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Balanced Contributions Properties and Values for

Cooperative Games

Takumi Kongo∗

January 11, 2008

Abstract

The balanced contributions property introduced by Myerson (1980;
International Journal of Game Theory 9, 169-182) characterizes the
Shapley value as a unique efficient and one-point solution for cooper-
ative games. By replacing the reduced game in the property with the
other types of reduced games, variations of the property are obtained.
The new balanced contributions properties characterize other efficient
and one-point solutions for cooperative games such as the egalitarian
value, the CIS value, and the ENSC value. The characterizations lead
to non-cooperative implementations of those values. In addition, since
all of those values are linear, any convex combination of the values, such
as the α-egalitarian Shapley value and the α-consensus value, and a
value in a class of equal surplus sharing solutions are characterized and
implemented in the similar way.

JEL classification: C71, C72
Keywords: balanced contributions property, egalitarian value, CIS value,

ENSC value, axiomatization, implementation,

1 Introduction

One of the important criteria in collective decision-making problems is fair-
ness. In cooperative game theory, the widely used fairness criterion is the
balanced contributions property introduced by Myerson (1980). The prop-
erty asserts that “for any two players i and j, i’s contribution to j should be

∗Graduate School of Economics, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku,
Tokyo, 169-8050 Japan. E-mail: kongo takumi@toki.waseda.jp
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equal to j’s contribution to i,” hence, the property is interpreted as a kind
of the fairness property among players.

Player i’s contribution to j is evaluated by the difference between the
two values which j receives in the original game and in the reduced game
induced from i’s withdrawal. In the balanced contributions property, i’s
withdrawal induce the restricted game on the set of players except i. How-
ever, a restriction of the game on the set of remaining players is slightly
different from the situation induced from a player’s withdrawal. Consider
the situation in which people discuss how to allocate the goods that have
already been produced. If someone leaves the situation with obtaining some
goods, the remaining players discuss how to allocate the remaining goods
rather than the amount of goods remaining players can produce.

Kongo et al. (2007) consider such situations and define the marginal
games in which players being withdrawn cooperate to remaining players with
obtaining the value they can generate by themselves. By using the marginal
games, they introduce a variation of the balanced contributions property
and the new property characterizes the Shapley value. Since the original
balanced contributions property also characterizes the Shapley value, the
Shapley value is an efficient and one-point solution characterized by the two
different fairness criteria.

In this paper, by considering three other reduced games, we introduce
three variations of the balanced contributions properties. Each of the three
properties characterizes three well-known values for cooperative games: the
egalitarian value, the CIS value, and the ENSC value. Thus, all of those
values are seem to be “fair” solutions as well as the Shapley value and the
differences among them come from the differences in evaluation of player’s
contribution to the other.

The paper is organized as follows. Notations and definitions are pre-
sented in Section 2. The variations of the balanced contributions property
and characterizations of the egalitarian value, the CIS value, and the ENSC
value are given in Section 3. The non-cooperative implementations of the
values are presented in Section 4. Further generalization are included in
Section 5.

2 Preliminaries

A pair (N, v) is a cooperative game (with transferable utility) where N ⊆ N
is a finite set of players and v : 2N → R with v(∅) = 0 is a characteristic
function. Let |N | = n where |N | represents the cardinality of N . A subset
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S of N is called a coalition. For any S ⊆ N , v(S) represents the worth of
the coalition. For simplicity, each singleton is represented as i instead of {i}
when there exist no fear of confusion.

Let G be a set of all cooperative games. A value on G is a mapping that
assigns to each (N, v) ∈ G an n-dimensional vector (xi)i∈N that satisfies∑

i∈N xi = v(N).
One of the well-known values on the class of cooperative games is the

Shapley value introduced by Shapley (1953). Given (N, v) ∈ G, the Shapley
value Sh(N, v) = (Shi(N, v))i∈N is defined as follows: For each i ∈ N ,

Shi(N, v) =
∑

S⊆N\i

|S|!(n − 1 − |S|)!
n!

(v(S ∪ i) − v(S)) .

