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Abstrucl-Commnnication systems are essential in the coordi- 
nation and planning of emergency and disaster relief operations 
(fire, earthquake, terrorism). Unfortunately, existing systems 
often provide minimal communication infrastructure for suplying 
information about the nature or  the extend of an emergency 
or disaster area. Wireless Sensor Networks are a promising 
method for providing real-time feedback from disaster sites to 
rescue personnel. In this paper we evaluate current localization 
methods for WSWs in scenarios with characteristics similar 
to thost common in a disaster area. We find that common 
assumptions in current location schemes don’t apply in a disaster 
scenario and the expected behavior of the localization methods 
changes. Even thought the expected behavior changes we show 
that current proposed local i t ion  methods maybe fit for rescue 
and disaster relief applicntions. Finally we mention deficiencies 
and improvements for this localization methods. 

1. INTRODUCTION 

The first widely known example of the use of wireless 
communication technologies to find victims in a disaster area 
was the Wireless Response Team [12]. They tried to use 
cellular phone and pager signals to detect the location of 
victims trapped inside the rubble after the September 11 
World Trade Center attack. The report presented by WERT 
had several recommendations and key learnings for improving 
localization techniques in rescue operations. Based on the 
characteristics of the disaster area described in the WERT 
report is clear that current localization methods GPS (Global 
Positioning System) and CeIlular based (E91 1) where useless 
in the aid to detect victims inside the rubble due to several 
factors: 

The area was large (14 acres, 7 stories tall and 7 stories 
d o A )  and the number of expected victims was big 
(Thousands). 
Occlusion, reflections and multipath effects limit the 
usefulness of GPS in indoor or dense environments, 
situation that was common in the disaster area of the 
WTC. 
The cellular network was severely affected by the dis- 
aster (3 cells were destroyed and 173 were affected by 
network or power connectivity). This limited the use of 
cellular technology to detect signals from cell phones 
and pagers. 
The use of portable equipment (Spectral analyzers, Cells 
on Wheels, etc..) to detect RF signals from cell phones 
and pagers was also limited by the following factors: 
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a) Hostile RF environment due to dense concrete and 
metal. RF signals were scattered. limiting the value 
of directional antennas. 

b) Bad weather and heavy rain that increased the 
capacity of concrete to absorb RF signals. 

c) There was interference between the equipment 
used by WERT and that used by the rescue teams. 
Was difficult to determine if the RF signals de- 
tected were from victims in the ruble or rescue 
team members. 

Limited access and mobility due to hazardous environ- 
ment, most access was restricted to the perimeter of the 
disaster area. The location of COWS (Celts on Wheels) 
and paging devices were far away from the disaster area 
than ideal since the area was filled with heavy equipment 
from rescue teams and low availability of power supply. 

Wireless Sensor Networks (WSN) [16], networks of small 
sensor devices interconnected via wireless links, promise to 
help solve this and future problems. The idea of small sensors 
connected via wireless links that can provide information 
about the environment in real time assures that rescue team 
members can make decisions based on more complete infor- 
mation. The Wireless Sensor Networks are widely recognized 
as a privileged way to provide information in situations 
where less robust and less flexible fixed infrastructures are 
temporarily inoperable [17]. In this work we study WSN’s as 
means to aid in relief and rescue operatilms during a major 
disaster events. We focus our studies in localization protocols 
for WSN’s because location information is crucial in this kind 
of situations, for example tracking the movement of a forestall 
fire or locating trapped survivors in a disaster area. 

First we must set some requiremets to considered before 
using a localization method for wireless sensor network to 
detect victims or hazardous substances inside a disaster area. 
Based on the characteristics presented by WERT we see that 
the dimensions of the disaster area is large and hazardous. This 
requires a very Large scale sensor network so the localization 
methods must be scalable and robust in case of node failures. 
The localization method must be robust to ranging errors to 
compensate multipath and fading effects that are amplified 
by several factors in a disaster area. Finally because of  the 
hazardous nature of the disaster area and limited access and 
mobility, during the rescue operations of September I 1  the 
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WERT team members could only operate on the perimeter of 
the disaster area which indicates that anchor nodes may be 
only available at the edges of the sensor network and in low 
quantities. 

