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Abstract

In this paper, we study cooperative games with coalition structures. We show that a solution concept
which applies the Shapley value to games inter- and intra-coalitions and in which the pure surplus that
the coalition obtains is allocated among the intra-coalition members in egalitarian way, is axiomatized
by modified axioms on null players and symmetric players and the usual three axioms: Efficiency,
Additivity and Coalitional Symmetry. In addition to the original definition, we give two expressions of
this solution concept. One is an average of modified marginal contributions and the other is the weighted
Shapley value of a game with restricted communication.
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1 Introduction

The purpose of this short paper is to revisit a distributive analysis of a cooperative surplus among players
when they already partition themselves into ‘coalitions’ before realizing cooperation. Two traditional works
of Aumann and Dreze (1974) and Owen (1977) respectively propose distribution rules, solution concepts in
a framework of a cooperative game with a coalition structure, which are different from each other but each
of which is considered to be an extension of the Shapley value to the case. Because both studies implicitly
or explicitly assume that players forms coalitions in order to affect their bargaining positions, they share a
common presumption that a participant in a coalition who does not make an effective contribution to his
fellows receive nothing. Thus, these studies lack a perspective that a (formed) coalition often has a tendency
to a generous reallocation of the surplus within the members of the coalition as if it is a system of mutual
assistance among the internal members, even though it is not established for such an end in the beginning.1

To reflect such a point of view, we introduce two new axioms in solution theory of a cooperative game
with a coalition structure, both of which are slightly different from the ones considered in existing studies.
The first axiom represents something like mutual aid of the formed coalitions. This is expressed by the
statement on anull player: even a null player could obtain some portion of a bargaining surplus if a
coalition that he belongs to generates it. The other is related to anequitycriterion applied to members in the
coalitions. This requires that two distinct players should be treated equally,i.e., receive the same amount,
if these two are judged to be in an equal position in theirinternalcoalition. We show that these two axioms
with the usual three axioms (Efficiency, Additivity and Coalitional Symmetry) lead to a unique solution
concept which is also considered to be an extension of the Shapley value in cooperative games with coalition
structures. This solution is interpreted as an allocation of the cooperative surplus by using the Shapley value
in two-step bargaining process: a bargaining inter-coalitions and a bargaining intra-coalitions. Moreover,
the bargaining surplus of the coalition is allocated among the intra-coalition members in egalitarian way. In
addition to this definition, we give two expressions of this solution concept. One is an average of modified
marginal contributions and the other is the weighted Shapley value of games with restricted communication
derived from a coalition structure.

The rest of the paper is organized as follows. In the next section, we prepare the basic notations and
definitions used in this paper. The correct statement about our new axioms is introduced in Section 3. In
the section, we present our main result on an axiomatic characterization of the solution concept. Section 4
gives some remarks on the new solution concept.

1Such tendency of formed coalitions is examined and explained in various contexts. Kropotkin (1972), from a view of evolu-
tionary economics, argues that generous reallocation scheme intra-group members arises from a human evolution in the struggle
for life. Noh (1999) examines a rent-seeking problem among two groups and show that the individuals within a group reach
an agreement of egalitarian-like intra-group sharing rule in the presence of inter-group competition. Researchers in community
psychology consider that the members of mutual assistance organizations can suitably respond divergent events of life such as hos-
pitalization for illness, victim of a crime, debt, and loss of a spouse and such augmenting stressful situations around ourselves lead
to a recent development of a number of mutual assistance organizations (Levine 1988). Further, in the study of labor-management,
profit sharing including stock-ownership schemes, which can been seen as generous reallocation not only within workers but also
among owners and employees, leads to helping-on-the-job (Drago and Turnbull 1988) and mutual monitoring (Kandel and Lazear
1992), and it is shown that profit sharing has a positive relation with factor productivity (FitzRoy and Kraft 1987) and profitability
(FitzRoy and Kraft 1986) of the firm.
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2 Preliminary

A pair (N,v) is acooperative gameor simply agamewhereN = {1, . . . ,n} is a set of finite players andv is
a real valued function defined on all subsets ofN satisfyingv( /0) = 0. A nonempty subsetSof N is called a
coalition. A set of games with finite players is denoted byΓ.