Other well-known values on the class of cooperative games is the egali-
tarian value, the CIS value, and the ENSC value (see Driessen and Funaki
(1991)). Given (N, v) ∈ G,

• the egalitarian value EG(N, v) = (EGi(N, v))i∈N is defined as follows:
For each i ∈ N ,

EGi(N, v) =
v(N)

n
.

• The CIS value (Center-of-gravity of the Imputation-Set value), CIS(N, v) =
(CISi(N, v))i∈N is defined as follows: For each i ∈ N ,

CISi(N, v) =
v(N) −

∑
j∈N v(j)

n
+ v(i).

• The ENSC value (Egalitarian Non-Separable Contribution value), ENSC(N, v) =
(ENSCi(N, v))i∈N is defined as follows: For each i ∈ N ,

ENSCi(N, v) =
v(N) −

∑
j∈N (v(N) − v(N\j))

n
+ v(N) − v(N\i).

Let S ⊆ N . The S-marginal game (N\S, vS) of (N, v) is the game that
assigns to each coalition T ⊆ N\S the worth of T ∪ S minus the worth of
S, that is, for each T ⊆ N\S,

vS(T ) = v(S ∪ T ) − v(S).

In the S-marginal game, any non-empty subset of N\S can win the cooper-
ation of S by paying the value v(S) to S

3



The S-volunteer game (N\S, v̂S) is the game that assigns to each coali-
tion T ⊆ N\S with T ̸= ∅ the worth of T ∪ S and to the empty set 0, that
is, for each T ⊆ N\S,

v̂S(T ) =

{
v(S ∪ T ) if T ̸= ∅
0 if T = ∅.

In the S-volunteer game, any non-empty subset of N\S can win the coop-
eration of S by paying nothing to S.

The projection S-marginal game (N\S, v̄S) is the game that assigns to
N\S the worth of N minus the worth of S and each coalition T ( N\S the
worth of the coalition, that is, for each T ⊆ N\S,

v̄S(T ) =

{
v(N) − v(S) if T = N\S
v(T ) if T ̸= N\S.

In the projection S-marginal game, only the set N\S can win the coopera-
tion of S by paying v(S) to S and any proper subset of N\S cannot win any
cooperation of S. This game is equivalent to the projection reduced game of
(N, v) with respect to x ∈ Rn and S ⊆ N if

∑
i∈S xi = v(S).

The complement S-marginal game (N\S, ṽS) is the game that assigns to
each coalition T ⊆ N\S with T ̸= ∅ the worth of T ∪ S minus S’s marginal
contribution to N and to the empty set 0, that is, for each T ⊆ N\S,

ṽS(T ) =

{
v(S ∪ T ) − (v(N) − v(N\S)) if T ̸= ∅
0 if T = ∅.

In the complement S-marginal game, each non-empty subset of N\S can
win the cooperation of S by paying v(N) − v(N\S) to S. This game is
equivalent to the complement reduced game of (N, v) with respect to x ∈ Rn

and S ⊆ N , introduced by Moulin (1985), if
∑

i∈S xi = v(N) − v(N\S).

3 Balanced contributions properties

Let φ be a value for cooperative games. Myerson (1980) introduces the
following balanced contributions property.

Balanced contributions property: For each (N, v) ∈ G and any i, j ∈ N
with i ̸= j,

φi(N, v) − φi(N\j, v|N\j) = φj(N, v) − φj(N\i, v|N\i),
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where v|N\k : 2N\k → R is defined as v|N\k(S) = v(S) for S ⊆ N\k
with k = i, j.

The above property asserts that “for any two players i and j, i’s contri-
bution to j should be equal to j’s contribution to i,” and i’s contribution to
j is evaluated by the difference between the two values that j receives in the
original game and in the reduced game. As we mentioned in the previous
section, there are varieties of the reduced games; hence there are variations
of the evaluations of each player’s contributions to the other.

By using the marginal games, Kongo et al. (2007) present the following
variation of the balanced contributions property.

Balanced M-contributions property: For each (N, v) ∈ G and any i, j ∈
N with i ̸= j,

φi(N, v) − φi(N\j, vj) = φj(N, v) − φj(N\i, vi).

