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Tsuyoshi Adachi†
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Abstract

We study social choice functions that are robustly implemented in sequential
equilibria of extensive-form games on all common prior type spaces. We show that
the combination of strategy-proofness, Maskin monotonicity, and no veto power is
a sufficient condition for these implementation. Unlike robust implementation by
normal-form games, desirable social choice functions can be implemented even in
single-peaked voting or quasi-linear preferences environments.

JEL Classification Numbers: C72, C79, D78, D82
Keywords: Implementation; Extensive-form games; Robustness; Extensive-form
implementation; Maskin monotonicity

1 Introduction

This paper considers the problem of fully implementing a social choice function (SCF)
in incomplete information environments. In the spirit of “Wilson doctrine” (Wilson
[1987]), we consider full implementation where mechanisms do not rely on the features
of agents’ common knowledge about probability distributions on the agents’ types in
the same way of “robust implementation” by Bergemann and Morris [2005a,b]. We ex-
amine implementation by extensive-form games, where the mechanism designers con-
struct extensive-form games as their mechanisms not only normal-form games. Until
now, robust implementation has been studied only in implementation by normal-form
games. However, in the literature of full implementation, it is known that if designers
can design extensive-form games, then the larger class of SCFs can be implemented.
Our purpose is to determine whether this valuable property is applicable in the case of
robust implementation.

In the literature of full implementation with complete information Maskin [1999]
analyses implementation problems where an SCF must be attained by all Nash equilib-
ria refereed to as “Nash implementation”. He provides a necessary and almost sufficient

∗The author appreciates the financial support from the Japanese Ministry of Education, Culture, Sports,
Science and Technology under Waseda 21st COE-GLOPE project.
†Graduate School of Economics, Waseda University; E-mail: adachi39@gmail.com
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condition for Nash implementation, known asMaskin monotonicity. Since Maskin’s
formulation assumes that the agents have perfect information, the researches has been
dealing with implementation theory with incomplete information (see Postlewaite and
Schmeidler [1986], Palfrey and Srivastava [1989], Jackson [1991]). In incomplete in-
formation environments, the agents’ types are private information and they have beliefs
about the other agents’ types.

In the literature of incomplete information environments, the designers has been
allowed to use the information what beliefs the agents had. Many researchers have
criticized these assumptions about information since, in realistic implementation prob-
lems, the mechanism designers may not have the detail information of the agents’ prior
beliefs. In a novel approach, Bergemann and Morris [2005b,a] propose a new imple-
mentation concept, referred to as robust implementation. Robust implementation re-
quires that the implementation result of a mechanism must be robust to the assumption
of the information about the agents. They show that strategy-proofness is a neces-
sary condition for robust implementation of SCFs with private values.1 In addition,
Saijo et al. [2007] reveal a necessary and sufficient condition for robust implementa-
tion. Strategy-proofness in itself does not imply the negative results for social decision
in some economic problems such as auction environments or single-peaked prefer-
ences environments. However, Saijo et al. [2007] reveal that robust implementation is
stronger than strategy-proofness; in fact, no SCFs can be robustly implemented in the
above two environments.

On the other hand, implementation by extensive-form games is an well-known
method to fully implement the larger class of SCFs than implementation by normal-
form games. If the agents have sequential rationality and the designer can design the
mechanisms as extensive-form games, the designer can exclude undesirable equilib-
ria by the equilibrium refinement and fully implement the larger class of SCFs.2 Our
purpose is to study robust sequential implementation; it is robust implementation in
sequential equilibria, which is a common solution concept of extensive-form games
developed by Kreps and Wilson [1982]. It corresponds to robust implementation in
Bergemann and Morris [2005a], which alternatively employs the Bayesian equilibria
of normal-form games. In the literature of extensive-form implementation with in-
complete information, many of the studies revealed sufficient conditions on SCFs to be
implemented by extensive-form games by restricting their analyses to the environments
such as economic or private values environments.

Some researchers point out that implementation by extensive-form games is more
suitable in order not to depend on the agents’ prior beliefs than normal-form games.
Bergin and Sen [1998] emphasize that, in extensive-form implementation, the designer
can use posterior beliefs even if the SCF cannot be implemented by using only prior
beliefs. Duggan [1998] analyzes, with quasi-linear and private values preferences. a
sufficient condition to implement the designer’s second best outcomes in sequential

1Bergemann and Morris [2005b] show that ex post incentive compatibility is necessary forpartial imple-
mentationwith robustness, which requires that there exists at least one equilibrium that achieves the SCF. In
private value environments, ex post incentive compatibility is equivalent to strategy-proofness.

