some conditions associated with robust implementability.
SP requires that truth-telling is a dominant strategy in a direct revelation game for
each agent.

Definition 3 (Strategy-Proofness)An SCF f is strategy-proof (SP), if for eackelJ,
ieNandyeU,
ui(f(u) = w(f(u, uy)).

SP is also a necessary condition for robust sequential implementation. The reason
is that SP is a necessary condition fartial robust implementation in Bayesian equi-
libria (see Bergemann and Morris [2005b]) and sequential equilibrium is a refinement
of Bayesian equilibrium.

Remark 1. If an SCF f can be robustly sequentially implemented, then f satisfies SP.

Maskin [1999] provides that Maskin monotonicity as a necessary condition for
Nash implementation implementation in Nash equilibria with complete information.
In our environments, Maskin monotonicity is described as follows.

Definition 4 (Maskin Monotonicity (Maskin [1999])) An SCF f is Maskin monotonic
(MM) if and only if, for each w’ € U,

VieN, ¥xe X: u(fu) zu(x) = u(f(u)=uy(x),

then,

f(u) = f(U).

change In other words, Maskin monotonicity implies the following; if an SCF
chooses an outcomewhen the preference profile isand any agents does not newly
strictly prefer any outcome t& when the preference profile change into then the
SCF remains to chooseat profileu’.

For our purposes, it is useful to state the above definition in its contrapositive form.
That is, an SCH satisfies MM if and only if, for eacln, v € U with f(u) = f(U),
there exists andx such that

u(x) > u(f(u)) & u(f(u)) = u(x). (1)



Given an SCF satisfying MM, we stat&’“e U is an unacceptable deception of
u”if f(u) # f(u). LetUD(u) € U be the set of “unacceptable deceptionsr’ofFor
eachu, v’ € U with " € UD(u), i(u, u") € N andx(u, u’) € X denote the agent and the
outcome satisfying equation (1).

Maskin [1999] shows that an SCF can be implemented in Nash equilibria if the
SCF satisfies MM ando veto powerLet B;(u) be the set of best outcomesgpfon X.

Definition 5 (No Veto Power (Maskin [1999]))An SCF f satisfies no veto power if
and only if, for each u and a,

xe Bj(u) foreach j#i = f(u)=x

No veto power requires that if an outcome is considered the best outcome-fbr
agents, then the outcome is chosen by the SCF. No veto power is regarded as for a weak
condition; in fact, any SCF satisfies no veto power with many economic environments
including the cases with quasi-linear preferences (we will see later in this section).

The following theorem provides a $icient condition for robust sequential imple-
mentation.

Theorem 1. If an SCF f satisfies SP, MM, and no veto power, then f can be robustly
sequentially implemented.

Proof. The proof is provided in the Appendix. |

The proof is constructive. The mechanism in the proof is a game ani¢ghround
of signaling(Bergin and Sen [1998]), where each agent announces his own preference
type at the first stage and any equilibria on any type spaces do not go beyond the first
stage. SP assures that truth telling at the first stage is an equilibrium strategy in the
mechanism on any type spaces. And by MM and no veto power, it can be shown that
all equilibria attain the SCF on any type spaces. Intuitively, MM has the following
effect on the mechanism; if the true preference profile s U but the agents report
U’ satisfying f(u) # f(u’) at the first stage, then ageif(t, u’) must strictly prefer to
confess the deception and achieye, u’) instead off(u’) at a second stage, and it
implies that some agent prefers to move the game to the second stage.

Our approach is linked to that of Baliga [1999], which shows that if an SCF satis-
fies three conditions referred to as incentive compatibility, preference reversal, and the
economic environment, then the SCF is sequentially implementable. Incentive compat-
ibility corresponds to SP in our theorem and preference reversal corresponds to MM in
our theorem. No veto power necessarily holds in the economic environment. We use
MM instead of preference reversal to assure that moving the game to the second stage
achieves the same outcome as the outcome achieved by not moving the second stage
even if no agent confesses in any second stages.

There are some studies about the relation between SP and MM. For one thing, if an
SCF satisfies SP and non-bossy, then the SCF satisfies MM (see, for example, lemma
2 of Barbera and Jackson [1995]). Thus, we obtain the following corollary.



Definition 6 (Non-Bossinesy. An SCF f is non-bossy if and only if, for eackew,
ieN,and yeU;,

u(f() = u(f(u.ug) = fu)=f().

Corollary 1. If an SCF satisfies SP, no veto power, and non-bossiness, then the SCF
can be robustly sequentially implemented.

