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Abstract-This paper focuses on SlMD processor synthesis and 
proposes a SIMD instruction setlfunctional unit synthesis algo- 
rithm. Given an initial assembly code and a timing constraint, the 
proposed algorithm synthesizes an area-optimized processor core 
with optimal SIMD functional units. It also synthesizes a SIMD 
instruction set. The input initial assemhly code is assumed to run 
on a full-resource SIMD processor (virtual processor) which has 
all the possible SIMD functional units. In our algorithm, we in- 
troduce the SIMD operation decomposition and apply it to the 
initial assembly code and the full-resource SIMD processor. By 
gradually reducing SIMD operations or decomposing SIMD oper- 
ations, we can finally find a processor core with small area under 
the given timing constraint. The promising experimental results 
are also shown. 

I. 1NTRODUCnON 

Let us consider a b-bit functional unit. It can execute a 
single b-bit operation. By modifying it slightly, it can also exe- 
cute n-parallel b/n-bit sub-word operations. These operations 
are called packed SIMD type operations or SIMD operations 
[4], [7], [12]. A functional unit modified to execute SIMD op- 
erations is called a SIMDfunctional unit. For example, a 32-bit 
SIMD adder can execute a single 32-bit addition or 4-parallel 
E-hit additions. A micro processor with SIMD functional units 
is called a SIMD processor. It can he effectively applied to 
image processing. 

Generally, a SIMD operation has very many parameters. We 
can configure so many different SIMD operations and we can 
have so many SIMD functional unit configurations. However, 
a particular image application program often uses very limited 
SIMD operations which leads to a limited number of SIMD 
functional unit configurations. We consider that appropriate 
configuration for a image processor core is required depending 
on application programs as well as hardware costs. 

Processor synthesis or ASIP synthesis has been studied for 
many years such as in [I], [3], [6], [9], [ I  I], [17]. Tensilica 
develops the Xtensa system for application-specific processor 
synthesis [141. All the systems proposed so far, however, focus 
on conventional micro processor cores andlor DSP cores and 
then they do not deal with automatic SIMD processor synthesis. 

Now let us pick up a single SIMD operation op. It is usually 
composed of several SIMD sub-operations, such as an arith- 
metic sub-operation, a shift sub-operation, and a bit-saturation 
sub-operation. We can consider the following two cases for 

executing the SIMD operation by SIMD instructions: 

Case 1: We can consider a single SIMD instruction i which 
directly executes op in one clock cycle. A SIMD func- 
tional unit executing i must be complex and may have a 
large area and delay. 

Case 2: We can also consider a decomposed SIMD instruc- 
tion set of { i l , i 2 , .  . '  ,in} (n is the number of suh- 
operations in op). op can be executed by a combination 
of i l ,  i z ,  . . . , in. A SIMD functional unit executing an in- 
struction i E { i I ,  i z ,  . . . , i n }  must be simple and may have 
a small area and delay. A decomposed SIMD instruction 
can be commonly used in several SIMD operations. 

By introducing SIMD operation decomposition, we can have 
a compact set of SIMD instructions. Our previous study on 
SIMD processor synthesis is appeared in [I31 but it does not 
deal with SIMD instruction decomposition. 

In this paper, we focus on SIMD processor synthesis and 
propose a SIMD instruction sethnctional unit synthesis al- 
gorithm. The algorithm is based on [15]. Given an initial 
assembly code and a timing constraint of execution time, the 
proposed algorithm synthesizes an area-optimized processor 
core with SIMD functional units. It also outputs a new as- 
sembly code under a synthesized SIMD instruction set. The 
input initial assembly code is assumed to run on a full-resource 
SIMD processor (virtual processor) which has all the possible 
SIMD functional units. The initial assembly code includes 
complex SIMD instructions. In our algorithm, we introduce 
SIMD operation decomposition and apply it to the initial as- 
sembly code and full-resource SIMD processor. By gradually 
reducing SIMD operations or decomposing SIMD operations, 
we can finally find a processor core with small area under the 
given timing constraint. We expect that we can have a pro- 
cessor core which has appropriate SIMD functional units for 
running an input application program. 