In the above property, the marginal games are used instead of the restric-
tion of original games. Kongo et al. (2007) show that the above property
characterize the Shapley value.

By using the other three games introduced in the previous section, three
variations of the balanced contributions property is presented.

Balanced V-contributions property: For each (N, v) ∈ G and any i, j ∈
N with i ̸= j,

φi(N, v) − φi(N\j, v̂j) = φj(N, v) − φj(N\i, v̂i).

Balanced PM-contributions property: For each (N, v) ∈ G and any
i, j ∈ N with i ̸= j,

φi(N, v) − φi(N\j, v̄j) = φj(N, v) − φj(N\i, v̄i).

Balanced CM-contributions property: For each (N, v) ∈ G and any
i, j ∈ N with i ̸= j,

φi(N, v) − φi(N\j, ṽj) = φj(N, v) − φj(N\i, ṽi).

We obtain the following.

Lemma 1. (i) The egalitarian value satisfies the balanced V-contributions
property.
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(ii) The CIS value satisfies the balanced PM-contributions property.

(iii) The ENSC value satisfies the balanced CM-contributions property.

Proof. For each (N, v) ∈ G, in the case of |N | = 1, they are obvious. Let
|N | ≥ 2 and for any i, j ∈ N with i ̸= j:

For (i);
EGi(N, v) − EGj(N, v) = 0,

and

EGi(N\j, v̂j) − EGj(N\i, v̂i) =
v̂(N\j)
n − 1

− v̂(N\i)
n − 1

=
v(N)
n − 1

− v(N)
n − 1

= 0.

For (ii);
CISi(N, v) − CISj(N, v) = v(i) − v(j),

and

CISi(N\j, v̄j) − CISj(N\i, v̄i)

=
v̄j(N\j) −

∑
k∈N\j v̄j(k)

n − 1
+ v̄j(i)−

v̄i(N\i) −
∑

k∈N\i v̄
i(k)

n − 1
− v̄i(j)

=
v(N) −

∑
k∈N v(k)

n − 1
+v(i)−

v(N) −
∑

k∈N v(k)
n − 1

−v(j) = v(i)−v(j).

For (iii);

ENSCi(N, v) − ENSCj(N, v) = −v(N\i) + v(N\j),

and

ENSCi(N\j, ṽj) − ENSCj(N\i, ṽi)

=
ṽj(N\j) −

∑
k∈N\j(ṽ

j(N\j) − ṽj(N\{j, k}))
n − 1

+ ṽj(N\j) − ṽj(N\{j, i})

−
ṽi(N\i) −

∑
k∈N\i(ṽ

i(N\i) − ṽi(N\{i, k}))
n − 1

− ṽi(N\i) + ṽi(N\{i, j})

=
v(N\j) −

∑
k∈N\j(v(N\j) − v(N\k) + v(N) − v(N\j))

n − 1
+v(N\j) − v(N\i) + v(N) − v(N\j)

−
v(N\i) −

∑
k∈N\i(v(N\i) − v(N\k) + v(N) − v(N\i))

n − 1
−v(N\i) + v(N\j) − v(N) + v(N\i)

6



=
∑

k∈N v(N\k) − (n − 1)v(N)
n − 1

− v(N\i) + v(N)

−
∑

k∈N (v(N\k) − (n − 1)v(N)
n − 1

+ v(N\j) − v(N)

= −v(N\i) + v(N\j).

Moreover, each of the three properties characterizes the egalitarian value,
the CIS value and the ENSC value, respectively.

Theorem 1. (i) The egalitarian value is the unique value which satisfies
the balanced V-contributions property.

(ii) The CIS value is the unique value which satisfies the balanced PM-
contributions property.

(iii) The ENSC value is the unique value which satisfies the balanced CM-
contributions property.

Proof. We show only (ii), since (i) and (iii) are shown in the similar manner.
By Lemma 1, it is sufficient to show the uniqueness of the value satisfying

the property. We use the induction with respect to the number of players.
Let φ be a value on the class of cooperative games. In the case of |N | = 1,
φi(N, v) = v(i) = CISi(N, v) for i ∈ N . If |N | = 2, by the balanced
PM-contributions property,

φi(N, v) − φj(N, v) = φi(N\j, v̄j) − φj(N\i, v̄i) = −v(j) + v(i).