2In the literature of implementation by extensive-form games, Moore and Repullo [1988] and Abreu and
Sen [1990] study implementation with complete information and Baliga [1999] and Brusco [2006] study
implementation with incomplete information.
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equilibria on all the agents’ prior beliefs when the designer permits arbitrarily small
perturbations of his SCF. their approaches are actually independent of robust imple-
mentation but their aim is the same as ours. We would like to answer the question
whether extensive-form implementation is robust to the assumption on information.

We provide a relatively simple sufficient condition for robust sequential implemen-
tation by restricting our analysis to the case of private values; an SCF can be robustly
sequentially implemented if the SCF satisfies strategy-proofness, Maskin monotonic-
ity, and no veto power. This sufficient condition implies that robust sequential imple-
mentation is significantly weaker than robust implementation by normal form games.
The mechanism in the proof of sufficiency theorem is similar to those of the studies in
this literature; it is composed of at most two rounds of announcements by the agents
and needs only one round in any equilibrium paths.3 We consider the implication of
our sufficient condition in two kinds of economically important environments: the envi-
ronments with single-peaked preferences and quasi-linear preferences. We show that,
with single-peaked preferences, the median voter rule environments can be robustly
sequentially implemented, and, with quasi-linear preferences, there exists at least one
surplus-maximizing SCF that can be robustly sequentially implemented. These results
contrast with the previously described results of robust implementation with normal-
form games.

The paper is organized as follows. Section 2 discusses the basic notation and de-
fines robust implementation by extensive-form games. Section 3 provides a sufficient
condition for this implementation and considers our sufficient condition in single-
peaked preference environments and quasi-linear preferences environments. Section
4 concludes the paper.

2 Notation and Definitions

We consider a finite set of agents,N ≡ {1,2, . . . ,N}. Let N ≥ 3. X is the set of
outcomes, the objects of social choice. For eachi ∈ N , agenti’s utility function
is ui : X → R, and the class of the possible utility functions of agenti is Ui . Let
u = (u1,u2, . . . , uN) andU ≡ ×i∈NUi . U is a countable set. It should be clear that
preferences depend only on an agent’s own information and not those of other agents.
We assume that preferences satisfy the von Neumann and Morgenstern axioms.

An SCF is a functionf : U → X, which associates with eachu ∈ U a unique social
optimal f (u) in X.

A Type space

ti ∈ Ti is agenti’s type, whereTi is a countable set for eachi. Let T = ×i∈NTi .
A type of agenti includes a description of his preference. Thus, there is a function
ûi : Ti → Ui with ûi(ti) being agenti’s utility function when his type isti . Let û(t) =
(û1(t1), û2(t2), . . . , ûN(tN)). A type of agenti also includes a description of his beliefs

3In this regard, our mechanism is not a multi-stage game with complete information unlike many of the
studies. Brusco [1995] and Brusco [2006] also uses the mechanism that is not a multi-stage game in his
sufficiency theorem.
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about the types of the other agents; we describe ˆπi(ti)[t−i ] as the probability assigned
by typeti to the other agents’ type profilet−i . Now, atype spaceis a collection:

T = (Ti , ûi , π̂i)i∈N.

We assume that a type spaceT = (Ti , ûi , π̂i)i∈N satisfies thecommon prior assump-
tion.4 That is, there existsp ∈ ∆(T) such that, for eachi andti ,∑

t′−i∈T−i

p(ti , t
′
−i) > 0

and

π̂i(ti)[t−i ] =
p(ti , t−i)∑

t′−i∈T−i
p(ti , t′−i)

.

Note that there is generally no relation between a preference type setU and a type
setT, which is defined by a type spaceT = (Ti , ûi , π̂i)i∈N; It depends on the property
of a type spaceT . That is, there may exist a profileu ∈ U such that ˆu(t) , u for each
t ∈ T and there may exist a distinct pair of type profilest, t′ ∈ T such that ˆu(t) = û(t′).5

The concept of a type space helps us to analyze the implementation problems sig-
nificantly robust to the assumption on the agents’ private information, as we will see
later.