. 

11. PROCESSOR MODEL AND INSTRUCTION SET 

Our processor architecture model is shown in Fig. 1 [SI, 
[10],[13],[16]. Themodel iscomposedof apmcessorkernel 
and extra hardware units. A processor core is constructed by 
adding several hardware units to a processor kernel. 
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SlMD Shifter (sft) 
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DSP kernel 
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SIMD Data move unit (esch) 

Fig. 1. Processor kernels and hardware units. 

MAC 
EXTD, EXTR 
EXCH 

A. Processor Kernels 

A processor kernel is (i) a RISC-type kernel or (ii) a DSP- 
type kernel. A RISC-type kernel has the five pipeline stages 
(IF, ID, EXE, MEM, and WB) as in the micro processor of 
[ Z ] .  A DSP-type kernel has the three pipeline stages (IF, ID, 
and EXE) as in the DSP processors of [SI. Each processor 
kernel has Harvard architecture and consists of (c-i) a bus for 
an instruction memory, (c-ii) a bus for an X data memory (X- 
bus), (c-iii) a register file for general-purpose registers, and 
(c-iv) an ALU and a barrel shifter. Data bus width of the 
instruction memory and the X data memory can be changed 
but their address bus width is fixed to 16 bits. The number of 
registers and their bit width in the register file can he changed. 
In our processor model, data bus width of the X data memory is 
the same as the bit width of the register file. Data bus width of 
the insuuction memory is determined based on a synthesized 
instruction set. 

B.  Hardware Units 

Our processor core can have extra hardware units: ( I )  SIMD 
functional units, (2) a Y-bus for Y data memory, (3) addressing 
units, and (4) hardware loop units. In this section, we focus on 
SIMD operations and SIMD functional units. 

SIMD operation: Our SlMD processor executes four classes 
of SIMD operations: (a) SIMD arithmetic operations, (h) 
SIMD shift operations, (c) SIMD bit extenaextract operations, 
and (d) data move operations. 

As an example of (a) SIMD arithmetic operations, we show 
two types of SIMD multiplications in Figs. 2 (a) and (b). In 
Fig. 2(a), two four-packed data are multiplied and the four 
results are packed into a single register. In Fig. 2(b), the lower 
two sub-words of two four-packed data are multiplied and the 
two results are packed into a single register. Such a SIMD 
arithmetic operation has the SIMDparameters of (0) operation 
type (see Table I), ( I )  a packing number n, (2) whether the data 
is signed or unsigned, (3) whether the saturation operation is 
applied to the resultant data or not, (4) whether the bit-extend 
operation is applied to the resultant data or not, and ( 5 )  how 
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TABLE I 
SlMD OPERATION TYPES. 

SlMD operation class 11 SIMD operation type 
(a) Arithmetic ooeralion I1 Addilion (ADD) 

1 1  Mulliply and Addition (MAC) 
1 1  Arithmetic Right Shifl (SPA) (b) Shift operalion 
1 1  Arithmelic Left Shift (SLA) I 

Logical Left Shift (SLL) 

Bil Extract (EXTR) opera lion 

TABLE 11 
SlMD FUNCTIONAL UNIT AND ITS EXECUTING SIMD OPERATION TYPES. 

I SIMD functional 11 SlMDoperalion I 

much the resultant data is shifted. A SIMD sh$t operation has 
the same parameters of SIMD arithmetic operations. 

A SIMD bit extend operation constructs @packed data 
from n-packed data (Fig. 3(a)). A SIMD bit extract opera- 
tion constructs 2 x n-packed data from n-packed data (Fig. 
3(b)). A SIMD data move operation gives new n-packed data 
by rearranging old n-packed data. They have similar SIMD 
parameters as the SIMD arithmetic operations. 