Together with φi(N, v) + φj(N, v) = v(N), the above equality implies

φi(N, v) =
v(N) − v(j) − v(i)

2
+ v(i) = CISi(N, v),

and
φj(N, v) =

v(N) − v(i) − v(j)
2

+ v(j) = CISj(N, v).

Let n ≥ 2 and suppose φ = CIS in case of there are less than n players.
Consider the case of n players. Fix i ∈ N ; by the balanced PM-contributions
property and the induction hypothesis, for any j ∈ N\i,

φi(N, v) − φj(N, v) = φi(N\j, v̄j) − φj(N\i, v̄i)

= CISi(N\j, v̄j) − CISj(N\i, v̄i)
= CISi(N, v) − CISj(N, v).

7



Summing up the above equalities over j ∈ N\i, we obtain

(n − 1)φi(N, v) −
∑
j ̸=i

φj(N, v) = (n − 1)CISi(N, v) −
∑
j ̸=i

CISj(N, v).

Together with
∑

k∈N φk(N, v) = v(N) =
∑

k∈N CISk(N, v), the above
equality implies

nφi(N, v) − v(N) = nCISi(N, v) − v(N).

Since n ≥ 2, φi(N, v) = CISi(N, v). For any j ̸= i, φj(N, v) = CISj(N, v)
is shown in the same manner. Hence φ = CIS in the case of there are n
players.

By the result, recursive representations of the egalitarian value, the CIS
value, and the ENSC value are obtained as follows:

Proposition 1. For each (N, v) ∈ G and any i ∈ N ,

(i) EGi(N, v) =
1
n

∑
j ̸=i

EGi(N\j, v̂j),

(ii) CISi(N, v) =
1
n

v(i) +
1
n

∑
j ̸=i

CISi(N\j, v̄j), and

(iii) ENSCi(N, v) =
1
n

(v(N) − v(N\i)) +
1
n

∑
j ̸=i

ENSCi(N\j, ṽj),

Proof. We show only (iii), since (i) and (ii) are shown in the similar manner.
By the balanced CM-contributions property of the ENSC value, for any

i, j ∈ N with i ̸= j,

ENSCi(N\j, ṽj) = ENSCi(N, v) − ENSCj(N, v) + ENSCj(N\i, ṽi).

Summing up the above equality over j ∈ N\i and divided by n, we obtain

1
n

∑
j ̸=i

ENSCi(N\j, ṽj)

=
n − 1

n
ENSCi(N, v) − 1

n

∑
j ̸=i

ENSCj(N, v) +
1
n

∑
j ̸=i

ENSCj(N\i, ṽi)

=
n − 1

n
ENSCi(N, v) − 1

n
(v(N) − ENSCi(N, v)) +

1
n

∑
j ̸=i

ENSCj(N\i, ṽi)

= ENSCi(N, v) − 1
n

v(N) +
1
n

ṽi(N\i)

= ENSCi(N, v) − 1
n

v(N) +
1
n

v(N\i).
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Rearranging the above equality, we obtain the desired result.

4 Implementation

In this section, given a cooperative game, we consider three non-cooperative
games each of which implements the egalitarian value, the CIS value, and the
ENSC value of the cooperative game, respectively, as equilibrium payoffs. In
those non-cooperative games, variations of marginal games and the recursive
formulas we mentioned in the paper play important roles.

Given a cooperative game (N, v) ∈ G, the non-cooperative game Γ̂(N, v)
is defined in the following recursive manner.

In case |N | = 1, player i ∈ N obtains v(i) and the game is over.
Assume that the non-cooperative game is known when there are less

than n players. We define the case where there are n players.

t=1 Each player i ∈ N makes bids bi
j ∈ R for every player j ̸= i.