Extensive-form games and equilibrium

A mechanismM is an extensive-form game with incomplete information. A detailed
description of extensive-form game is provided in Selten [1975].6 h ∈ H is a history
in theM, whereH constitutes the set of histories. The set of terminals is a subset
H̄ ∈ H. An outcome function assigns an element inX to each terminal. For agenti, an
information setI i ∈ Ii is a subset ofH; each non-terminal historyh is an element of
exactly one information set of some agent. Each information set of an agent identifies
the set of histories that are indistinguishable for the agent when he reaches one of the
histories. An action set is assigned to each information set of the agents.

Given a type spaceT = (Ti , ûi , π̂i)i∈N, a pair (M,T ) denotes an (extensive-form)
game.

Let σi ∈ Σi be a behavior strategy of agenti; σi assigns a probability distribution
on the action set to each pair (I i , ti) ∈ Ii × Ti . Letσ = (σ1, σ2, . . . , σN).
µi is a belief system of agenti. It assigns to each pair (I i , ti) ∈ Ii × Ti a probability

distribution onI i × T−i . Let µ = (µ1, µ2, . . . , µN).
We state “a belief profileµ is Bayes consistentwith a strategy profileσ” if and

only if beliefs are updated from an information set to the next information set by using
Bayes’ rule whenever possible.

4Although we require the common prior in accordance with the standard definition of sequential equilib-
rium, our sufficient theorem can be obtained with larger type spaces. In fact, the proof does not depend the
commonness of the agents’ prior distributions.

5Bergemann and Morris [2005b] and Bergemann and Morris [2005a] provides a more detailed analysis
of type spaces

6For more details of an extensive-form mechanism, refer to Bergin and Sen [1998].
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We write E(ûi)[σ|µi(I i , ti), (I i , ti)] as the expected utility of typeti with belief µi

when information setI i is attained and strategy profileσ are employed by the agents.
A sequential equilibrium (or equilibrium) assessment(σ, µ) on game (M,T ) is a

pair of a strategy profile and belief profile that satisfies the following two conditions:

Sequential rationality For eachi ∈ N , I i ∈ Ii , ti ∈ Ti , andσ′i ∈ Σi ,

E(ûi)[σ|µi(I i , ti), I i , ti ] ≥ E(ûi)[(σ
′
i , σ−i)|µi(I i , ti), I i , ti ].

Consistency There exists a sequence (σn)∞n=1 of proper mixed strategies converging to
σ with Bayes consistent beliefs (µn)∞n=1 converging toµ.

A proper mixed strategy is a strategy that assigns positive probabilities to all actions
in each action set at each pair (I i , ti) ∈ Ii × Ti .

Let SEO((M,T ), t) be the set of sequential equilibrium outcomes of game (M,T )
at typet.7

Robust sequential implementation

Note that our definitions about an extensive-form mechanism and sequential equilib-
rium are basically equivalent to the definitions in the traditional studies of extensive-
form implementation, except we describe them with a concept of atype spaceex-
pressly. In the traditional notation, a type space is treated as given; the description of
what type set each agent has and what beliefs each agent has on the other agents’ type
profiles are treated as a part of the environment. On the other hand, we separate the
descriptions from the environments and define a type space expressly.

The definition ofnon-robustextensive-form implementation can be described with
a concept of a type space as follows:

Definition 1 (Sequential Implementation). A mechanismM sequentially implements
an SCF f on a type spaceT = (Ti , ûi , π̂i)i∈N if and only if SEO((M,T ), t) = f (û(t)) for
each t∈ S .

This definition corresponds to the implementation using sequential equilibria in
Bergin and Sen [1998] and Baliga [1999].8 It requires full implementation; every se-
quential equilibrium must attain the SCF. And, it is not robust; whether a mechanism
M sequentially implements an SCF depends on the type space, since a type space in-
fluences the game that the agents will play and the sequential equilibrium of the game.

Next, we consider robust implementation.

Definition 2 (Robust Sequential Implementation on Common Prior Type Spaces). A
mechanismM robustly sequentially implements an SCF f if and only ifM sequentially

7Although we define implementation by employing sequential equilibrium as the solution concept, our
results are also satisfied by employing slightly weak solution concepts such as weak perfect Bayesian equi-
librium Mas-Colell et al. [1995].