If we give a particular value to each SIMD parameter, we can 
determine a particular SIMD operation. For example, we can 
consider a SIMD operation mL-4-srZs which shows that 
four data are packed into one register, all the data are singed, 
bit-extend operation is not applied, and each of four resultant 
data is shifted to the right by two bits and saturation operation 
is applied to it (multiplication, 4 packing data, zigned, fight 
shift by 2 hits, and Saturated). 

SIMD functional unit: Our SIMD processor has six types 
of SIMD functional units listed in Table 11. Table I1 also shows 
SIMD operation types which each functional unit can execute. 

A SIMD functional unit can have one or more SIMD op- 
erations. For example, let us consider a SIMD multiplier 
mulo which has the SIMD operations of MUL-4-srZs and 
MUL-Z-sr2s. mulo can execute one of the two SIMD op- 
erations, mL-4-srZs and MUL-Z-srZs, in a single clock 
cycle. 

C. Insrruction Set 

Basic Instructions and Parallel Instructions: Our synthe- 
sized processor core has basic instructions such as ADD and 
MUL and parallel instructions such as (ADD I I ADD) and 
(ADD I I MUL). A parallel instruction executes more than one 
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basic instructions. All the combination of basic instructions 
cannot be a parallel instruction. Our processor synthesizer 
determines which basic instructions should be included in a 
processor core and which combination of basic instructions 
should be a parallel instruction. 

SIMD Instructions Our SIMD processor has SIMD instruc- 
tions. The description of a SIMD instruction is the same as a 
SIMD operation. For example, our SIMD processor can have a 
SIMD instruction of M U L - 4 - s r 2 s .  Since there are too many 
SIMD instruction instances, the proposed algorithm synthe- 
sizes which SIMD instructions are included in an instruction 
set. 

Note that a single SIMD operation is executed by a single 
SIMD instruction or a sequence of SIMD instructions. For 
example, the SIMD operation M L J L 4 p ~ r 2 ~  is executed by a 
single SIMD instruction of ' ' M L I L 4 - s r Z s  R 1 ,  R 2 ,  R3." It 
is also executed by the sequence of SIMD instructions of: 

MUL-4h-s R1, R2, R3 
MUL-41-s R1, R2, R4 
EXTR-4-srZs R3, R 4 ,  R3 

where Rx (x = 1 , .  . .) shows a general-purpose register. In 
the latter case, the SIMD instructions sequentially execute the 
SIMD operation of MUL-4-s r2s . l  In this case, the SIMD 
operation M U L - 4 - s r Z s  is decomposed into three SIMD sub- 
operations. 

111. AN INSTRUCTION SET AND FUNCTIONAL UNIT SYNTHESIS 
ALGORITHM FOR SIMD PROCESSOR CORES 

We have been developing a hardwarelsoftware cosynthesis 
system for SIMD processorcores [81, [IO], [IS], [161. 

The system is composed of Process I: full-resource compil- 
ing, Process 2: hardware/sofhvare partitioning, and Process 3: 
hardware/sofrware generation. Given an application program 
in C and a set of its application data, our system synthesizes 
a processor core description and generates an object code and 
a software environment (compiler, assembler and simulator) 
under the timing constraint. The objective is to minimize the 
hardware area of a processor core. 

In this section, we focus on Process 2 in our SIMD processor 
synthesis and propose a new algorithm with a SlMD instruction 
setlfunctional unit synthesis. 

A. Problem Definition 

First we define our SIMD instruction setlfunctional unit syn- 
thesis problem. Assume that a SlMD processor core configura- 
tion P and its corresponding instruction set I ( P )  is given. We 
can have a clock period T ( P )  for P [ 161. When an application 
program ap is compiled into an assembly code C,,(P) under 
I ( P ) ,  we can also have a total clock cycle N,,(P) to run the 

I In MUL4h.s (or MUL4l.s). the higher (or lower) two sub-words of the 
two four-oacked data given by RI and R2 are multiolied and the two resull? 

into R3. 
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application program on P. Then the execution time TaP(P) to 
run the application program on P i s  expressed by: 

The SIMD processor core configuration P has an area cost of 
A(P) ,  which is expressed by: 

where Ak,,,,l (P) is an area cost of the processor kernel o f  P, 
U ( P )  is a set of hardware units in P, and A(u) is an area cost 
for each hardware unit U E U ( P ) .  