For each i ∈ N , the net bid Bi is the sum of the bids he made
minus the sum of the bids the others made to him, that is, Bi =∑

j ̸=i b
i
j −

∑
j ̸=i b

j
i . Let β = argmaxiB

i, where in the case of multiple
maximizers, one of them is randomly chosen. The chosen player β
pays bβ

j to every player j ̸= β.

t=2 Player β makes an offer xβ
j ∈ R to every player j ∈ N\β.

t=3 Players in N\β respond to the offer in a sequential manner, say (j1, . . . , jn−1).
An order of the players makes no matter. Response is either “accept
it” or “reject it”.

In case player jh accepts the offer, the next player jh+1 responds to
it. If every jh accepts the offer, the players come to an agreement. If
there is some rejection, an agreement is not reached.

When an agreement is reached, proposer β pays the proposed payoff
xj for any j ∈ N\β in return for obtaining the value of their total
cooperation, v(N). Thus, the payoff for responder j is

bβ
j + xβ

j

and the payoff for proposer β is

v(N) −
∑
j ̸=β

bβ
j −

∑
j ̸=β

xβ
j .
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Then the game is over.

On the other hand, when an agreement is not reached, the proposer
leaves the game with obtaining nothing and the remaining players N\β
continue the non-cooperative game Γ̂(N\β, v̂β).

Non-cooperative games Γ̄(N, v) and Γ̃(N, v) are defined almost the same
as the game Γ̂(N, v). The difference among them is that, when an agree-
ment is not reached at t=3, in Γ̄(N, v), the proposer β leaves the game
with obtaining v(β) and remaining players continue the non-cooperative
game Γ̄(N\β, v̄β), and in Γ̃(N, v), the proposer β leaves the game with ob-
taining v(N)− v(N\β) and remaining players continue the non-cooperative
game Γ̃(N\β, ṽβ). These non-cooperative games are variations of a non-
cooperative game Γ(N, v) in Kongo et al. (2007) and are inspired by bidding
mechanisms presented in Pérez-Castrillo and Wettstein (2001).

Kongo et al. (2007) show that Γ(N, v) implements the Shapley value for
any (N, v) ∈ G. Similarly, we obtain the following result.

Theorem 2. For any (N, v) ∈ G,

(i) Γ̂(N, v) produces the egalitarian value payoff in any subgame perfect
equilibrium (henceforth, SPE),

(ii) Γ̄(N, v) produces the CIS value payoff in any SPE, and

(iii) Γ̃(N, v) produces the ENSC value payoff in any SPE.

Proof. We prove only (i), since (ii) and (iii) are shown in the similar way.
The proof proceeds by induction with respect to the number of players.

If |N | = 1, the egalitarian value is equal to the value of stand-alone coalition;
hence, the theorem holds. Assume that the theorem holds in case there are
less than n players and consider the case when there are n players.

First, we show that there exists an SPE whose payoff coincides with the
egalitarian value of the game (N, v). Consider the following strategy for
each player.

t=1 Each player i ∈ N announces bi
j = EGj(N, v)−EGj(N\i, v̂i) for every

j ̸= i.

t=2 A proposer β offers xβ
j = EGj(N\β, v̂β) for every j ∈ N\β.

t=3 A responder j accepts the offer if xβ
j = EGj(N\β, v̂β) and rejects it

otherwise.

10



If all players take the above strategies, an agreement is formed at t=3
and the game is over. It is clear that the above strategy profile yields
the egalitarian value for any player who is not the proposer β since bβ

j +

xβ
j = EGj(N, v) for any j ̸= β. The proposer β obtains v(N) −

∑
j ̸=β bβ

j −∑
j ̸=β xβ

j = v(N) −
∑

j ̸=β EGj(N, v) = EGβ(N, v). Note that each player
obtains his egalitarian value whether or not the player is a proposer. In
other words, given the strategies, an outcome is the same regardless of who
is chosen as a proposer.

To check whether the above strategies constitute an SPE, first, we show
that the strategies at t=3 are best responses for each of the players. Let
jn−1 be the last player who has to decide whether accept or reject the offer.
If no other players reject an offer, player jn−1’s best response is accept the
offer if xβ

jn−1
= EGjn−1(N\β, v̂β) and reject it otherwise. Knowing that the

above mentioned reaction of the last player, the second last player jn−2’s
best response is accept the offer if xβ

jn−2
= EGjn−2(N\β, v̂β) and reject it

otherwise. Using the same argument to go backward, we can show that the
strategies mentioned above constitute an SPE of the subgame starting from
t=3.