Given a game(N,v) ∈ Γ, let C = {C1, . . . ,Cm} be a partition ofN, that is,Ck∩Ch = /0 for k ̸= h and∪m
k=1Ck = N. ThenC is called acoalition structureof N. A triple (N,v,C ) is called agame with a coalition

structure. A set of games with coalition structures with finite players is denoted by∆.
A vector x ∈ RN is called apayoff vectorand its i-th elementxi denotes the payoff of playeri. A

payoff vectorx∈ RN is calledfeasiblein (N,v) if ∑i∈N xi 5 v(N) holds andefficientif the equality holds.
A solution of games is a function which assigns every game(N,v) to a feasible payoff vector of the game.
A solution of cooperative games with coalition structures is defined in the same manner.

Let (N,v) ∈ Γ. Let θ be an order onN, that is,θ is a bijection onN. A set of all the orders onN is
denoted byΘ(N). A set of players preceding toi at orderθ is Aθ

i = { j ∈ N : θ( j) < θ(i)}. A marginal
contribution of playeri at orderθ in (N,v) is defined bymθ

i (N,v) = v(Aθ
i ∪{i})−v(Aθ

i ). Then the Shapley
value Sh of(N,v) is defined as follows:

Shi(N,v) =
1

|Θ(N)| ∑
θ∈Θ(N)

mθ
i (N,v), for all i ∈ N,

where| · | represents the cardinality of the set. Thus, the Shapley value is an average of marginal contribution
vectors where each orderθ ∈ Θ(N) occurs in an equal probability, that is, 1/|Θ(N)|.

Let (N,v,C ) ∈ ∆. Owen (1977) extends a notion of the Shapley value to a game in which players are
already partitioned into “unions,” that is, a game with a coalition structure. An orderθ ∈ Θ(N) is consistent
with C if the following condition holds: for anyi, j,k∈ N with θ(i) < θ(k) < θ( j), i, j ∈Ch ∈ C implies
that playerk also belongs to coalitionCh. Thus, in the consistent order, players line up in a way that players
in the same coalition are side-by-side. A set of all the orders onN consistent withC is denoted byΘ(N,C ).
Then coalitional value CV introduced by Owen (1977) is defined as follows:

CVi(N,v,C ) =
1

|Θ(N,C )| ∑
θ∈Θ(N,C )

mθ
i (N,v), for all i ∈ N.

A player i ∈ N is called anull player if v(S) = v(S∪ {i}) for any S⊆ N \ {i} and adummy player
if v(S) + v({i}) = v(S∪{i}) for any S⊆ N \ {i}. Two playersi, j ∈ N are calledsymmetricin (N,v) if
v(S∪{i}) = v(S∪{ j}) for all S⊆ N\{i, j}.

For(N,v,C )∈∆, (M,vC ) is called agame among coalitionswhereM = {1, . . . ,m} is a set of coalitional
indices of the elements inC andvC (H) = v(

∪
k∈H Ck) for eachH ⊆M.2 This is interpreted as a game played

by the (representatives of the) coalitions. ForS⊆ N, a subgame of(N,v) to S is simply denoted by(S,v|S)
wherev|S(T) = v(T) for all T ⊆ S.

2This game is referred to as an intermediate game in Peleg and Sudhölter (2003) and as a quotient game in Owen (1977).
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3 Results

First, we define new axioms about null players and symmetric players. Let(N,v,C ) ∈ ∆ and letψ be a
solution of cooperative games with coalition structures. Then,

Coalitional Null Player: If i ∈Ck is a null player in(N,v) andk ∈ M is a dummy player in(M,vC ) (that
is,Ck is a dummy coalition), thenψi(N,v,C ) = 0.

Internal Equity: If i ∈ Ck ∈ C and j ∈ Ck are symmetric in subgame(Ck,v|Ck), then ψi(N,v,C ) =
ψ j(N,v,C ).