11. LOCALIZATION METHODS FOR WSN’S 
There is a lot of research in localization methods for wire- 

less sensor networks as seen in TabIe I. The Centroid method 
[3] is the most basic method. In the Centroid method anchor 
nodes with known positions broadcast a beacon message with 
their position to the network. Each sensor node hears all 
beacons from nearby anchors and when it has more than three 
or more. it estimates it’s own location as the centroid of all 
beacons with the formula: 

Where XcJt and Ye/est are the estimated coordinates of the 
sensor node and X 1 . t  and Y I ; ~  are the coordinates of all k 
anchor nodes heard by the sensor node. 

The APIT method 1131 improves over the centroid estima- 
tion by narrowing down the possible area in which a node may 
reside by using Point-In-Triangle tests. Each node in the APIT 
method repeats this PIT test for all three audible anchor com- 
binations or until a threshold is achieved- At this point APIT 
calculates the estimate position as the center of gravity of the 
intersecting area of all triangles the node resides in using an 
aggregation algorithm. This two methods, Cenkroid and APIT, 
require a dense population of anchor nodes distributed over the 
whole network because direct communication between sensor 
nodes and anchors is required. 

DV-Hop, DV-Distance and Euclidean form the family of 
methods proposed in [Z]. This methods differ in the way 
distances from anchors to sensor nodes are estimated. All 
thee use multi-hop communication to propagate distance 
information with beacon messages from hop to hop to all 
the network. In DV-Hop the beacon propagates bop count 
information from anchors to sensor nodes. This hop count 
value is stored in each sensor with the position and id of 
the originating anchor. During this propagation the beacon 
may reach other anchors in the network, 3t this paint anchors 
calculate an average hop count hSize, with information from 
other anchors as: 

This hrixe is then broadcasted to the whole network and 
each sensor node that receives it converts it’s hop count 
value to distances as hsizc, * hqCmnC, for all anchors i 
it heard. DV-Distance is similar to DV-Hop but instead of hop 
counts the accumulated distance estimated from hop to hop is 
propagated instead of hop counts. Euclidean is more complex 
and propagates the real euclidean distance between sensors and 
anchors. With this estimated distances and the location of the 
anchor nodes, each sensor node can estimate it’s own location 
via lateration (intersection of circles) or min-max (intersection 
of squares). 

TABLE r 
LIST OF LOCALlZATlON METHODS FOR WIRELESS SENSOR NETWORKS. 

The Amorphous method is similar to DV-Hop, the only 
difference is the way the average hop size is calculated. In the 
Amorphous approach instead of anchors calculating an average 
and broadcasting a second wave the hop size is calculated with 
the Kleinrock formula [ 141 that says that the hop size depends 
only an the local neighbOThDod density nlocai, not the total 
number of sensors. 

hsire ~ .,.(I + e-mocai - e - v ( a r c c o s l - t m , q  (3) 

Finally Hop-Terrain is identical to DV-Hop but adds a refine- 
ment phase after the initial location estimation takes place to 
improve the estimated distances of nodes. 

The AHLoS method [5 ]  defines an iterative multilateration 
method. Once the network is deployed, anchor nodes broadcast 
beacons with their positions to their neighbors. Neighboring 
sensor nodes with unknown location measure their separa- 
tion from their anchor nodes and use the beacons position 
information to infer it’s own position. When this unknown 
sensor nodes estimate it’s position, it becomes an anchor and 
broadcasts it’s estimated position to nearby .unknown nodes. 
This process continues until all sensor nodes get an estimate 
of their position. 

In some situations a sensor node may not have enough 
neighbors with known position to estimate it’s own. In this 
case the author defines collaborative lateration where two 
hop neighbor information may be used to infer location of 
sensor nodes. Also without relative large beacon densities, the 
iterative process may not converge in sparse regions of the 
network. 

In 17) the same author improves on AHLoS and general- 
izes the collaborative lateration to n-Hop lateration. In this 
improved method nodes are grouped in subtrees and enforced 
within the subtree to estimate their positions in tum in a fixed 
sequence to enhance convergence. 