8Note that implementation is required only if type profiles is an element inS. That is, the designer
wants to implement at type profilet ∈ T only if t is considered possible by an agent inN. Our definition
corresponds torobust Bayesian implementationin Saijo et al. [2007].
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implements f on all type spaces. An SCF f is robustly sequentially implementable if
and only if there exists a mechanism that robustly sequentially implements f on all type
spaces.

Robust sequential implementationrequires that the implementation result is robust
on the assumption of the type space.Robust implementation is stronger than implemen-
tation with all prior beliefs on preference type setU. Since each type space determines
a type set independently ofU, robust implementation can consider more general struc-
tures of private information thanU.

3 Implementation and Monotonicity

Now, we introduce some conditions associated with robust implementability.
SP requires that truth-telling is a dominant strategy in a direct revelation game for

each agent.

Definition 3 (Strategy-Proofness). An SCF f is strategy-proof (SP), if for each u∈ U,
i ∈ N and u′i ∈ Ui ,

ui( f (u)) ≥ ui( f (u′i ,u−i)).

SP is also a necessary condition for robust sequential implementation. The reason
is that SP is a necessary condition forpartial robust implementation in Bayesian equi-
libria (see Bergemann and Morris [2005b]) and sequential equilibrium is a refinement
of Bayesian equilibrium.

Remark 1. If an SCF f can be robustly sequentially implemented, then f satisfies SP.

Maskin [1999] provides that Maskin monotonicity as a necessary condition for
Nash implementation– implementation in Nash equilibria with complete information.
In our environments, Maskin monotonicity is described as follows.

Definition 4 (Maskin Monotonicity (Maskin [1999])). An SCF f is Maskin monotonic
(MM) if and only if, for each u,u′ ∈ U,

∀i ∈ N, ∀x ∈ X : ui( f (u)) ≥ ui(x) =⇒ u′i ( f (u)) ≥ u′i (x),

then,
f (u) = f (u′).

change In other words, Maskin monotonicity implies the following; if an SCF
chooses an outcomex when the preference profile isu and any agents does not newly
strictly prefer any outcome tox when the preference profile change intou′, then the
SCF remains to choosex at profileu′.

For our purposes, it is useful to state the above definition in its contrapositive form.
That is, an SCFf satisfies MM if and only if, for eachu,u′ ∈ U with f (u) , f (u′),
there existsi andx such that

ui(x) > ui( f (u′)) & u′i ( f (u′)) ≥ u′i (x). (1)
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Given an SCF satisfying MM, we state “u′ ∈ U is an unacceptable deception of
u” if f (u) , f (u′). Let UD(u) ⊆ U be the set of “unacceptable deceptions ofu”. For
eachu,u′ ∈ U with u′ ∈ UD(u), i(u,u′) ∈ N andx(u,u′) ∈ X denote the agent and the
outcome satisfying equation (1).

Maskin [1999] shows that an SCF can be implemented in Nash equilibria if the
SCF satisfies MM andno veto power. Let Bi(u) be the set of best outcomes ofui on X.

Definition 5 (No Veto Power (Maskin [1999])). An SCF f satisfies no veto power if
and only if, for each u and a,

x ∈ Bj(u) for each j, i =⇒ f (u) = x.

No veto power requires that if an outcome is considered the best outcome forN−1
agents, then the outcome is chosen by the SCF. No veto power is regarded as for a weak
condition; in fact, any SCF satisfies no veto power with many economic environments
including the cases with quasi-linear preferences (we will see later in this section).

The following theorem provides a sufficient condition for robust sequential imple-
mentation.

Theorem 1. If an SCF f satisfies SP, MM, and no veto power, then f can be robustly
sequentially implemented.

Proof. The proof is provided in the Appendix. �

The proof is constructive. The mechanism in the proof is a game withone round
of signaling(Bergin and Sen [1998]), where each agent announces his own preference
type at the first stage and any equilibria on any type spaces do not go beyond the first
stage. SP assures that truth telling at the first stage is an equilibrium strategy in the
mechanism on any type spaces. And by MM and no veto power, it can be shown that
all equilibria attain the SCF on any type spaces. Intuitively, MM has the following
effect on the mechanism; if the true preference profile isu ∈ U but the agents report
u′ satisfying f (u) , f (u′) at the first stage, then agenti(u,u′) must strictly prefer to
confess the deception and achievex(u,u′) instead of f (u′) at a second stage, and it
implies that some agent prefers to move the game to the second stage.