Thus, in the statement of Coalitional Null Player, the usual requirement on a null player (null player
axiom in existing studies) that a null player obtain nothing in any situation is weakened so that he could
obtain more than his own contributions because of the strong position of his coalition or mutual assistance
between the internal members in the coalition. Internal Equity requires that two distinct players who are
judged to be in an equal position in the internal situation (i.e., subgame(Ck,v|Ck)) should be equally treated
and thus receive the same amount of the surplus.

On the one hand, it is easily shown that the coalitional value satisfies Coalitional Null Player since it al-
ways gives nothing to the null player. On the other hand, it does not satisfy Internal Equity. In fact, consider
a three-person game(N,v,C ) whereN = {1,2,3}, C = {{1},{2,3}}, andv({1,2}) = v({1,2,3}) = 1 and
v(S) = 0 otherwise. Then the coalitional value gives(1/2,1/2,0) for the players. However players 2 and 3
are symmetric in({2,3},v|{2,3}).

Next theorem shows that there exists a unique solution on∆ different from the coalitional value, satis-
fying these two axioms and usual three axioms (Efficiency, Additivity and Coalitional Symmetry).

Theorem 1. There exists a unique solution of cooperative games with coalition structures on∆ satisfying
Coalitional Null Player, Internal Equity and the following three:
(i) Efficiency:∑i∈N ψi(N,v,C ) = v(N).
(ii) Additivity: ψ(N,v,C )+ψ(N,v′,C ) = ψ(N,v+v′,C ), where(v+v′)(S) = v(S)+v′(S) for any S⊆ N.
(iii) Coalitional Symmetry: If k∈M and h∈M are symmetric in(M,vC ), then∑i∈Ck

ψi(N,v,C )= ∑i∈Ch
ψi(N,v,C ).

This solution is defined by the following formula:

ψδ
i (N,v,C ) =

Shk(M,vC )−v(Ck)
|Ck|

+Shi(Ck,v|Ck), for i ∈Ck ∈ C . (1)

Proof. First, we show thatψδ satisfies all the five axioms. Efficiency and Additivity are obvious by
the definition ofψδ since the Shapley value satisfies these two axioms. Next,ψδ satisfies Coalitional
Symmetry because the summation ofψδ

i (N,v,C ) overCk ∈C is playerk’s Shapley value of a game among
coalitions(M,vC ) and the Shapley value gives the equal payoffs to the symmetric players (symmetry axiom
of the Shapley value, see Shapley 1953b). Since the first term of the definition ofψδ is the same for all
the players in coalitionCk ∈ C , the different payoffs among the players inCk are caused by the subgame
(Ck,v|Ck). Thusψδ fulfills Internal Equity because the Shapley value satisfies symmetry axiom. It also
satisfies Coalitional Null Player axiom because the Shapley value gives dummy playeri his stand-alone
valuev({i}).
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Next we will show the converse part. Letψ be a solution on∆ satisfying the five axioms. GivenT ⊆ N,
let (N,uT) be aT unanimity game whereuT(S) = 1 if S⊇ T anduT(S) = 0 otherwise. Givenc∈ R, let cuT

be aT unanimity gameuT multiplied by a scalarc. Then, by Additivity axiom, it is enough to show that
ψ(N,cuT ,C ) is uniquely determined by the five axioms.

ForT ⊆ N, defineD ⊆ M by { k∈ M : Ck ∈ C , Ck∩T ̸= /0}. Then(M,(cuT)C ) is aD-unanimity game
multiplied by c, i.e., (M,cuD). Then Coalitional Symmetry together with Coalitional Null Player axiom
implies that fork∈ M \D and fori ∈Ck, ψi(N,cuT ,C ) = 0 and fork∈ D, ∑i∈Ck

ψi(N,cuT ,C ) = c
|D| .

For an internal distribution of the members inCk,k∈ D, we consider two cases.
Case (a): |D| = 2. Then, for anyk ∈ D, i ∈ Ck and j ∈ Ck are symmetric in(Ck,(cuT)|Ck). Therefore

ψi(N,cuT ,C ) = c
|Ck|·|D| for any i ∈Ck,k∈ D.