This corollary can be used for the SCFs that satisfy SP and non-bossiness; as an
example, we consider the median voter rule with single-peaked preferences environ-
ments.

Single-peaked voting

The set of alternative iX = [0, 1]. Each preference, € U; of i € N is single-peaked,;
for eachu; € Uj, there exists a peaj(u;) € X such thaty; is strictly increasing on
[0, p(u)] and strictly decreasing orp(u;), 1].

In the case wher8l is odd,the median voter rulés the leading example of SCFs.
The median voter rule assigns to each pradfile U the %-th largest peak of the
profile. It is known that the median voter rule satisfies SP, Pafféitiemcy, and non-
bossiness (see Barbera and Jackson [1995]).

By Saijo et al. [2007], it is known that the median voter rule is not robustly im-
plemented by normal-form games. However, since the median voter rule obviously
satisfies no veto power, it follows from corollary 1 that the median voter rule can be
robustly sequentially implemented.

Quasi-linear preferences

Next, we consider environments with quasi-linear preferences. In these environments,
the set of outcomes can be described as

X={(y,m, my,...,mn)ly e ,m € R Vi},

wherey is a social decision andy is a transfer ta. Letm = (my, mp,...,my). In
addition, for each preferenag € U, there exists aaluation function ¥v: Y —» R
satisfying

ui(y, m) = vi(y) + m.

Thus, we can directly describe a valuation functipras the alternative of the corre-
sponding utility functiory;. Let the set of the valuation functions befor eachi. An
SCF f can be described as a function @¥n An SCFf can be described as a pair of
two functions,y’ (onY) andm' (onR): f(v) = (y'(v), m'(v)) for eachv. An SCFf
is surplus-maximizing y* maximizes thesocial surplusdescribed ag); vi(y) — c(y),
wherec(y) is the cost of taking a social decisign

Auction is an important example of environments with quasi-linear preferences. By
Saijo et al. [2007], it is showed that, in auction, any surplus-maximizing SCF does not

90ur definition is the same as the definition of Saijo et al. [2007].



robustly implemented by normal-form games. However, we can show that there exist
efficient SCFs robustly implemented by sequential equilibria; an SCF associated with
second price auction is an example. More generally, robust sequential implementa-
tion and surplus-maximizing problems are generally compatible in environments with
quasi-linear preferences.

Now, we say “an SCH is associated with a Groves mechanismf ifs surplus-
maximizing andn' satisfies the following conditions: for eacandyv,

m M) = >V V) - ey’ (v) + 7w,

j#i

wherevy is an arbitrary function ov_j. It is known that Groves mechanism satisfies
SP (see Groves [1973], Groves and Loeb [1975]). Now, we can obtain the following
lemma.

Lemma 1. There exists a SCF associated with a Groves mechanism and satisfies MM
in environments with quasi-linear preferences.

Proof. The proof is provided in the Appendix ]

In our environments, since each agent has no best outcome, no veto power is always
satisfied. From proposition 2 and lemma 1, we obtain the following proposition.

Proposition 1. In quasi-linear preferences environments, there exists an SCF that is
surplus-maximizing and robustly sequentially implemented.

4 Concluding remarks

This paper analyses robust implementation as sequential equilibria on all common prior
type spaces. We show that an SCF can be robustly sequentially implemented if the SCF
satisfies strategy-proofness, Maskin monotonicity, and no veto power. SCFs can be
implemented in single-peaked voting and quasi-linear preferences environments. Since
itis known that in these environments, robust implementation with normal-form games
is not functional, we find that implementation with extensive-form games ifactire
measure to satisfy incentive constraints even in the case of robust implementation.

Appendix

Proof of proposition 1.Let an SCF satisfy no veto power, SP and MM. Sin€esat-
isfies MM, for each pair of profiles,u’ € U with f(u) # f(u), there exist an agent
j(u,u") and an outcome(u, u’) € X such that

U (F(W) 2 Ujuun (XU U)) & Uiy (F(U)) > Uiy (X(U, U)).

We now show that the following mechanisi robustly sequentially implements
f.



Main stage: Each agentannounces a listy(, nil, U, ) € Uix N, xU x X (whereN,
is the set of non-negative integers). We teh@ announced preference profb
the Main-stage) as the profile of the first components of the agents’ announce-
ments.

Case 11f (i) the announced preference profileus(ii) there existd € N announc-
ing (U, n!, U, x) such thatn' > 0 andf(u) # f(u), and (iii) eachj # i
announce:;nj1 = 0, then go to sub-stage, ).