A full-resource SIMD processor FP is a virtual processor 
core which has all the hardware units including SIMD func- 
tional units with all possible SIMD operations. Each of the 
SIMD instructions in FP executes a complex SlMD operation 
in a single clock cycle, i.e., all the SIMD operations are not 
decomposed. Then, for an input application program ap, we 
can construct an initial assembly code C,,(FP) wbicb is run 
on FP. 

Then our SIMD instruction setlfunctional unit synthesis 
problem is defined as follows: 

Definition 1 Given an initial assembly code C,,(FP) and 
a timing constraint TmaZ, find a new pmcessor core config- 
uration P, a new instruction set I ( P ) ,  and a new assembly 
code Cap(P). under the constraint of Ta,(P) 5 T,,, so as to 
minimize A(P).  

B. The Algorithm 

The proposed algorithm is an extended version of the al- 
gorithm in [I51 so that it can deal with SIMD instructions and 
SlMD functional units. Our approach is heuristic but we expect 
that it can find a globally good solution in a practical time since 
it simultaneously optimizes the numbers, types, and functions 
of hardware units including SIMD functional units. 

The algorithm is composed of Phase 1 and Phase 2. 

B-I Phase 1. Configure an Initial Processor Core P, 

Phase 1 determines an initial processorcore E .  First, Let us 
consider processor kernel parameters. A processor kernel type, 
RISC or DSP, is not determined in Phase 1 but this is determined 
in Phase 2. The basic bit width bknl,fu of a processor core is 
given as input and the bit width ofa registerfile is set to bknl , fu .  

The number of registers in a register file is given as a maximum 
number of registers appeared in an input assembly code. The 
data bus width of an instruction memory is determined based 
on the instructions used in an assembly code. 

Next, let us consider hardware unit parameters. If an input 
assembly code includes an instruction using the Y data memory, 
we add the Y data memory to a processor kernel. The number of 
loop registers, the number of address registers, and the type of 
addressing units are all determined by an input assembly code. 
For example, if an input assembly code uses three loop registers, 
we add the hardware loop unit with three loop registers to a 
processor kernel. 

Finally, we must synthesize a set of SIMD functional units 
in A as follows. 
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32 bits 32 bits . . - - - - 
8 bits zzzc 8 bits' s 16 bits 16 bits (b) 

(a1 

Fig. 2. SlMD multiplications. (aj Four &bit multiplications. (b) W O  16-bit bit-extend multiplications. 

32 b i t s  32 b i t s  . . . c 

I I I 1  I I 
Extract 

I I I I 
c_ 

8 b i t s  
(b) 

I . . 
16 b i t s  

( a )  

Fig. 3. (a) Bit extend operation and (b) bit extract operation. 

Initial SIMD functional unit synthesis: The configura- 
tion of each SIMD functional unit is determined in the fol- 
lowing way. For each SIMD functional unit type t E 
{ s f t ,  alu, mol, mac, ezt, ezch}, let It he a set of the SIMD 
instructions in an input assembly code which can he executed 
by a SIMD functional unit with type t .  We construct a SIMD 
functional unit with type t so that it has all the SlMD operations 
corresponding to It. 

Example 1 Let us assume that an input assembly code in- 
cludes the SlMD instructions of MUL (normal I-pack multipli- 
cation), ~ ~ ~ - 4 - u r 4 s  (multiplication for four-packed data), and 
MUL-2-sr7u (multiplication for two-packed data). In this case, 
we construct a SlMD multiplier which has SIMD operations of 
MUL, MUL_4_ur4s, and MUL-2-sr7w. The SIMD multiplier 
can execute each of the SIMD instructions MUL, MUL-4-ur4s. and 

0 

The number of each functional unit is determined in the fol- 
lowing way. If a maximum of nt instructions are executed 
concurrently for I t  in an input assembly code, we add nt func- 
tional units with the type o f t  to a processor kernel. 