Case (b):|D| = 1. Then putC = {C1}. For i ∈C1\T, ψi(N,cuT ,C ) = 0 by Coalitional Null Player since
player 1 is dummy in(M,(cuT)C ) and playeri is null in (N,v). Moreover anyi, j ∈ T are symmetric in
(C1,(cuT)|C1). Therefore by Internal Equity,ψi(N,cuT ,C ) = c

|T| for any i ∈ T. ¥

We can interpretψδ as atwo-step Shapley valuein the following sense. In the first step, each coalition
Ck ∈ C acts like a single player and obtains playerk’s Shapley value of a game among coalitions,(M,vC ).
Thus, an allotment of first step for coalitionCk is Shk(M,vC ). In the second step, all the players inCk

agree with the following two things. First, they agree that Shk(M,vC )−v(Ck) is a pure surplus (it is non-
negative if the game is superadditive3) of the first step and therefore is split equally among the members
in Ck. Second, they agree that remaining partv(Ck) is distributed by the rule of the Shapley value for their
subgame(Ck,v|Ck). Thus, the pure bargaining surplus of the first stage is distributed within the members
in the egalitarian way, which seems to reflect a generous reallocation or an aspect of mutual aid among the
members embedded in our two axioms.

Before checking the independence of each axiom from the others, the next remark is worth mentioning.

Remark 1. It is worth mentioning that we can omit Efficiency from Theorem 1. In fact, the other axioms
with non-emptiness of a solution which we implicitly assume, imply Efficiency. The reason why we add
Efficiency in Theorem 1 is to easily compare our result with Owen’s (1977) one in the next section.

The main logic is similar to Theorem 8.1.3 of Peleg and Sudhölter (2003). Let(N,v0) be zero-game
such that v0(S) = 0 for any S⊆ N andC be a coalition structure on N. Then,ψ(N,v0,C ) must be0N =
(0, . . . ,0) ∈ RN by Coalitional Null Player. Let(N,v,C ) ∈ ∆. By Additivity,ψ(N,v,C )+ ψ(N,−v,C ) =
ψ(N,v−v,C ) = ψ(N,v0,C ) = 0N. Soψ(N,v,C ) = −ψ(N,−v,C ) holds. By the definition of a solution,
∑i∈N ψi(N,v,C )5 v(N) and∑i∈N ψi(N,v,C )=−∑i∈N ψi(N,−v,C )=−(−v(N)). Thus,∑i∈N ψi(N,v,C )=
v(N) holds.

Example 1. We define the following solutions in order to check the independence of each axiom from the
others. Letθ be an order on the set of all the integersN{1,2,3, . . .}. For any set S⊂ N, let θ [S] denote an
order on S induced fromθ such that for any i, j ∈ S,θ [S](i) < θ [S]( j) exactly ifθ(i) < θ( j).

1. For (N,v) ∈ Γ, let Nu(N,v) denote the nucleolus of(N,v) proposed by Schmeidler (1969). For any

(N,v,C ) ∈ ∆, we define a solutionψ(i) by ψ(i)
i (N,v,C ) = Nuk(M,vC )−v(Ck)

|Ck| + Nui(Ck,v|Ck) for any

i ∈ Ck ∈ C . Then,ψ(i) satisfies Coalitional Symmetry, Internal Equity and Coalitional Null Player
but not Additivity.

3For anyS,T ⊆ N with S∩T = /0, v(S∪T) ≥ v(S)+v(T).
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2. For any i∈Ck ∈C , defineψ(ii)
i (N,v,C )= mθ [M]

k (M,vC )−v(Ck)
|Ck| +Shi(Ck,v|Ck). Then,ψ(ii) satisfies Additivity,

Internal Equity and Coalitional Null Player but not Coalitional Symmetry.

3. Then for any i∈ Ck ∈ C , defineψ(iii )
i (N,v,C ) = Shk(M,vC )−v(Ck)

|Ck| + mθ [Ck]
i (Ck,v|Ck). Then,ψ(iii ) satisfies

Additivity, Coalitional Symmetry and Coalitional Null Player but not Internal Equity.

4. For any i∈Ck ∈ C , ψ(iv)
i (N,v,C ) = ψe

i (N,v,C ) = Shk(M,vC )
|Ck| . Then,ψe satisfies Additivity, Coalitional

Symmetry and Internal Equity but not Coalitional Null Player.