Our approach is linked to that of Baliga [1999], which shows that if an SCF satis-
fies three conditions referred to as incentive compatibility, preference reversal, and the
economic environment, then the SCF is sequentially implementable. Incentive compat-
ibility corresponds to SP in our theorem and preference reversal corresponds to MM in
our theorem. No veto power necessarily holds in the economic environment. We use
MM instead of preference reversal to assure that moving the game to the second stage
achieves the same outcome as the outcome achieved by not moving the second stage
even if no agent confesses in any second stages.

There are some studies about the relation between SP and MM. For one thing, if an
SCF satisfies SP and non-bossy, then the SCF satisfies MM (see, for example, lemma
2 of Barbera and Jackson [1995]). Thus, we obtain the following corollary.
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Definition 6 (Non-Bossiness9). An SCF f is non-bossy if and only if, for each u∈ U,
i ∈ N, and u′i ∈ Ui ,

ui( f (u)) = ui( f (u′i ,u−i)) =⇒ f (u) = f (u′).

Corollary 1. If an SCF satisfies SP, no veto power, and non-bossiness, then the SCF
can be robustly sequentially implemented.

This corollary can be used for the SCFs that satisfy SP and non-bossiness; as an
example, we consider the median voter rule with single-peaked preferences environ-
ments.

Single-peaked voting

The set of alternative isX = [0, 1]. Each preferenceui ∈ Ui of i ∈ N is single-peaked;
for eachui ∈ Ui , there exists a peakp(ui) ∈ X such thatui is strictly increasing on
[0, p(ui)] and strictly decreasing on [p(ui),1].

In the case whereN is odd,the median voter ruleis the leading example of SCFs.
The median voter rule assigns to each profileu ∈ U the N+1

2 -th largest peak of the
profile. It is known that the median voter rule satisfies SP, Pareto efficiency, and non-
bossiness (see Barbera and Jackson [1995]).

By Saijo et al. [2007], it is known that the median voter rule is not robustly im-
plemented by normal-form games. However, since the median voter rule obviously
satisfies no veto power, it follows from corollary 1 that the median voter rule can be
robustly sequentially implemented.

Quasi-linear preferences

Next, we consider environments with quasi-linear preferences. In these environments,
the set of outcomes can be described as

X ≡ {(y,m1,m2, . . . ,mN)|y ∈ Y,mi ∈ R ∀i},

wherey is a social decision andmi is a transfer toi. Let m ≡ (m1,m2, . . . ,mN). In
addition, for each preferenceui ∈ Ui , there exists avaluation function vi : Y → R
satisfying

ui(y,m) = vi(y) +mi .

Thus, we can directly describe a valuation functionvi as the alternative of the corre-
sponding utility functionui . Let the set of the valuation functions beVi for eachi. An
SCF f can be described as a function onV. An SCF f can be described as a pair of
two functions,yf (on Y) andmf (onR): f (v) = (yf (v),mf (v)) for eachv. An SCF f
is surplus-maximizingif yf maximizes thesocial surplus, described as

∑
i vi(y) − c(y),

wherec(y) is the cost of taking a social decisiony.
Auction is an important example of environments with quasi-linear preferences. By

Saijo et al. [2007], it is showed that, in auction, any surplus-maximizing SCF does not

9Our definition is the same as the definition of Saijo et al. [2007].

8



robustly implemented by normal-form games. However, we can show that there exist
efficient SCFs robustly implemented by sequential equilibria; an SCF associated with
second price auction is an example. More generally, robust sequential implementa-
tion and surplus-maximizing problems are generally compatible in environments with
quasi-linear preferences.

Now, we say “an SCFf is associated with a Groves mechanism” iff is surplus-
maximizing andmf satisfies the following conditions: for eachi andv,

mf
i (v) =

∑
j,i

v j(y
f (v)) − c(yf (v)) + γi(v−i),

whereγ is an arbitrary function onV−i . It is known that Groves mechanism satisfies
SP (see Groves [1973], Groves and Loeb [1975]). Now, we can obtain the following
lemma.

