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Q-Anonymity and preference continuity∗

Kohei Kamaga† Takashi Kojima‡

December 18, 2007

Abstract In a recent paper published in Social Choice and Welfare (27 (2006)
327-339), Banerjee characterized extensions of the Suppes-Sen grading principle
and the Basu-Mitra utilitarian relation defined on infinite utility streams with
the axiom of Q-Anonymity and discussed the relative merits of the extended util-
itarian relation. On the other hand, Asheim and Tungodden (Economic Theory
24: 221-230, 2004) used conditions of Preference Continuity to characterize lex-
imin and utilitarianism. We characterize extensions of the Asheim-Tungodden
leximin and utilitarian relations with Q-Anonymity, compare the rankings by
the extended overtaking criteria with those by the extended simplified criteria
and discuss their relative merits.

Keywords: Q-Anonymity; Preference continuity; Overtaking criterion; Leximin;
Utilitarianism; Simplified criterion

1 Introduction

In a recent paper, Banerjee (2006) characterized extensions of the Suppes-Sen
grading principle and the Basu-Mitra utilitarian relation defined on infinite util-
ity streams with Q-Anonymity and argued that the rankings by the extended
utilitarian relation are far more acceptable than those by the catching up rela-
tion1 or the Basu-Mitra utilitarian relation.

On the one hand, Asheim and Tungodden (2004) used Preference Continu-
ity to characterize leximin and utilitarianism. The Asheim-Tungodden leximin
relation is more complete than a leximin relation characterized by Bossert et al.
(2007) and so is the Asheim-Tungodden utilitarian relation than the Basu-Mitra
utilitarian relation, that is, an overtaking criterion is more complete than the
corresponding simplified criterion.

We characterize extensions of the Asheim-Tungodden leximin and utilitar-
ian relations with Q-Anonymity and argue that the rankings by the extended

∗Very preliminary. Please do not quote without the authors’ permission.
†Graduate School of Economics, Waseda University, Shinjuku, Tokyo 169-8050, Japan (E-

mail: k-kmg@ruri.waseda.jp)
‡Graduate School of Economics, Waseda University, Shinjuku, Tokyo 169-8050, Japan (E-

mail: tkojima@ruri.waseda.jp)
1Banerjee (2006) referred to this relation as the overtaking relation.
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overtaking criteria are more complete than those by the extended simplified
criteria.

The structure of the paper is as follows. In Section 2, we present the ba-
sic definitions. Section 3 discusses the incompatibleness of Q-Anonymity and
Strong Preference Continuity. In Section 4, we consider the compatibility of
Q-Anonymity and Weak Preferecne Continuity. Section 5 discusses the relative
merits of the extended overtaking criteria and concludes the analysis.

2 Basic definitions

Let R denote the set of all real numbers and N the set of all natural numbers.
Let X = RN be the domain of infinite utility streams. A typical element of X is
an infinite-dimensional vector x = (x1, x2, . . . ). For all x ∈ X and all n ∈ N, we
denote (x1, . . . , xn) by x−n and (xn+1, xn+2, . . . ) by x+n. Thus for all x ∈ X
and all n ∈ N, we can write x = (x−n, x+n).

A social welfare relation (SWR) is a binary relation % on X which is reflexive
and transitive (a quasi-ordering). We write, as usual, x Â y if x % y holds but
y % x does not and x ∼ y if x % y and y % x both hold. A SWR %A is a
subrelation to a SWR %B if (a) x ÂA y ⇒ x ÂB y and (b) x ∼A y ⇒ x ∼B y.
We write %A≡%B if two SWRs %A and %B are subrelations to each other.

A permutation is a bijection on N. We denote the set of all permutations by
P. A finite permutation is a permutation π such that there exists n̄ ∈ N with
π(n) = n for all n > n̄. The set of all finite permutations is denoted by F .

We are concerned with fixed step permutations. Let Q = {π ∈ P : there exists k ∈
N such that for all n ∈ N, π({1, . . . , nk}) = {1, . . . , nk}}. For all x ∈ X and all
π ∈ P, we denote (xπ(1), xπ(2), . . . ) by π̂(x).

Negation of a statement is indicated by the logical quantifier ¬. For all
x, y ∈ X, we write x > y if for all i ∈ N, xi ≥ yi and x > y if x > y and x 6= y.

The following two axioms are imposed on the SWRs.

Strong Pareto For all x, y ∈ X, if x > y, then x Â y.

Q-Anonymity For all x ∈ X and all π ∈ Q, π̂(x) ∼ x.

3 Impossibility

In this section, we discuss the incompatibleness of Q-Anonymity and Strong
Preference Continuity.