I_, 

111. SIMULATTION.ENVIRONMENT 
During the WERT operations the area of disaster was of 14 

acres (64749.70m2) with thousands of victims (40,000) so a 
large scale network composed of thousands of sensor nodes to 
cover the whole area is needed. This requirement makes cen- 
tralized approaches like Convex and MDS inappropriate since 
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Fig. I Centroid Estimation Method. All estimated locations are pushed to 
the center of the simulation area Fow anchor nodes at the penmeter. The 
tines represent the error in the location estimate 

centralized approaches can't deal with topology changes due to 
mobility or node failures because of the high communication 
costs and inherent delay and are not scalable in processing as 
node density increases. 

As we mention WERT members were restricted to the 
perimeter of the area so in our simulations we assume all 
anchor nodes are at the perimeter of the simulation area. This 
assumption renders the centroid and APIT localization meth- 
ods unusable. Even if the anchor nodes have large transmission 
capability that covcrs the whole area, the location estimates 
based on the centroid equation 1 would push all estimated 
locations to the center of the simulation area generating large 
&ors in the estimates,see figure 1- 

The distributed approaches by Niculescu and Sawides seem 
to be more appropriate for localization in wireless sensor 
networks [I51 but still we need to study their performance 
under the constraints imposed if deployed in a disaster area. 
We chose to evaluate all three methods proposed by Niculescu: 
D W o p ,  DVDisfunce and Euclidean and from Sawides' w e  
only evaluate the n-Hop Multilutetarion method since it is an 
improvement and generalization of the AHLoS method. 

For evaluation purposes we use the OMNet t t  discrete event 
simulator [I I ]  and it's Mobility Franiework extension. All 
simulations are performed in a 350x350 square area with 
anchor nodes in the perimeter 'and nodes randomly distributed 
in the square area. 'The physical layer is free of colIisions so all 
messages amve to their destinations and the radio propagation 
i s  simulated with different ranging errors. For this we estimate 
ranging distances between nodes and add noise to the distance 
taking a random value from a normal distribution with the 
real distance as mean and standard deviation in the range of 
0%-50% of the mean. All simulations are run five times with 
different random generator seeds and the resulting statistics 
are averaged over the five runs to account for peculiarities in 
the network topology. 

IV. SIMULATION RESULTS 

In location estimation once the distance to known reference 
is known we can estimate the location using several methods 
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Like trilateration (intersection of circles) or min-max (inter- 
section of squares). Our simulations show that trilateration, 
figure 2, is very accurate in the location estimates for 0% 
ranging errors but as ranging errors increase the location 
estimate acurracy is greatly affected. On the other hand min- 
max, figure 3, is less accurate; it presents errors even with 
0% ranging errors but it is more robust as ranging errors 
increase. Trilateration presents a little improvement as anchor 
node density increases but min max presents an slight increase 
in estimation error. Some previous work show that min max 
fails for nodes outside the convex hull formed by the anchor 
nodes, this is not the case in our simulations since all anchor 
nodes are at the perimeter of the area. 

From the previous discussion we chose to use min max 
for location estimation in all our simulations. The accuracy 
deficiency of min max is not too large compared to trilateration 
and min max presents more benefits like easy implementation 
and lower complexity. Also being robust to ranging errors 
is a quality we desire in a disaster area where occlusion, 
fading and multipath effects to RF signals are amplified by 
the environment as stated before. 

We developed simulations in OMNet++ for DVHop, 
DVDistance, Euclidean and n-Hop Multilateration localization 
methods following as much as possible the description of 
the original papers. We found that some of the requirements 
imposed by a disaster relief situation change the expected 
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Fig. 5. DVDistance Location Estimation Error 

behavior observed by the authors and in some cases simplified 
the implementation of the methods. 
. For example in the Euclidean method the solution of 

the diagonal in the quadrilateral gives two possible distance 
estimates. Niculescu offer several methods to chose one of 
the two solutions based on more neighbors information or 
simply guess. We found that simpIy choosing the larger of 
both solutions gives better overall location estimates. This is 
due to the fact that anchor nodes are at the perimeter and the 
beacons propagation method ensures that most sensor nodes 
with unknowns will be farther from anchors. 