Lemma 1. There exists a SCF associated with a Groves mechanism and satisfies MM
in environments with quasi-linear preferences.

Proof. The proof is provided in the Appendix �

In our environments, since each agent has no best outcome, no veto power is always
satisfied. From proposition 2 and lemma 1, we obtain the following proposition.

Proposition 1. In quasi-linear preferences environments, there exists an SCF that is
surplus-maximizing and robustly sequentially implemented.

4 Concluding remarks

This paper analyses robust implementation as sequential equilibria on all common prior
type spaces. We show that an SCF can be robustly sequentially implemented if the SCF
satisfies strategy-proofness, Maskin monotonicity, and no veto power. SCFs can be
implemented in single-peaked voting and quasi-linear preferences environments. Since
it is known that in these environments, robust implementation with normal-form games
is not functional, we find that implementation with extensive-form games is an effective
measure to satisfy incentive constraints even in the case of robust implementation.

Appendix

Proof of proposition 1.Let an SCFf satisfy no veto power, SP and MM. Sincef sat-
isfies MM, for each pair of profilesu,u′ ∈ U with f (u) , f (u′), there exist an agent
j(u,u′) and an outcomex(u, u′) ∈ X such that

u j(u,u′)( f (u)) ≥ u j(u,u′)(x(u, u′)) & u′j(u,u′)( f (u)) > u′j(u,u′)(x(u,u′)).

We now show that the following mechanismM robustly sequentially implements
f .

9



Main stage: Each agenti announces a list (ui ,n1
i ,u
′, xi) ∈ Ui ×N+×U ×X (whereN+

is the set of non-negative integers). We termthe announced preference profile(at
the Main-stage) as the profile of the first components of the agents’ announce-
ments.

Case 1If (i) the announced preference profile isu, (ii) there existsi ∈ N announc-
ing (ui , n1

i ,u
′, x) such thatn1

i > 0 and f (u) , f (u′), and (iii) each j , i
announcesn1

j = 0, then go to sub-stage (u,u′).

Case 2If the announced preferences areu, and either

• all members announce 0 as the second components or

• there existsi announcing (ui ,n1
i ,u
′, xi) such thatn1

i > 0 and f (u) =
f (u′) and eachj , i announcesn1

j = 0,

then f (u) is implemented.

Case 3Otherwise,xi∗ is implemented, wherei∗ ≡ min arg maxj{n1
j }.

Sub-stage(u,u′) Only two agents play at this sub-stage: agenti announcingn1
i > 0 at

the main stage and agentj(u,u′). In what follows, we simply writej instead of
j(u,u′). In the sub-stage, agentj does not be informed about what number agent
i announces at the main stage. In this sub-stage, each agentk ∈ {i, j} announces
a non-negative integern2

k.

Case 1If n2
j = 0, then f (u) is implemented.

Case 2If n1
i = 1 andn2

j > 0, thenx(u,u′) is implemented.

Case 3Otherwise,Bk∗(uk∗) is implemented, wherek∗ ≡ min arg maxk∈{i, j} n2
k and

uk∗i
is the first component of the announce in the first stage.

Fix a type spaceT = (Ti , ûi , π̂i)i∈N. We first show that any sequential equilibrium
on game (M,T ) attains the SCFf if there exists an equilibrium in the game.

Claim 1: For eacht ∈ S, SEO((M,T ), t) ⊆ f (û(t)).
We first consider a condition for (σ, µ) in each sub-stage. Fix an information set of

agenti where a typeti of i announcedn1
i > 1 and the game reached a sub-stage (u,u′).

Step 1: If µ assigns a positive probability to a history(h, t) in the information set,
thenσmust achieve either f(u) or B(ti) after the history. Additionally, if̂u j [t j ](x(u,u′)) >
û j [t j ]( f (u)) for j ≡ j(u,u′), then x∈ B(ûi(ti)) must be achieved.

In mechanismM, when j choosesn2
j > 0, i can obtainBi(ûi(ti)) by choosing

n2
i > n2

j . Thus, since (σµ) satisfies sequential rationality andu has a lower bound
on X, if σ j(t j) choosesn2

j > 0 with a positive probability at the sub-stage,σ must
obtainBi(ûi(ti)) by choosing sufficiently largen2

j whenσ j(t j) indeed choosesn2
j > 0.