Among several solutions described in the above example, solutionψe, which uses the Shapley value
for inter-coalitions and the egalitarian solution for intra-coalitions, also prepares the similar requirement of
coalitions as generous reallocation system or mutual assistance considered in this paper, but slightly give
much weight to an egalitarian aspect within the internal members. In fact, this solution is axiomatized as
follows.

Theorem 2. ψe is a unique solution of cooperative games with coalition structures on∆ satisfying Effi-
ciency, Additivity, Coalitional Symmetry and the following two:

Null Coalition: If k ∈ M is a null player in(M,vC ), then∑i∈Ck
ψi(N,v,C ) = 0.

Internal Egalitarianism: For any i∈Ck ∈ C and for any j∈Ck ∈ C , ψi(N,v,C ) = ψ j(N,v,C ).

We omit the proof of Theorem 2 because this is similarly constructed to the proof of Theorem 1. For
the independence of the axioms in the above theorem, consider solutions, fori ∈Ck ∈ C ,

5. ψ(v)
i (N,v,C ) = Nuk(M,vC )

|Ck| ,

6. ψ(vi)
i (N,v,C ) = mθ [M]

k (M,vC )
|Ck| , and

7. ψ(vii)
i (N,v,C ) = v(N)

|N| .

Then,ψ(v), ψ(vi), ψδ , andψ(vii) respectively show the independence of Additivity, Coalitional Symmetry,
Internal Egalitarianism and Null Coalition from the other three.

4 Remarks

4.1 Comparison with the Owen’s coalitional value

The coalitional value is characterized by Efficiency, Additivity, Coalitional Symmetry and the following
two axioms. (See Owen 1977. However Peleg and Sudhölter 2003 show that by the same reason of Remark
1, we can conduct the axiomatization of the coalitional value without Efficiency.)

Null Player: If i ∈ N is a null player in(N,v), thenψi(N,v,C ) = 0.

Restricted Equal Treatment: If i, j ∈Ck ∈ C are symmetric in(N,v), thenψi(N,v,C ) = ψ j(N,v,C ).

It is clear that Restricted Equal Treatment is weaker than Internal Equity and Null Player requires more
than Coalitional Null Player. Thus we understand that the essential difference between the two solutions
lies in the treatment of null players and symmetric players.
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4.2 Random arrival interpretation

It seems that the definition ofψδ is too much based on “two step bargaining process.” We are, however,
able to expressψδ as an average of themodifiedversion of the marginal contributions as well as Sh and
CV. Let θ ∈ Θ(N,C ). Let θM be an order onM derived fromθ such that fork,h∈ M, θM(k) < θM(h) if
and only ifθ(i) < θ( j) for all i ∈Ck and for all j ∈Ch. θM is well-defined ifθ is consistent withC . For
i ∈Ck ∈ C , we define modified marginal contribution of playeri at orderθ , m̄θ

i by

m̄θ
i (N,v,C ) =

{
mθ [Ck]

i (Ck,v|Ck) if i is not last at orderθ [Ck],
mθ [Ck]

i (Ck,v|Ck)+mθM
k (M,vC )−v(Ck) if i is last at orderθ [Ck].

The following theorem holds.

Theorem 3. ψδ is expressed as follows: for i∈ N,

ψδ
i (N,v,C ) =

1
|Θ(N,C )| ∑

θ∈Θ(N,C )
m̄θ

i (N,v,C ). (2)

Proof. It is easily verified from this formula by Eq.(1) and the definition of the modified marginal contri-
bution. ¥

4.3 Restricted communication

Myerson (1977) considers a situation that a communication between players is restricted on an undirected
graph ofN (see also Myerson 1980). Along this line of research, Aumann and Dreze’s (1974) value,
which is defined by ADi(N,v,C ) = Shi(Ck,v) for all i ∈ Ck ∈ C , is considered to represent a situation
that a coalition structure describes a communication restriction such that players in the same coalition
communicate with each other, but each coalition is physically separated. This situation is also described
as the graph such that each maximal component of the graph corresponds to a coalition inC and each
subgraph on the component is a complete graph. Thus, Aumann and Dreze’s value coincides with the
Myerson value for such a graph situation. However, this interpretation of coalition structure does not fit the
view that players form coalitions for the division ofv(N) since Aumann and Dreze’s value does not satisfy
the efficiency but the relative efficiency (∑i∈N ψi(N,v,C ) = ∑Ck∈C v(Ck)). This motivates another view of
communication restriction by a coalition structure in the following sense:

(i) players in the same coalitionCk ∈ C can freely communicate with each other, and

(ii) players inCk can communicate with players in the other coalitions if there is a permission of all the
players inCk.