Strong preference continuity For all x, y ∈ X, if (a) there exists n̄ ∈ N
such that for all integers n ≥ n̄, (x−n, y+n) % y and (b) for all n̄ ∈ N, there
exists an integer n ≥ n̄ such that (x−n, y+n) Â y, then x Â y.

3.1 Propositions

Proposition 1 There exists no SWR % satisfying Strong Pareto, Q-Anonymity
and Strong Preference Continuity.
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Proof Suppose not. Assume that % satisfies Strong Pareto, Q-Anonymity and
Strong Preference Continuity. Let x = (1, 0, 1, 0, . . . ) and y = (0, 1, 0, 1, . . . ). Q-
Anonymity of % implies that for all n ∈ N, (x−2n, y+2n) ∼ y and (x−(2n−1), y+(2n−1)) ∼
(x1, y

+1). Since % satisfies Strong Pareto, (x1, y
+1) Â y. Transitivity of %

implies that for all n ∈ N, (x−(2n−1), y+(2n−1)) Â y. By Strong Preference Con-
tinuity of %, we have x Â y, which contradicts x ∼ y implied by Q-Anonymity
of %.

Basu and Mitra (2007) used the axiom of Strong Consistency in their char-
acterization of the catching up SWR. Denoting (0, 0, . . . ) by o, this axiom is
stated as follows:

Strong consistency For all x, y ∈ X

(a) If there exists n̄ ∈ N such that for all integers n ≥ n̄, (x−n, o) % (y−n, o),
then x % y

(b) If (i) there exists n̄ ∈ N such that for all integers n ≥ n̄, (x−n, o) %
(y−n, o) and (ii) for all n̄ ∈ N, there exists an integer n ≥ n̄ such that
(x−n, o) Â (y−n, o), then x Â y.

We can also show the incompatibleness of Q-Anonymity and Strong Consis-
tency.

Proposition 2 There exists no SWR % satisfying Strong Pareto, Q-Anonymity
and Strong Consisteny.

Proof Suppose not. Assume that % satisfies Strong Pareto, Q-Anonymity
and Strong Consistency. Let x = (1, 0, 1, 0, . . . ) and y = (0, 1, 0, 1, . . . ). Q-
Anonymity of % implies that for all n ∈ N, (x−2n, o) ∼ (y−2n, o) and (x−(2n−1), o) ∼
(y−(2n+1), o). Since % satisfies Strong Pareto, for all n ∈ N, (x−(2n+1), o) Â
(x−(2n−1), o). Transitivity of % implies that for all n ∈ N, (x−(2n+1), o) ∼
(y−(2n+1), o). By Strong Consistency of %, we have x Â y, which contradicts
x ∼ y implied by Q-Anonymity of %.

3.2 Examples

Consider the following two SWRs characterized by Asheim and Tungodden
(2004).

Example 1 Consider a leximin relation called the S-leximin relation. We first
introduce the usual leximin ordering on Rn. For all x ∈ X and all n ∈ N,
let (x−n

(1) , . . . , x
−n
(n)) denote a non-decreasing permutation of x−n, that is, x−n

(1) ≤
· · · ≤ x−n

(n), ties being broken arbitrarily. Then we can define the usual leximin
ordering on Rn as follows: For all x−n, y−n ∈ Rn

x−n %n
L y−n holds if and only if (x−n

(1) , . . . , x
−n
(n)) = (y−n

(1) , . . . , y−n
(n)) or there

exists an integer k < n such that (x−n
(1) , . . . , x

−n
(k)) = (y−n

(1) , . . . , y−n
(k) ) and

x−n
(k+1) > y−n

(k+1).
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Using %n
L, we can define S-Leximin as follows: For all x, y ∈ X

x %Ls y holds if and only if there exists n̄ ∈ N such that for all integers n ≥ n̄,
(x−n

(1) , . . . , x
−n
(n)) = (y−n

(1) , . . . , y−n
(n)) or there exists a positive integer k < n such

that (x−n
(1) , . . . , x

−n
(k)) = (y−n

(1) , . . . , y−n
(k) ) and x−n

(k+1) > y−n
(k+1).

Let x = (1, 0, 1, 0, . . . ) and y = (0, 1, 0, 1, . . . ). Then we have x ÂLs y, which
contradicts x ∼ y implied by Q-Anonymity.

Example 2 Consider a utilitarian relation called the catching up relation: For
all x, y ∈ X

x %C y holds if and only if there exists n̄ ∈ N such that for all integers n ≥ n̄,∑n
i=1 xi ≥

∑n
i=1 yi.