In the n-Hop multilateration approach messages between 
nodes are exchanged any time a sensor obtains a new location 
estimate, this process repeats until the change in the location 
estimate is small. Unfortunately if this process is not controlled 
the nodes where the iterative process initiates would run 
several iterations before the first estimated locations propagate 
through the whole network. To avoid this the author forces 
all nodes to estimate their locations in a sequential manner 
setting timers to the sensor nodes, only when the timer ends 
the node estimates it's location an propagates the estimated 
location. The timer is set to a value tong enough to allow the 
propagation gradient to cover the whole network. 

To obtain the value of this timer, Savvides uses a Distributed 
Depth First Search (DDFS) algorithm over the network. In our 
case we simply send a single message and estimate the time 

. .  . .  . . 

Fig. 6 .  n-Hop Multilateration Location Estimation Error 

Euclidean 
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Fig. 7. Euclidean Location Estimation Error 

it takes to reach from one side to the other side and use i t  as 
the tinter value. 

Another advantage of having anchor nodes, at the edges is 
that this anchor nodes may be mobile. If anchor nodes are 
mobile different sensors in the network may detect the anchor 
at different locations; each time the same anchor can be taken 
as two different anchors so low density of anchor nodes can 
be compensated by anchor nodes mobility. 

Figures 4 to 7 show the simulation results. Each point is an 
average of five runs, the vertical axis is the location estimation 
error as a fraction of the radio range and the horizontal axis 
is the anchor node density varied from 4 nodes to 70 nodes. 
All graphs present several curvcs, each one corresponding to 
a different ranging error in the distance 'estimates between 
neighbors with values from 0.0% to 45% the real distance.. 

The first thing to note in all graphs is that different from 
other studies the anchor node density does not affect the 
location estimation error. Other studies mention that anchor 
node density is an important factor affecting accuracy of the 
localization method. Since our anchor nodes are all at the 
perimeter of the area, increasing the anchor node desity has 
little effect on the location estimate. One exception is the 
n-Bop multilateration method that has no location estimates 
for densities below 10 anchor nodes. This is due to the fact 
that at such low densities the conditions €or atomic [ateration 
that initiates the iterative process are not met and as such the 
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process doesn’t even start and all sensor nodes are unable to 
get location estimates. 

As seen in the graphs DVHop is not affected by ranging 
errors but all others are affected being DVDistance and Eu- 
ctidean more susceptible to ranging errors than n-Hop. Eu- 
clidean wins in accuracy, followed by DVDistance when there 
are no ranging errors but for large ranging errors {hey behave 
worst than DVHop and n-Hop with location estimation errors 
of 40% the radio range. DVHop and n-Hop multilateration are 
equal in acurracy but we must take into account that DVHop is 
restricted to discrete step values of h,ize so it’s acurracy may 
be affected by the hop count, that is the sensors density and 
conectivity. We do not show studies on this factor for space 
constraints. 

The n-Hop multilateration method even more complex 
and slower than the DVHop does not give any performance 
increase compared to DVHop. We acknowledge though that 
we did not implemented the collaborative subtree in the first 
stage of the iterative process and this may increase overall 
performance by not adding ill formed nodes to the iterative 
estimation problem. The euclidean method is also complex 
and in sparse networks may be unable to estimate location 
of all nodes in the network reducing coverage but for all 
the scenarios we simulated both n-Hop and Euclidean where 
able to converge fast even n-Hop was able to locate all nodes 
without using collaborative multilateration for anchor nodes 
densities larger than ten. This follows the fact that anchor 
nodes at the border- of the network increases the reliability 
of the localization methods. 

One advantage of Euclidean and n-Hop over DVhop and 
DVDistance is that they use direct distances to anchor nodes to 
estimate new positions. This has the effect that even when the 
network is not isotropic and the hop count between anchors 
and sensor nodes do not approximates the true distance the 
Euclidean and n-Hop methods manage to get good location 
estimates. 

v. DISCUSSION 

We see from the previous results that all localization meth- 
ods are affected by different factors. For example DVDistance 
is affected greatly by ranging errors while DVHop is not 

TABLE I1 
SIMULATION RESULTS SUMMARY 

1 n-Hop 1 DVDislance 1 
I DVHop I Euclidean I 

bad 1 Euclidean I n-Hop I 

best 
good 

affected at all. On the other hand DVHop is less accurate 
than DVDistance and Euclidean for low ranging errors. n- 
Hop multilateration performes as the DVHop method but still 
DVHop is far more simple to implement and deploy. In table 
11 we summarize this results. 