Example 2 Assume that an input assembly code includes the par- 

MUL-2-sr7w in one clock cycle. 

allel instruction as below: 

MUL-4-urls Rl.R2,R3 1 I MUL-Z-sr7w R4,R5,R6 

In this case, we add two SIMD multipliers whose configuration is 
shown in Example 1 to a processor kernel. 0 

The constructed initial processor core P, may include re- 
dundant SIMD operations in a SIMD functional unit but they 
will he reduced in Phase 2. Since P; includes all the hardware 
units required for an input assembly code, the initial assembly 
code can he executed on Pi and furthermore we expect that i t  
can satisfy the given timing constraint. 

B-11 Phase 2: Determine a SIMD insmction set and SlMD 
functional unit 

Based on the parameters determined by Phase I ,  Phase 2 
determines a processor core configuration P, i.e., it determines 
( I )  a processor kernel type (RISC or DSP), (2) the number of 
general-purpose registers, (3) whether the Y data memory is 
actually added to a processor kernel or not, (4) the number of 
address registers and types of addressing units, ( 5 )  the number 
of loop registers in the hardware loop unit, and (6) SIMD func- 
tional unit configuration, depending on an input assembly code 
and timing constraint. Phase 2 also determines an instruction 
set I ( P )  for P. 

Firstly, we assume that a processor core has a RISC-type 
kernel or a DSP-type kernel. Then, for each of kernels, we 
reduce the parameters in (1)-(6) one by one while the processor 
core satisfies the timing constraint. Finally, we pick up the 
processor core with the smaller area. We can find a processor 
core architecture which has a small area with satisfying the 
timing constraint. 

Fig. 4 shows our proposed algorithm. In the algorithm, Step 
1 and Step 3 are discussed later. Step 4 is trivial. In Step 2, 
Trat.(u) for each hardware unit/register U is defined as: 

(3) 

where A. and TO refer to an area cost and execution time 
of the processor core before eliminating U ,  and Al(u) and 
TI ( U )  refer to an area cost and execution time of the processor 
core after eliminating U .  All these values are computed by 
the areddelay estimator in [16]. Step 2 finds U,;, which 
gives minimum Trate(umin) and actually eliminates U,;, from 
a current processor core. By using the TT,t,(u) value, we 
can effectively reduce an area cost of a processor core with 

146 
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operation. We will decompose only a decomposable SIMD op- 
eration. Then it will be executed by a sequence of decomposed 
SIMD instructions. 

Let op E Of ( f  u )  for a SIMD functional unit f u be a 
decomposable SIMD operation. Generally op is composed 
of (1) n-parallel SIMD arithmetic sub-operation followed by 
(2) n-parallel SIMD shift sub-operation and bit-saturation sub- 
operation. n-parallel SIMD arithmetic sub-operation is further 
composed of two n/2-parallel SIMD arithmetic sub-operations 
((1-1) and (1-2)). Then we can decompose the operation op 
into: 

(1 - 1) n/2-parallel arithmetic sub-operation for n/2 upper sub- 
words, 

( 1-2) n/2-parallel arithmetic sub-operation for n /2  lower sub- 
words, and 

(2) n-parallel SIMD shift sub-operation and bit-saturation 
sub-operation. 

A SIMD functional unit executing n/2-parallel arithmetic sub- 
operation has much smaller area cost than a SIMD functional 
unit executing n-parallel arithmetic operation. Furthermore, 
since the sub-operations of (1-1) and (1-2) do not have any 
particular shift operations or bit-saturation operations, they can 
be shared by many SIMD instructions. Overall we can reduce 
a processor core area by decomposing a decomposable SIMD 
operation in the above way. 