On the other hand, ifj indeed choosesn2
j = 0, then mechanismM implementsf (u)

independently of the choice ofi. Thus, eitherf (u) or B(ti) is achieved after the history.
Next consider the case where ˆu j [t j ](x(u,u′)) > û j [t j ]( f (u)). In this case, choos-

ing n2
j = 0 is not a best response forj to any choice ofi since, for eachn2

i , j can

10



obtain, by choosingn2
j > n2

i , Bj(û j(t j)) or x(u,u′), which satisfyûi [ti ](Bi(ûi(ti))) ≥
ûi [ti ](x(u,u′)) > ûi [ti ]( f (u)). Thus, since (σ.µ) satisfies sequential rationality andu(X)
has lower bound,σ j(t j) does not assign any positive probability ton2

j = 0 andσ must
obtainBi(ûi(ti)) in the case.

Next, we consider a condition of (σ, µ) related to the main stage.
Step 2: If σ(t∗) achieves x∗ , f (û(t∗)) at a type t∗ ∈ S with a positive probability,

thenσi(t∗i ) assigns probability 1 to n1i > 0 at the main stage.
By no vet power, there existsi such thatx∗ < B(ûi(t∗i )). Fix suchi andx∗. Assume

by contradiction thatσi(t∗i ) choosesn1
i = 0 with a positive probability at the main stage.

Since (σ, µ) satisfies sequential rationality andu has a lower bound onX, σ(t∗)
must achieveB(t∗i ) whenσk(t∗k) of somek , i indeed choosesn1

k > 0. Fromx∗ < Bi(t∗i ),
it follows that x∗ is implemented when, for eachk , i, σk(t∗k) indeed choosesn1

k = 0.
Then,x∗ is implemented as the result of either Case 1 of the main stage or Case 1 of
the sub-stage aftert∗i choosesn1

i > 0. From Step 1 andx∗ < Bi(t∗i ), it follows thatσ(t∗)
announces, with a positive probability, a preference profileu ∈ U with x∗ = f (u) at
the main stage. Thus, whenσi(t∗i ) indeed choosesn1

i = 0, σ(t∗) achievesf (u) with
a positive probability as the result of case 1 in the main stage. However, sinceu has
a lower bound onX, Step 1 implies that typet∗i can strictly improve his payoff by
choosing a sufficiently largen1

i in the main stage. It contradicts the assumption that
(σ, µ) satisfies sequential rationality. Thus,σi(t∗i ) must choosen1

i > 0 at the main
stage.

Since (σ, µ) satisfies sequential rationality andu has a lower bound onX, Step
2 implies thatx∗ ∈ B(t∗k) for eachk , i. However, from no veto power, it implies
x∗ = f (û(t∗)) and contradicts the assumption. Thus, (σ, µ) achieves onlyf (û(t)) at each
t ∈ S if an sequential equilibrium exists and Claim 1 is proved.

We next show that there exists an equilibrium on game (M,T ).

Claim 2: The following assessmentσ, µ is an sequential equilibrium on game
(M,T ).

• Each typeti of each agenti announces (ˆui(ti),0,u, x) at the main stage, where
u ∈ U andx ∈ X is arbitrarily chosen.

• At sub-stage (u,u′), for j = j(u,u′), each typet j choosesn2
j = 0 if û j [t j ]( f (u)) ≥

û j [t j ](x(u, u′)), andn2
j 1 otherwise.

• At sub-stage (u,u′) afterti choosesn1
i = 1, ti choosesn2

i = 0.

• At sub-stage (u,u′) afterti choosesn1
i > 1, ti choosesn2

i = 2.

• At sub-stage (u,u′), for j = j(u,u′), µk(tk) of each typetk assigns positive prob-
ability’s only to histories where agenti choosesn1

i = 1.

First, we consider sequential rationality. Sincef satisfies SP, each agent cannot
improve his payoff by choosing another payoff type at the main stage. If an agenti
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deviates at the main-stage and choosesn1
i > 0 and the game goes to a sub-stage (u,u′),

since eacht j ∈ T j of j = j(u,u′) always announces his true preference type in the
main stage, it follows that ˆu j [t j ]( f (u)) ≥ û j [t j ](x(u,u′)) and he choosesn2

j = 0. Thus,
agenti cannot affect the implemented outcome by deviating and choosesn1

i > 0 at the
main-stage.