The family of methods proposed by Nicrilescu seem to be 
fit for deployment under our requirements since each method 
compensates the other. DVHop can be used when no ranging 
information is availabie, i f  ranging information is available we 
could use DVDistance to get better accurate estimates and if 
the network is not isotropic we may use Euclidean. 

The combination of this three methods outperforms the 
n-Hop Multilateration method but still we could use n-Hop 
instead of Euclidean when the network is not isotropic and 
ranging errors are too high. We also noted that Euclidean was 
the only method that had nodes with no location estimates at 
the end of the simulation, specially for low anchor node densi- 
ties causing the overall error estimate to increase. In Euclidean 
the conditions to be able to infer distances anchor nodes are 
more strict than other approaches, this resulted in several nodes 
without enough distance estimates to anchor nodes to perform 
the min max localization. This makes Euclidean inadequate 
for networks with low number of neighbors per node (low 
connectivity) and low anchor nodes densities. 

One last point we must mention is that of communication 
overhead. It is always mention that sensor networks have lim- 
ited processing and energy capacity and that communication 
is the operation that consumes most of the energy DVHop is 
has large communication requirements because of the average 
hop size correction it bses to estimate distances. We argue 
that this communication costs can be greatly reduced using 
more eficient broadcasting mechanisms. Until now all local- 
ization methods use controlled broadcasting (Simple Flooding) 
to propagate distance and location infomation through the 
network. We ran the same simulation runs for the DVHop 
localization method with 60 sensor node, 70 anchor nodes 
and 0% ranging error using both Controlled Flooding and 
Counter Based Flooding. The localizatioii estimation results 
where equal for both cases and the coverage was not affected, 
but with the Counter Based Broadcasting we were able to 
reduce the communication overhead over 75% as shown in 
figure 8. 

Is important to note that Counter Based Broadcasting is 
better than Controlled Flooding but it is far from being 
the best broadcasting algorithm. More advanced broadcast- 
ing mechanisms based on topology may further reduce the 
communication costs of the localization algorithms without 
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affecting the location estimation or coverage of the localization 
methods. 

VI. CONCLUSIONS AND FUTURE RESEARCH 

The use of wireless sensor networks in emergency and 
disaster relief operations promise to provide real time infor- 
mation of the disaster area to rescue teams making coordi- 
nation and pfanning more effective. Location information of 
victims, rescuers and objects in the disaster is vital for the 
rescue operations. We evaluated several localization methods 
for wireIess sensor networks proposed in the literature and 
found the family of protocols by Niculescu to fit well the 
requirements we outlined for deployment in a disaster area. 
Simulation results show that this localization methods do not 
compete between them, they complement each other; where 
one method fails the other can take care. 

The results of this work are no different from what others 
have reported. Our contribution is the evaluation of local- 
ization methods under certain conditions and for a specific 
application. We found that under this conditions the expected 
behavior of the localization methods vary, for example increas- 
ing the anchor node density has little, if not at all, effect 
on the localization accuracy, contrary to what others have 
reported. Also the use of anchor nodes at the edges of the 
perimeter allowed use to make some assumptions that greatly 
simplify the algorithmic complexity and implementation of the 
localization methods. 

The DVHop family of localization methods can be used in a 
combined manner in all situations and network configurations 
and conditions. n-Hop multilateration keeps itself in between 
all three DV methods in accuracy, complexity and ranging 
robustness. Centralized methods and Centroid based methods 
where found inappropriate for our requirements and were not 
considered for simulation. The use of adaptive algorithms 
that deploy different localization methods depending on the 
conditions of the network is a topic of research in our agenda. 

We also stress the need for more studies of localization and 
other wireless sensor networks protocols in specific application 
domains and environments. This may lead to optimizations of 
the algorithms to specific environments that may improve the 
overall performance of the localization methods in that specific 
areas. 
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