Next, we prove that the strategies at t=2 are best responses for each of
them. By the strategies, the proposer β obtains v(N)−

∑
j ̸=β EGj(N\β, v̂β) =

0 in the subgame starting from t=2. If he offers some player j the value x̄β
j

less than EGj(N\β, v̂β), the offer is rejected by the player and the proposer
obtains 0 which is not strictly better off. If he offers some player j the
value x̂β

j larger than EGj(N\β, v̂β) without lowering the offer to the other
players, the offer is accepted but the share of the proposer is strictly worse
off. Thus, the above mentioned strategies constitute a SPE of the subgame
starting from t=2.

Then, we show that the strategies t=1 are best responses for each of
them. Given the strategies, for any i ∈ N ,

Bi =
∑
j ̸=i

bi
j −

∑
j ̸=i

bj
i

=
∑
j ̸=i

(EGj(N, v)−EGj(N\i, v̂i))−
∑
j ̸=i

(EGi(N, v)−EGi(N\j, v̂j)) = 0,

since EG satisfies the balanced V-contributions property. Hence, all players
are chosen to be a proposer with probability 1

n . As seen before, the outcome
is the same regardless of who is chosen as a proposer. Given the above
mentioned strategies, consider the case that player i changes his strategy to
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b̄i
j = bi

j + aj for each of j ̸= i. If
∑

j ̸=i aj < 0, i is not chosen as a proposer;
hence, his final payoff is unchanged. If

∑
j ̸=i aj = 0, i may be chosen to be

a proposer. In the case that he is not chosen as a proposer, his final payoff
is unchanged. In the case that he is chosen as a proposer, his final payoff is

v(N)−
∑
j ̸=i

b̄i
j−

∑
j ̸=i

EGj(N\i, v̂i) = v(N)−
∑
j ̸=i

bi
j−

∑
j ̸=i

EGj(N\i, v̂i) = EGi(N, v),

which means his final payoff is unchanged. If
∑

j ̸=i aj > 0, i must be chosen
to be a proposer. However, by the previous result, he obtains

v(N)−
∑
j ̸=i

b̄i
j−

∑
j ̸=i

EGj(N\i, v̂i) < v(N)−
∑
j ̸=i

bi
j−

∑
j ̸=i

EGj(N\i, v̂i) = EGi(N, v).

Thus, his share is strictly worse off. Therefore, the above mentioned strate-
gies constitute a SPE.

Next, we prove that any SPE implements the egalitarian value payoff as
an equilibrium outcome by the following series of claims.

Claim 1: In any subgame starting from t=2, a proposer β obtains 0 and
each of the other players obtains his egalitarian value of the game
(N\β, v̂β) in any SPE.

Let β be a proposer. There are two types of SPEs: (a) SPEs in which
someone rejects the offer at t=3 and (b) SPEs in which players reach an
agreement at t=3.

In case (a), by the definition of the non-cooperative game Γ̂(N, v) and
the induction hypothesis, β obtains 0 and each of the other players obtains
his egalitarian value of the game (N\β, v̂β).

By the induction hypothesis, each player j ̸= β surely obtains EGj(N\β, v̂β)
by rejecting the offer. Hence, in case (b), each player j ̸= β obtains not
less than EGj(N\β, v̂β). Thus, the proposer β obtains at most 0 since
v(N) −

∑
j ̸=β EGj(N\β, v̂β) = 0. But, the proposer β surely obtains 0

when the offer is rejected. Hence, he must obtain 0 in case (b). Therefore,
the claim also holds in this case.

Claim 2: In any SPE, Bi =
∑

j ̸=i b
i
j −

∑
j ̸=i b

j
i = 0 for any i ∈ N .

Claim 3: In any SPE, each player’s payoff is the same regardless of who is
chosen as a proposer.

The above two claims are the same as Claim (c) and (d) of Pérez-Castrillo
and Wettstein (2001), and are shown in the same manner, respectively.
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Claim 4: In any SPE, the final payoff coincides with the egalitarian value.