Case 2If the announced preferences areand either

¢ all members announce 0 as the second components or

e there existd announcing , n', u’, x) such than! > 0 and f(u) =
f(u) and each # i announcesnj1 =0,

thenf(u) is implemented.
Case 30therwise x;- is implemented, wherg = minarg ma>f{nj1}.

Sub-stage(u, u’) Only two agents play at this sub-stage: ag'em’mouncingy1 >0 at
the main stage and agej{u, u’). In what follows, we simply writgj instead of
j(u, ). In the sub-stage, ageptioes not be informed about what number agent
i announces at the main stage. In this sub-stage, eachlagdtj} announces
a non-negative intege.

Case 1If n? = 0, thenf(u) is implemented.
Case 2If n! = 1 andnf > 0, thenx(u, u') is implemented.

Case 30therwise,By (u-) is implemented, wherk® = minarg maxg j, nﬁ and
U is the first component of the announce in the first stage.

Fix a type spacd = (T;, Ui, 7j)ien. We first show that any sequential equilibrium
on game M, 7") attains the SCRF if there exists an equilibrium in the game.

Claim1: Foreach € S, SEO(M, 7),t) ¢ f(Q(t)).

We first consider a condition foo{ ) in each sub-stage. Fix an information set of
agent where a type; of i announcea! > 1 and the game reached a sub-stage'].

Step 1: If 4 assigns a positive probability to a histofly, t) in the information set,
theno must achieve either(#i) or B(t;) after the history. Additionally, i;[t;](x(u, u’)) >
G[t;](f(u)) for j = j(u,u’), then xe B({i(t;)) must be achieved.

In mechanismM, when j choosean? > 0, i can obtainB;(G;(t))) by choosing
n? > nJ?. Thus, since ¢u) satisfies sequential rationality amdhas a lower bound
on X, if oj(t;) choosesnj? > 0 with a positive probability at the sub-stage,must
obtainB;(0;(t;)) by choosing sfiiciently Iargenf wheno(t;) indeed choosesf > 0.
On the other hand, if indeed chooses? = 0, then mechanismM implementsf (u)
independently of the choice af Thus, eitherf (u) or B(t;) is achieved after the history.

Next consider the case wheug{tj](x(u, u’)) > 0;[tj](f(u)). In this case, choos-

ing nj2 = 0 is not a best response fprto any choice of since, for eacm?, j can

10



obtain, by choosing? > n?, Bj(0j(t;)) or x(u,u), which satisfyu[t](B;(0i(t:))) >
Gi[t1(x(u, u)) > Gi[6](F(u). Thus, sinced.u) satisfies sequential rationality anfX)
has lower boundy(t;) does not assign any positive probabilitynj%)z 0 ando- must
obtainB; (G (t)) in the case.

Next, we consider a condition of(u) related to the main stage.

Step 2: If o(t*) achieves x# f(O(t*)) at atypet € S with a positive probability,
thenoi(t7) assigns probability 1 tojh> 0 at the main stage.

By no vet power, there existsuch thatx* ¢ B({;(t")). Fix suchi andx*. Assume
by contradiction thatri(t’) chooses’ = 0 with a positive probability at the main stage.

Since ¢, 1) satisfies sequential rationality amchas a lower bound o, o(t*)
must achieva(t") wheno(t;) of somek # i indeed choose@} > 0. Fromx" ¢ Bi(t;),
it follows thatx* is implemented when, for ea¢h+ i, o (t;) indeed choose&ﬁ = 0.
Then,x* is implemented as the result of either Case 1 of the main stage or Case 1 of
the sub-stage aftér chooses! > 0. From Step 1 and* ¢ B;(t"), it follows thato-(t*)
announces, with a positive probability, a preference prafile U with x* = f(u) at
the main stage. Thus, when(t’) indeed ChOOSQBil = 0, o(t*) achievesf (u) with
a positive probability as the result of case 1 in the main stage. However, simze
a lower bound orX, Step 1 implies that typ& can strictly improve his payb by
choosing a sfiiciently Iargenil in the main stage. It contradicts the assumption that
(o, p) satisfies sequential rationality. Thus;(t) must choosen! > 0 at the main
stage.

Since ¢, u) satisfies sequential rationality amdhas a lower bound oX, Step
2 implies thatx* € B(t;) for eachk # i. However, from no veto power, it implies
x* = f(0(t*)) and contradicts the assumption. Thus,) achieves onlyf (O(t)) at each
t € Sif an sequential equilibrium exists and Claim 1 is proved.

We next show that there exists an equilibrium on game ).