Let x = (1, 0, 1, 0, . . . ) and y = (0, 1, 0, 1, . . . ). Then we have x ÂC y, contra-
dicting x ∼ y implied by Q-Anonymity.

4 Possibility

In this section, we consider the compatibility of Q-Anonymity and Weak Pref-
erence Continuity.

4.1 Overtaking criterion

For all n ∈ N, let %n
ξ a reflexive, complete and transitive binary relation (an

ordering) on Rn satisfying the following three properties: For all x−n, y−n ∈ Rn

(α) If x−n > y−n, then x−n Ân
ξ y−n

(β) If (x−n
(1) , . . . , x

−n
(n)) = (y−n

(1) , . . . , y−n
(n)), then x−n ∼n

ξ y−n

(γ) For all δ ∈ R, (x−n, δ) %n+1
ξ (y−n, δ) if and only if x−n %n

ξ y−n.

Using %n
ξ , we can define an overtaking criterion on X as follows: For all

x, y ∈ X

x Âξ y holds if and only if there exists n̄ ∈ N such that for all integers n ≥ n̄,
x−n Ân

ξ y−n and
x ∼ξ y holds if and only if there exists n̄ ∈ N such that for all integers n ≥ n̄,

x−n ∼n
ξ y−n.

We now need to show that %ξ is a SWR. This is proved in Lemma 1.

Lemma 1 %ξ is a SWR.
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Proof Reflexivity of %ξ follows from the fact that %n
ξ is reflexive. To check

transitivity, let x %ξ y and y %ξ z. By definition, there exist n̄, n̄′ ∈ N such
that for all integers n ≥ n̄, either x−n Ân

ξ y−n or x−n ∼n
ξ y−n, and for all

integers n′ ≥ n̄′, either y−n′ Ân′

ξ z−n′
or y−n′ ∼n′

ξ z−n′
. Let N̄ = max{n̄, n̄′}.

Then by definition, we distinguish the four cases which cover all possiblties: For
all integers N ≥ N̄ , (a) x−N ÂN

ξ y−N and y−N ÂN
ξ z−N , (b) x−N ÂN

ξ y−N

and y−N ∼N
ξ z−N , (c) x−N ∼N

ξ y−N and y−N ÂN
ξ z−N and (d) x−N ∼N

ξ y−N

and y−N ∼N
ξ z−N . Transitivity of %N

ξ implies that for all integers N ≥ N̄ ,
either x−N ÂN

ξ z−N or x−N ∼N
ξ z−N . From the definition of %ξ, we obtain

x %ξ z.

Moreover, %ξ satisfies the following two axioms.

Finite Anonymity For all x ∈ X and all π ∈ F , π̂(x) ∼ x.

Weak preference continuity For all x, y ∈ X, if there exists n̄ ∈ N such that
for all integers n ≥ n̄, (x−n, y+n) Â y, then x Â y.

Lemma 2 %ξ satisfies Finite Anonymity.

Proof Let x ∈ X and π ∈ F . By definition, there exists n̄ ∈ N such that
(π̂(x))+n̄ = x+n̄. By the property (β), for all integers n ≥ n̄, (π̂(x))−n ∼n

ξ x−n.
From the definition of %ξ, we obtain π̂(x) ∼ξ x.

Lemma 3 %ξ satisfies Weak Preference Continuity.

Proof Assume that there exists n̄ ∈ N such that for all integers n ≥ n̄, (x−n, y+n)
Âξ y. By definition, there exists n̄′ ∈ N such that for all integers n′ ≥ n̄′{

(a) x−n′ Ân′

ξ y−n′
if n′ ≤ n

(b) (x−n, yn+1, . . . , yn′) Ân′

ξ y−n′
otherwise.

In the case (b), since %n′

ξ satisfies the property (γ), we have x−n Ân
ξ y−n. Hence

in both cases, from the definition of Âξ, we obtain x Âξ y.

Using the SWR %ξ, we can define an extension of %ξ as follows:2 For all
x, y ∈ X

x ÂQξ y holds if and only if there exist π, ρ ∈ Q such that π̂(x) Âξ ρ̂(y) and
x ∼Qξ y holds if and only if there exists π ∈ Q such that π̂(x) ∼ξ y.3

We now need to show that %Qξ is a SWR. This is proved in Lemma 4.

2Banerjee (2006) defined extensions of the Suppes-Sen grading principle and the Basu-
Mitra utilitarian relation as follows: For all x, y ∈ X

x %Qζ y holds if and only if there exists π ∈ Q such that π̂(x) %ζ y

where %ζ denotes the Suppes-Sen grading principle or the Basu-Mitra utilitarian relation.
3Reflexivity of %ξ implies Q-Anonymity of %Qξ.
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Lemma 4 %Qξ is a SWR.