Condition (i) means that players in any sub coalitionS⊆ Ck ∈ C can communicate with each other
and thus obtain their worth of coalition,v(S). In addition to (i), (ii) implies that there is a possibility of
cooperation among players in the different coalitions. This is possible only if all the players in the relevant
coalitions agree. Leti ∈Ck andCh ∈ C ,Ch ̸= Ck. WhileCk andCh obtain their worthv(Ck∪Ch), Ck− i and
Ch obtain the sum ofv(Ck− i) andv(Ch) because there is no permission by playeri or there is no permission
of the party which the coalition represents and which requires the unanimous agreement.4

4Carreras (1992) refers the similar restriction of coalition as “voting discipline” in the context of simple games.
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Definition 1. Let (N,v,C ) ∈ ∆. C -communication restricted game(N,vC ) is defined as follows. For all
S⊆ N,

vC (S) = v(
∪

Ck∈C (S)

Ck)+ ∑
T∈C 0(S)

v(T)

whereC (S) = {Ck ∈ C : Ck ⊆ S} andC 0(S) = {Ck∩S : Ck∩S ̸= Ck,Ck ∈ C }.

Then, we obtain the following relationship betweenψδ and the weighted Shapley value Shw (see,
Shapley 1953a and Kalai and Samet 1987). Letw= (wi)i∈N be a positive weight vector ofN. The weighted
Shapley value Shw is defined as follows:

Shw
i (N,v) = ∑

θ∈Θ(N)
µw(θ)mθ

i (N,v)

for all i ∈ N where forθ = (i1, . . . , in), µw(θ) = Πn
j=1

wi j

∑ j
k=1 wik

. The following theorem holds.

Theorem 4. Let w= (wi)i∈N be a weight vector such that wi = 1
|Ck| for all i ∈Ck ∈ C . Then,

ψδ (N,v,C ) = Shw(N,vC ). (3)

Proof. Eq.(3) is obtained from Eq.(2) and the following fact. Forθ ∈ Θ(N), we defineθ ∗ ∈ Θ(M) by the
condition thatθ ∗(k) > θ ∗(h) if and only if there existsi ∈Ck such thatθ(i) > θ( j) for all j ∈Ch. Then, the
probability thatθ ∗ coincides with some orderπ ∈ Θ(M) when eachθ appears according to the probability
distributionµw(.) is just 1

|M|! = 1
|Θ(M)| . ¥

Thus, Eq.(3) shows that a two-step Shapley valueψδ is a weighted Shapley value forC -communication
restricted game. However, using reciprocal of the cardinality of a coalition as the weight of the member
of the coalition does not seem to have much justification; rather usual non-weighted Shapley value appears
to be more acceptable. This motivates the following definition of a solutionψγ in a game with a coalition
structure.

Definition 2. Let (N,v,C ) ∈ ∆. A solutionψγ of a game with a coalition structure is defined as follows:

ψγ(N,v,C ) = Sh(N,vC ).

An unintuitive result holds for this solution. Interestingly, this solution is other version of two-step
Shapley value: here, in the first step, the weighted Shapley value with coalition-size based weight is applied
for a game among coalition, and then the Shapley value is applied for the subgame. Thus, the following
holds:

ψγ
i (N,v,C ) =

Shw
k (M,vC )−v(Ck)

|Ck|
+Shi(Ck,v|Ck), for i ∈Ck ∈ C ,

wherewi = |Ck| for all i ∈Ck ∈ C . The properties of this solution are extensively studied in our companion
paper (Kamijo 2007) including axiomatizations and a potential function of the solution.
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