Let uj
i be i’s equilibrium payoff when j is the proposer at t=1. By Claim

1,
ui

i = −
∑
k ̸=i

bi
k

and for each j ̸= i,
uj

i = bj
i + EGi(N\j, v̂j).

Thus, ∑
j∈N

uj
i = −

∑
k ̸=i

bi
k +

∑
j ̸=i

bj
i +

∑
j ̸=i

EGi(N\j, v̂j).

By Claim 2, the above equality is equivalent to∑
j∈N

uj
i =

∑
j ̸=i

EGi(N\j, v̂j).

By Claim 3,
∑

j∈N uj
i = nuk

i for each k ∈ N . Therefore, for each k ∈ N ,

uk
i =

1
n

∑
j ̸=i

EGi(N\j, v̂j).

By Proposition 1, the right-hand side of the above equality coincides with
EGi(N, v).

The following table summarizes our results and those of Kongo et al.
(2007).

Table 1: A summary of implementations

Games Γ Γ̂ Γ̄ Γ̃
rejection at t=3,
proposer β obtains v(β) 0 v(β) v(N) − v(N\β)

others play (N\β, vβ) (N\β, v̂β) (N\β, v̄β) (N\β, ṽβ)
implements Sh EG CIS ENSC
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5 Concluding remarks

To conclude the paper, we discuss generalizations of our results.
A value φ is linear if for any λ, λ′ ∈ R and any (N, v), (N, v′) ∈ G,

φ(N,λv + λ′v′) = λφ(N, v) + λ′φ(N, v′),

where (N,λv + λ′v′) ∈ G is defined as (λv + λ′v′)(S) = λv(S) + λ′v′(S) for
any S ⊆ N . Since all of the Shapley value, the egalitarian value, the CIS
value, and the ENSC value are linear, any convex combination of them is
characterized and implemented in the same manner as we did in this paper.

Convex combinations of those values are studied in Joosten (1996),
van den Brink and Funaki (2004), and Ju et al. (2007). Joosten (1996)
introduced the α-egalitarian Shapley value that is a convex combination
of the egalitarian value and the Shapley value, van den Brink and Funaki
(2004) studied convex combinations of the egalitarian value, the CIS value,
and the ENSC value, and Ju et al. (2007) introduced the α-consensus value
that is a convex combination of the CIS value and the Shapley value. Here,
we mention only the α-egalitarian Shapley value in detail, but the follow-
ing discussions are applicable to the other convex combinations of the four
values.

Let α ∈ [0, 1]. The α-egalitarian Shapley value ϕα of the game (N, v) is

ϕα(N, v) = αEG(N, v) + (1 − α)Sh(N, v).

For any α ∈ [0, 1], the reduced games for a characterization of the α-
egalitarian Shapley value are convex combinations of the volunteer games
and the marginal games. Given (N, v) ∈ G, α ∈ [0, 1], and S ⊆ N , the game
(N\S, vS,α) is defined as, for each T ⊆ N\S,

vS,α(T ) = αv̂S(T ) + (1 − α)vS(T ) =

{
v(S ∪ T ) − (1 − α)v(S) if T ̸= ∅
0 if T = ∅.

In the above game, any non-empty subset of N\S can win the coopera-
tion of S by paying the value (1 − α)v(S) to S. The α-egalitarian Shapley
value is characterized by the following property:

For each (N, v) ∈ G, each α ∈ [0, 1] and any i, j ∈ N with i ̸= j,

φi(N, v) − φi(N\j, vj,α) = φj(N, v) − φj(N\i, vi,α).
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For an implementation, we construct the non-cooperative game Γα(N, v)
in which almost the same as the game Γ̂(N, v). The difference between
the two is that, when an agreement is not reached at t=3, the proposer
β leaves the game with obtaining 0 and remaining players continue the
non-cooperative game Γα(N\β, v̂β) with probability α, and the proposer β
leaves the game with obtaining v(β) and remaining players continue the
non-cooperative game Γα(N\β, vβ) with probability 1 − α.

Acknowledgment: The author thanks Yukihiko Funaki for helpful discus-
sions and comments.
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