We first prove the following two lemmas which are used to prove Lemma 4.

Lemma 5 %Qξ satisfies quasi-transitivity, that is, for all x, y, z ∈ X, if x ÂQξ y
and y ÂQξ z, then x ÂQξ z.

Proof Assume that x ÂQξ y and y ÂQξ z. By definition, there exist π, ρ, σ, τ ∈
Q such that π̂(x) Âξ ρ̂(y) and σ̂(y) Âξ τ̂(z). Since π, ρ, σ, τ ∈ Q, there
exist p, r, s, t ∈ N such that for all n ∈ N, π({1, . . . , np}) = {1, . . . , np},
ρ({1, . . . , nr}) = {1, . . . , nr}, σ({1, . . . , ns}) = {1, . . . , ns} and τ({1, . . . , nt}) =
{1, . . . , nt}. Now, since π̂(x) Âξ ρ̂(y) and σ̂(y) Âξ τ̂(z), there exist ¯̀, m̄ ∈ N such
that ¯̀= np = n′q, m̄ = n′′r = n′′′s, for all integers ` ≥ ¯̀, (π̂(x))−` Â`

ξ (ρ̂(y))−`

and for all integers m ≥ m̄, (σ̂(y))−m Âm
ξ (τ̂(z))−m. Let N̄ be a common mul-

tiple of ¯̀ and m̄. Then for all integers N ≥ N̄ , (π̂(x))−N ÂN
ξ (ρ̂(y))−N and

(σ̂(y))−N ÂN
ξ (τ̂(z))−N . It follows from the choice of N̄ and the property (β)

of %nN
ξ that for all n ∈ N, (π̂(x))−nN̄ ÂnN̄

ξ (ρ̂(y))−nN̄ ∼nN̄
ξ (σ̂(y))−nN̄ ÂnN̄

ξ

(τ̂(z))−nN̄ . Transitivity of %nN̄
ξ implies that for all n ∈ N, (π̂(x))−nN̄ ÂnN̄

ξ

(τ̂(z))−nN̄ . We show that there exist π′, τ ′ ∈ Q such that for all integers N ≥ N̄ ,
(π̂′(x))−N ÂN

ξ (τ̂ ′(z))−N , that is, π̂′(x) Âξ τ̂ ′(z). We can construct π′ and τ ′

as follows: If for all integers N ≥ N̄ , (π̂(x))−N ÂN
ξ (τ̂(z))−N , we are done. So

assume that there exists i ∈ {nN̄ +1, . . . , (n+1)N̄−1} such that ¬((π̂(x))−i Âi
ξ

(τ̂(z))−i) and (by the properties (α) and (γ) of %i
ξ) (π̂(x))i < (τ̂(z))i. Then

there must exist j ∈ {i+1, . . . , (n+1)N̄} such that (π̂(x))−j Âj
ξ (τ̂(z))−j and (by

the properties (α) and (γ) of %j
ξ) (π̂(x))j > (τ̂(z))j since (π̂(x))−(n+1)N̄ Â(n+1)N̄

ξ

(τ̂(z))−(n+1)N̄ . Let υ1 ∈ F ⊂ Q be a permutation such that υ̂2
1(ei) = υ̂1(ej) = ei

and for all k ∈ N \ {i, j}, υ̂1(ek) = ek. Then (by using the same argument re-
peatedly if necessary) there exists a positive integer k ≤ N̄ such that for all
integers N ≥ N̄ , (υ̂k(. . . (υ̂1(π̂(x)))))−N ÂN

ξ (υ̂k(. . . (υ̂1(τ̂(z)))))−N . Using the
fact that υk ◦ · · · ◦ υ1 ◦ π, υk ◦ · · · ◦ υ1 ◦ τ ∈ Q, from the definition of %Qξ, we
obtain x ÂQξ z.

Lemma 6 For all x, y ∈ X, x ∼ξ y if and only if for all π ∈ Q, π̂(x) ∼ξ π̂(y).

Proof (only if part) Assume x ∼ξ y. Since π ∈ Q, there exists k ∈ N such
that for all n ∈ N, π({1, . . . , nk}) = {1, . . . , nk}. Now, since x ∼ξ y, there
exists N̄ ∈ N such that N̄ = nk and for all integers N ≥ N̄ , x−N ∼N

ξ y−N .
Since %N

ξ satisfies the property (γ), we have x+N̄ = y+N̄ . It follows from
the choice of N̄ and the property (β) of %N̄

ξ that (π̂(x))−N̄ ∼N̄
ξ (π̂(y))−N̄ and

(π̂(x))+N̄ = (π̂(y))+N̄ . Since %N
ξ satisfies the property (γ), for all integers N ≥

N̄ , (π̂(x))−N ∼N
ξ (π̂(y))−N . From the definition of %ξ, we obtain π̂(x) ∼ξ π̂(y).