Claim 2: The following assessmeiat, 1 is an sequential equilibrium on game
(M, 7).

e Each typet; of each agent announcesi({t;), 0, u, X) at the main stage, where
u e U andx € X s arbitrarily chosen.

At sub-stagey, '), for j = j(u, u’), each typd; choosemJ? =0 if O[t;](f(u)) =
0;[t;](x(u, ")), andn?1 otherwise.

At sub-stagely, u’) aftert; choosesmil =1, choosemi2 =0.

At sub-stagely, u’) aftert; choosesnil > 1,8 choosesli2 =2.

At sub-stagey, u'), for j = j(u,u’), u(tx) of each typey assigns positive prob-
ability’s only to histories where age'nt:hoosemi1 =1.

First, we consider sequential rationality. Sintesatisfies SP, each agent cannot
improve his payff by choosing another paffatype at the main stage. If an agent
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deviates at the main-stage and chocn%es 0 and the game goes to a sub-stage!(,
since eachj € T; of j = j(u,u’) always announces his true preference type in the
main stage, it follows tha;Tt;]( f(u)) > 0;[tj](x(u, u")) and he chooser&f = 0. Thus,
agent cannot &ect the implemented outcome by deviating and chooSesO0 at the
main-stage.

At sub-stagey, u’) after agent announces' > 0, since each; € T; of j = j(u,u)
believes agent chooses'ni1 = 1 at the main stage, he cannot improve his (expected)
paydt by changing the number. On the other hand,tfcamnouncinml = 1 at the
main stage, his choice at sub-stage has fileceon the outcome. Fdy at the sub-
stage after he choosa$> 1, sincetj chooses 0 or 1, he can obtain a best outcome by
choosing 2. Therefore, this assessment is sequential rational.

Finally, we show this assessment satisfies consistency. Assume a sequence of per-
fect mixed strategies»(");” ; converging tao- such that for each type of each agént
the probability choosing! = 1 at the main stage fiiciently faster converges to zero
than the summation of the probability choosingll> 1. Since the sequence of belief
systemsy ")} , associated with«");” , converges tq, u is consistent. Thenp(u) is
an equilibrium. |

Proof of lemma 1.Let SM(v) C Y be the set of surplus maximizing social decisions at
v. By the assumption, SMJ # 0 for eachv € V.

Now, we introduce a pairwise relation, on U for eachy € Y as the following:
v >y V if and only if, for each andy €Y,

Vi) = vi(y) = viy) - w(y)- )

A relationv >y v’ is equivalent to the fact that, for eacle N andx, x' € X with
x = (y,m) andx’ = (Y, nY),

Vi) +m > vily)+m = vi(y)+m > Vvi(y)+n,

Then, an SCH = (y', m") satisfies MM if and only if for eachi, u’, whenever
U >y U, f(u) = f(U). In the following, we write “ an social decision ruig is
Maskin monotonic” if and only if for each, u’, whenevem >y, U, f(u) = f(u).
It is sufficient for the proof of Lemma 1 to show that there exists a Maskin monotonic
and surplus maximizing social decision ryfe Let us consider the following clam.

Claim 3: For eachv,v € V andy € Y if y € E(v) andv >, v, theny € E(V') C
E(Vv).

Sincey € E(v) implies that}; vi(y) — c(y) = X vi(y') — c(y’) for eachy’ € Y and
v >y V' implies thaty;; (v (y) - V/(¥)) = Zi(vi(y) - vi(y)),

Z\/i(y)—c(y) > Z\/i()/) —c(y) foreachy €Y.

Then,y € E(V). Sincey’ € E(v') implies that}}; vi(y) — c(y) = X Vi(y') — c(y’) and
v >y V' implies thaty (v (Y) -V (y)) > Zi(vi(y)-Vi(y')), it follows thaty; vi(y')—c(y’) >
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>ivi(y) = c(y). Fromy € E(v), it follows thaty’ € E(u). Thus,E(V') € E(v) and Claim
3 is proved.

Now, define a social decision rujé in the following way: letn = 1 andV?® = V,
then,

Step 1: Choose a paytype profilev” € v andy" € E(V") arbitrarily.
Step 2: Letyf(v) = y for eachv € V" = {v € V"y" € E(V)}.

Step 3: DefineV™! = v\ V",

Step 4:If V™1 % @, then increasa to n + 1 and return to Step 1.

SinceV is a countable set, a social decision rylecan be defined in this way. It is
clear thaty" is surplus-maximizing. If a pair of € V" andv’ € V" satisfiess >yie) Vs
since Claim 3 impliey'(v) € E(v') € E(v), it follows thatn = n’. Thus,y' is Maskin
monotonic. ]
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