At sub-stage (u,u′) after agenti announcesni > 0, since eacht j ∈ T j of j = j(u,u′)
believes agenti choosesn1

i = 1 at the main stage, he cannot improve his (expected)
payoff by changing the number. On the other hand, forti announcingn1

i = 1 at the
main stage, his choice at sub-stage has no effect on the outcome. Forti at the sub-
stage after he choosesni

i > 1, sincet j chooses 0 or 1, he can obtain a best outcome by
choosing 2. Therefore, this assessment is sequential rational.

Finally, we show this assessment satisfies consistency. Assume a sequence of per-
fect mixed strategies (σn)∞n=1 converging toσ such that for each type of each agenti,
the probability choosingn1

i = 1 at the main stage sufficiently faster converges to zero
than the summation of the probability choosing alln1

i > 1. Since the sequence of belief
systems (µn)∞n=1 associated with (σn)∞n=1 converges toµ, µ is consistent. Then, (σ, µ) is
an equilibrium. �

Proof of lemma 1.Let SM(v) ⊆ Y be the set of surplus maximizing social decisions at
v. By the assumption, SM(v) , ∅ for eachv ∈ V.

Now, we introduce a pairwise relation≻y on U for eachy ∈ Y as the following:
v ≻y v′ if and only if, for eachi andy′ ∈ Y,

v′i (y) − v′i (y
′) ≥ vi(y) − vi(y

′). (2)

A relationv ≻y v′ is equivalent to the fact that, for eachi ∈ N andx, x′ ∈ X with
x ≡ (y,m) andx′ ≡ (y′,m′),

vi(y) +mi ≥ vi(y
′) +m′i =⇒ v′i (y) +mi ≥ v′i (y

′) +m′,

Then, an SCFf = (yf ,mf ) satisfies MM if and only if for eachu,u′, whenever
u ≻yf (u) u′, f (u) = f (u′). In the following, we write “ an social decision ruleyf is
Maskin monotonic” if and only if for eachu,u′, wheneveru ≻yf (u) u′, f (u) = f (u′).
It is sufficient for the proof of Lemma 1 to show that there exists a Maskin monotonic
and surplus maximizing social decision ruleyf . Let us consider the following clam.

Claim 3: For eachv, v′ ∈ V andy ∈ Y if y ∈ E(v) andv ≻y v′, theny ∈ E(v′) ⊆
E(v).

Sincey ∈ E(v) implies that
∑

i vi(y) − c(y) ≥ ∑i vi(y′) − c(y′) for eachy′ ∈ Y and
v ≻y v′ implies that

∑
i(v
′
i (y) − v′i (y

′)) ≥ ∑i(vi(y) − vi(y′)),∑
i

v′i (y) − c(y) ≥
∑

i

v′i (y
′) − c(y′) for eachy′ ∈ Y.

Then,y ∈ E(v′). Sincey′ ∈ E(v′) implies that
∑

i v′i (y)− c(y) =
∑

i v′i (y
′)− c(y′) and

v ≻y v′ implies that
∑

i(v
′
i (y)−v′i (y

′)) ≥ ∑i(vi(y)−vi(y′)), it follows that
∑

i vi(y′)−c(y′) ≥
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∑
i vi(y) − c(y). Fromy ∈ E(v), it follows thaty′ ∈ E(u). Thus,E(v′) ⊆ E(v) and Claim

3 is proved.

Now, define a social decision ruleyf in the following way: letn = 1 andV̄1 ≡ V,
then,

Step 1: Choose a payoff type profilevn ∈ V̄n andyn ∈ E(vn) arbitrarily.

Step 2: Let yf (v) = yn for eachv ∈ Vn ≡ {v ∈ V̄n|yn ∈ E(v)}.

Step 3: DefineV̄n+1 ≡ V̄n \ Vn.

Step 4: If V̄n+1 , ∅, then increasen to n+ 1 and return to Step 1.

SinceV is a countable set, a social decision ruleyf can be defined in this way. It is
clear thatyf is surplus-maximizing. If a pair ofv ∈ Vn andv′ ∈ Vn′ satisfiesv ≻yf (v) v′,
since Claim 3 impliesyf (v) ∈ E(v′) ⊆ E(v), it follows thatn = n′. Thus,yf is Maskin
monotonic. �
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