(if part) Assume π̂(x) ∼ξ π̂(y). Using the fact that π−1 ∈ Q and the “only
if” part of the lemma, we obtain x ∼ξ y.

Proof of Lemma 4 Reflexivity of %Qξ follows from the fact that ι ∈ Q and %ξ

is reflexive. To check transitivity, we consider the following four cases which
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cover all possibilities: (a) x ÂQξ y and y ÂQξ z, (b) x ÂQξ y and y ∼Qξ z, (c)
x ∼Qξ y and y ÂQξ z and (d) x ∼Qξ y and y ∼Qξ z.

(a) x ÂQξ y and y ÂQξ z: In this case, by Lemma 5, we obtain x ÂQξ z.
(b) x ÂQξ y and y ∼Qξ z: In this case, by definition, there exist π, ρ, σ ∈ Q

such that π̂(x) Âξ ρ̂(y) and σ̂(y) ∼ξ z. Using Lemma 6 and the fact that
σ−1 ∈ Q, we have y ∼ξ σ̂−1(z). Again, using Lemma 6 and the fact that
ρ ◦ σ−1 ∈ Q, we have x Âξ ρ̂(y) ∼ξ ρ̂(σ̂−1(z)). Transitivity of %ξ implies
x Âξ ρ̂(σ̂−1(z)). From the definition of %Qξ, we obtain x ÂQξ z.

(c) x ∼Qξ y and y ÂQξ z: In this case, by definition, there exist π, ρ, σ ∈ Q
such that π̂(x) ∼ξ y and ρ̂(y) Âξ σ̂(z). Using Lemma 6 and the fact that π ◦ρ ∈
Q, we have π̂(ρ̂(x)) ∼ξ ρ̂(y) Âξ σ̂(z). Transitivity of %ξ implies π̂(ρ̂(x)) Âξ σ̂(z).
From the definition of %Qξ, we obtain x ÂQξ z.

(d) x ∼Qξ y and y ∼Qξ z: In this case, by definition, there exist π, ρ ∈ Q
such that π̂(x) ∼ξ y and ρ̂(y) ∼ξ z. Using Lemma 6 and the fact that π ◦ρ ∈ Q,
we have π̂(ρ̂(x)) ∼ξ ρ̂(y) ∼ξ z. Transitivity of %ξ implies π̂(ρ̂(x)) ∼ξ z. From
the definition of %Qξ, we obtain x ∼Qξ z.

Theorem 1 If a SWR % satisfies Q-Anonymity and all the axioms that char-
acterizes %ξ, then %Qξ is a subrelation to %.

Proof Assume that a SWR % satisfies Q-Anonymity and all the axioms that
characterizes %ξ. To prove that %Qξ is a subrelation to %, we have to establish
(a) x ÂQξ y ⇒ x Â y and (b) x ∼Qξ y ⇒ x ∼ y. Recall that the inverse of P in
Q is denoted by π−1.

(a) Let x ÂQξ y. By definition, there exists π ∈ Q such that π̂(x) Âξ y.
Since %ξ is a subrelation to %, π̂(x) Â y. Since % satisfies Q-Anonymity,
x = π̂−1(π̂(x)) ∼ π̂(x) Â y and by transitivity, x Â y.

(b) Let x ∼Qξ y. By definition, there exists π ∈ Q such that π̂(x) ∼ξ y.
Since %ξ is a subrelation to %, π̂(x) ∼ y. Since % satisfies Q-Anonymity,
x = π̂−1(π̂(x)) ∼ π̂(x) ∼ y and by transitivity, x ∼ y.

4.2 Two versions of the overtaking criteria

Following Asheim and Tungodden (2004), define the following two SWRs. Using
%n

L, we first define a leximin relation called the W-leximin relation: For all
x, y ∈ X

x ÂLw y holds if and only if there exists n̄ ∈ N such that for all integers n ≥ n̄,
x−n Ân

L y−n, and
x ∼Lw y holds if and only if there exists n̄ ∈ N such that for all integers n ≥ n̄,

(x−n
(1) , . . . , x

−n
(n)) = (y−n

(1) , . . . , y−n
(n)).

Hammond equity For all x, y ∈ X and all i, j ∈ N, if yi < xi < xj < yj and
for all k ∈ N \ {i, j}, xk = yk, then x % y.

Proposition 3 (Asheim and Tungodden (2004), Proposition 2) A SWR
% satisfies Strong Pareto, Finite Anonymity, Weak Preference Continuity and
Hammond Equity if and only if %Lw is a subrelation to %.
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Using the SWR %Lw, we can define an extension of the W-leximin relation
as follows: For all x, y ∈ X

x ÂQLw y holds if and only if there exist π, ρ ∈ Q such that π̂(x) ÂLw ρ̂(y) and
x ∼QLw y holds if and only if there exists π ∈ Q such that π̂(x) ∼Lw y.

Theorem 2 A SWR % satisfies Strong Pareto, Q-Anonymity, Weak Preference
Continuity and Hammond Equity if and only if %QLw is a subrelation to %.

Proof (only if part) By Theorem 1, a SWR % satisfies the four axioms of the
theorem statement only if %QLw is a subrelation to %.

(if part) Assume that %QLw is a subrelation to %.
(Strong Pareto) Suppose that x, y ∈ X are such that x > y. Since %Lw

satisfies Strong Pareto, x ÂLw y. From the definition of ÂQLw, we have x ÂQLw

y. Since %QLw is a subrelation to %, we obtain x Â y.
(Q-Anonymity) Let π ∈ Q. By definition, π−1, π−1 ◦ π ∈ Q. Since %Lw is

reflexive, π̂−1(π̂(x)) = x ∼Lw x. By definition, π̂(x) ∼QLw x. Since %QLw is a
subrelation to %, we obtain π̂(x) ∼ x.

(Weak Preference Continuity) Suppose that x, y ∈ X are such that there
exists n̄ ∈ N with for all integers n ≥ n̄, (x−n, y+n) Â y. Since %QLw is
a subrelation to %, %Lw is a subrelation to %QLw, and %Lw is complete for
comparisons between (x−n, y+n) and y, this implies that there exists n̄ ∈ N
such that for all integers n ≥ n̄, (x−n, y+n) ÂLw y. By definition, this entails
that x ÂLw y, which in turn implies x Â y since %Lw is a subrelation to %QLw

and %QLw is a subrelation to %. Thus, we have established that Â satisfies
Weak Preference Continuity.

(Hammond Equity) Suppose that x, y ∈ X and i, j ∈ N are such that yi <
xi < xj < yj and for all k ∈ N \ {i, j}, xk = yk. Let I = max{i, j}. Then for all
integers n ≥ I, x−n %n

Lw y−n. By definition, we have x %Lw y and since %Lw

is a subrelation to %QLw and %QLw is a subrelation to %, x % y.

Following Banerjee (2006), we can strengthen the conclusion of Theorem 2
further. We denote the set of all SWRs satisfying Strong Pareto, Q-Anonymity,
Weak Preference Continuity and Hammond Equity by Ξ and consider the fol-
lowing binary relation on X: For all x, y ∈ X

x %∗ y holds if and only if for all %∈ Ξ, x % y.

We can now prove

Theorem 3 %∗ is a SWR satisfying Strong Pareto, Q-Anonymity, Weak Pref-
erence Continuity and Hammond Equity. Moreover, %∗≡%QLw.

The proof is omitted for the sake of brevity.
Next, we define a utilitarian relation called the overtaking relation: For all

x, y ∈ X

x ÂO y holds if and only if there exists n̄ ∈ N such that for all integers n ≥ n̄,∑n
i=1 xi >

∑n
i=1 yi and

x ∼O y holds if and only if there exists n ∈ N such that
∑n

i=1 xi =
∑n

i=1 yi.
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2-Generation unit comparability For all x, y, z ∈ X and all i, j ∈ N, if
x % y and for all k ∈ N \ {i, j}, zk = 0, then (x + z) % (y + z).

Proposition 4 (Asheim and Tungodden (2004), Proposition 5) A SWR
% satisfies Strong Pareto, Finite Anonymity, Weak Preference Continuity and
2-Generation Unit Comparability if and only if %QO is a subrelation to %.

Using the SWR %O, we can define an extension of the overtaking relation
as follows: For all x, y ∈ X

x ÂQO y holds if and only if there exist π, ρ ∈ Q such that π̂(x) ÂO ρ̂(y) and
x ∼QO y holds if and only if there exists π ∈ Q such that π̂(x) ∼O y.

Theorem 4 A SWR % satisfies Strong Pareto, Q-Anonymity, Weak Prefer-
ence Continuity and 2-Generation Unit Comparability if and only if %QO is a
subrelation to %.

Proof (only if part) By Theorem 1, a SWR % satisfies the four axioms of the
theorem statement only if %QO is a subrelation to %.

(if part) Assume that %QO is a subrelation to %. Arguments similar to those
used in the only-if part of the proof of Theorem 2 establish that % satisfies Strong
Pareto, Q-Anonymity and Weak Preference Continuity.

(2-Generation Unit Comparability) Suppose that x, y, z ∈ X and j, k ∈ N
are such that x % y, for all i ∈ N \ {j, k}, zi = 0. Since %QO is a subrelation
to % and %O is a subrelation to %QO, this implies that there exists n̄ ∈ N such
that for all integers n ≥ n̄, either

∑n
i=1 xi >

∑n
i=1 yi or

∑n
i=1 xi =

∑n
i=1 yi.

By definition, this entails that there exists n̄ ∈ N such that for all integers
n ≥ n̄, either

∑n
i=1(xi + zi) >

∑n
i=1(yi + zi) or

∑n
i=1(xi + zi) =

∑n
i=1(yi + zi),

which in turn implies x % y since %O is a subrelation to %QO and %QO is a
subrelation to %. Thus, we have established that % satisfies 2-Generation Unit
Comparability.

Again following Banerjee (2006), the characterization result can be strength-
ened further. Let Ξ′ denote the set of all SWRs satisfying Strong Pareto, Q-
Anonymity, Weak Preference Continuity and 2-Generation Unit Comparability
and consider the following binary relation on X: For all x, y ∈ X

x %′ y holds if and only if for all %∈ Ξ′, x % y.

Theorem 5 %′ is a SWR satisfying Strong Pareto, Q-Anonymity, Weak Pref-
erence Continuity and 2-Generation Unit Comparability. Moreover, %′≡%QO.

The proof is omitted for the sake of brevity.

5 Comparison with the overtaking and Q-simplified
criteria

In this section, we compare the rankings by the Q-overtaking criteria with those
by the overtaking criteria and the Q-simplified criteria. We will consider a class
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of examples for which it is argued that the rankings by the Q-overtaking criteria
are more complete than those by the overtaking criteria and the Q-simplified
criteria. Throughout this section, let π be the permutation defined as follows:

π(n) =

{
n + 1 if n is odd
n − 1 otherwise.

It is easy to check that for all n ∈ N, π({1, . . . , 2n}) = {1, . . . , 2n}. This shows
that π ∈ Q.

We first provide a class of examples to illustrate the relative merits of the
Q-overtaking relation.

Example 3 Consider the following two utility streams x and y:

x = (1, 0, 1, 0, 1, 0, . . . )
y = (0, 1, 0, 1, 0, 1, . . . ).

(1)

We will compare the ranking of x and y made by the Q-overtaking relation with
that by the overtaking relation. Note that in the pair defined in (1), for all odd
numbers n,

∑n
i=1 xi >

∑n
i=1 yi and for all even numbers n,

∑n
i=1 xi =

∑n
i=1 yi.

By definition, the overtaking relation declares x and y as non-comparable and
using the definition of the catching up relation, we get x ÂC y. Now, π̂(x) = y
and hence, π̂(x) ∼O y. By definition, x ∼QO y.

Example 4 Consider the following two utility streams x and y:

x = ( 1
2 , 0, 1, 0, 1, 0, . . . )

y = (0, 1, 0, 1, 0, 1, . . . ).
(2)

We will compare the ranking of x and y made by the Q-overtaking relation with
that by the overtaking relation. Note that in the pair defined in (2), for all odd
numbers n,

∑n
i=1 xi >

∑n
i=1 yi and for all even numbers n,

∑n
i=1 xi <

∑n
i=1 yi.

By definition, the catching up relation declares x and y as non-comparable.
Now, π̂(y) > x and hence, π̂(y) ÂO x. By definition, y ÂQO x.

Next, we introduce two versions of the simplified criterion: The Basu-Mitra
utilitarian relation and the leximin relation characterized by Bossert et al.
(2007).

The Basu-Mitra utilitarian relation is defined as follows: For all x, y ∈ X

x %U y holds if and only if there exists n ∈ N such that
(
∑n

i=1 xi, x
+n) > (

∑n
i=1 yi, y

+n).

Using the SWR %U , we can define the Q-utilitarian relation characterized
by Banerjee (2006) as follows:4 For all x, y ∈ X

x %QU y holds if and only if there exists π ∈ Q such that π̂(x) %U y.
4An alternative characterization of this extended SWR was provided in Kamaga and Ko-

jima (2007).

10



Next, using %n
L, we define the leximin relation characterized by Bossert et

al. (2007) as follows: For all x, y ∈ X

x %L y holds if and only if there exists n ∈ N such that x−n %n
L y−n and

x+n > y+n.

Using the SWR %L, we can define an extension of the leximin relation as
follows:5 For all x, y ∈ X

x %QL y holds if and only if there exists π ∈ Q such that π̂(x) %L y.

We now consider an example to illustrate the relative merits of the Q-
overtaking relation.

Example 5 (Banerjee (2006), Example 3) Consider the following two utility
streams x and y:

x = (1, 1
2 , 1

2 , 1
23 , 1

23 , 1
25 , . . . )

y = (1, 1, 1
22 , 1

22 , 1
24 , 1

24 , . . . ).

As Banerjee (2006) discussed, the Q-utilitarian relation declares x and y to be
non-comparable. However, since for all integers n ≥ 2,

∑n
i=1 yi >

∑n
i=1 xi, we

have y ÂO x which is compatible with Banerjee (2006)’s observation. Since %O

is subrelation to %QO, we also have y ÂQO x.
Moreover, as Banerjee (2006) showed, it is impossible to achieve Pareto

dominance after some finite generation with infinite permutation matrices in the
class Q. So the Q-leximin relation also declares x and y to be non-comparable.
However, y ÂLw π̂(x). By definition, y ÂQLw x.6

Example 6 Consider the following two utility streams x and y:

x = (1, 1, 1
3 , 1

3 , 1
9 , 1

9 , 1
27 , . . . )

y = (1, 2
3 , 2

3 , 2
9 , 2

9 , 2
27 , 2

27 , . . . ).

One can generate the utility stream x in the following way: x1 = 1 and for all
integers n ≥ 2

xn =

{
3√
3

n if n is even
√

3√
3

n otherwise.

Similarly, y1 = 1 and for all integers n ≥ 2

yn =

{
2√
3

n if n is even
2
√

3√
3

n otherwise.

Clearly, x and y are non-comparable according to the W-leximin relation, since
for all even numbers n, min{x1, . . . , xn, y1, . . . , yn} = yn and for all odd numbers

5This extended SWR was characterized in Kamaga and Kojima (2007).
6Note that there exists no ρ ∈ Q satisfying ρ̂(y) ÂLw x in this example.
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n, min{x1, . . . , xn, y1, . . . , yn} = xn. Moreover, x and y are non-comparable
according to the overtaking relation, since for all even numbers n,

∑n
i xi >∑n

i yi and for all odd numbers n,
∑n

i xi =
∑n

i yi. However, x ÂO π̂(y) and
π̂(y) ÂLw x. By definition, x ÂQO y and y ÂQLw x.7

We now discuss a potential drawback of two versions of the Q-overtaking cri-
teria. Example 7 presents an example in which two versions of the Q-overtaking
criteria fail to compare them.

Example 7 (Lauwers (1997, p. 230)) Consider the following two utility streams
x and y:

x = (

1︷︸︸︷
1
2 ,

2︷︸︸︷
0, 0 ,

3︷ ︸︸ ︷
0, 0, 1,

4︷ ︸︸ ︷
0, 0, 0, 0,

5︷ ︸︸ ︷
0, 0, 0, 0, 1,

6︷ ︸︸ ︷
0, 0, 0, 0, 0, 0, 0, 0, 0, . . . )

y = ( 0︸︷︷︸
1

, 0, 1︸︷︷︸
2

, 0, 0, 0︸ ︷︷ ︸
3

, 0, 0, 0, 1︸ ︷︷ ︸
4

, 0, 0, 0, 0, 0︸ ︷︷ ︸
5

, 0, 0, 0, 0, 0, 1︸ ︷︷ ︸
6

, 0, 0, 0, . . . ).

One can generate the utility stream x in the following way: x1 = 1
2 and for all

integers n ≥ 2

xn =

{
1 if n = k(2k − 1) for some k ∈ N
0 otherwise.

Similarly

yn =

{
1 if n = k(2k + 1) for some k ∈ N
0 otherwise.

There exist no π, ρ ∈ Q satisfying π̂(x) %ξ ρ̂(y) or π̂(y) %ξ ρ̂(x), since for all n ∈
N, x−n(2n−1) Ân(2n−1)

ξ y−n(2n−1), y−n(2n+1) Ân(2n+1)
ξ x−n(2n+1), x−(n+1)(2n−1) Â(n+1)(2n−1)

ξ

y−(n+1)(2n−1) and so forth, where %ξ denotes the W-leximin or overtaking re-
lation. Consequently, x and y are non-comparable according to two versions of
the Q-overtaking criteria. Note that in order to extend two versions of the Q-
overtaking criteria to complete orderings, one has to judge such types of utility
streams.
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