Example 3 Let us consider a decomposable SIMD operation 
MULZ-ur4s. It can be executed by a single SlMD insttuction 
MUL-Z-ur4s as shown in Fig. 5(a). Fig. 5(a) can be decomposed 
into Fig. 5(b). First, MuL-Z-ur4s is composed of 2-parallel 16- 
bit multiplication followed by 2-parallel 4-bit right shift and bit- 
saturation. The 2-parallel 16-bit multiplication can be further decom- 
posed into two I-parallel 16-bit multiplications, (1-1) MUL-Zh-U 
and (1-2) MUL-21-U for the upper sub-word and the lower sub- 
word of the input two data, respectively. The 2-parallel 4-hit right 
shift and hit-saturation operation is executed by (2) EXTR-Z-ur4s 
(Fig. 5(b)). After all. MUL-Z-ur4 s is decomposed into MUL-Zh-U, 
MUL_Pl-u, and EXTR-2-ur4s. Note that the intermediate results 
in Fig. 5(b) must have 32-bit width to keep the correct results. 0 

According to SIMD operation decomposition, we update a 
set F U ( f )  of SIMD functional units, assembly code C,,(f) ,  
and inswction set I ( P ) .  Assume that a decomposable SIMD 
operation op E Of ( f u )  is decomposed into a set DOP = 
{ op, lop, is a decomposed sub-operation for op). 

FU(P) is updated as follows: We first eliminate op from 
f u .  For all of each SIMD sub-operation op, E DOP, if 
there exists a SIMD functional unit fu' E F U ( f )  such that 
op, E OP(fu') ,  FU(P)  is unchanged since fzl' can execute 
op,. If there exists no such SIMD functional unit and there 
exist a functional unit fu" E F U ( f )  which has the same 
operation type as op,, then we add op, to f u", i.e. Of ( f  U") + 

Of (fu") U {op,). Otherwise, we construct a new SIMD 
functional unit funeu, which includes only op, and add it to 
F U ( f ) ,  i.e., F U ( f )  e F U ( f )  U { funew) .  According to a 
new set of SIMD functional units, we update a processor core 
f to P'. 

Inputs: Assembly code Cap(P,), initial processor core P,, and tim- 
ing constraint T,,,. 

Outputs: New processor core P, new assembly code C,,(P), and 
new instruction set I ( P )  

Phase 2. For P,, we assume DSP-type kernel or RISC-type kernel. 
For each of the kernels, let P + P, and execute Steps 1 4 .  
Between them, output the processor core with the smaller area, 
its corresponding assembly code, and instruction set. 

Step 1. For each U in the hardware unitdxgisters in P, try to 
eliminate U. 

Step2. Evaluate the Trate(u) value. For umin which gives 
the minimum T,,t.(um,n) value satisfying T,,(P') 5 
T,,,, eliminate umln from P and update P to P'. 

Step 3. Update the assembly code and instruction set according to 
P'. 

Step 4. Let P + P'. While there exists a hardware unitlregister 
which satisfies Step 2, repeat Steps 1-3. Otherwise finish. 

Fig. 4. The algorithm of Phase 2. 

satisfying a timing constraint. See [13] for discussion on T,,,, 
design. 

In the following, we discuss Step 1 and Step 3 for SIMD 
functional units and SIMD operations. 

SIMD operation reduction and assembly codeJinstruction 
set update (Step 1 and Step 3): In Step 1 and Step 3, we 
can try to reduce hardware unitsfregisters other than SIMD 
functional units in the same way as in [151. For example, in 
case a hardware loop unit is eliminated from a processor core, 
we replace the instruction using the hardware loop unit with 
a normal conditional jump instruction. Then we discuss here 
how to try to eliminate a SIMD operation in a SIMD functional 
unit. ' 

Let F U ( f )  be a set of SIMD functional units in P. Let 
Of( f u )  be a set of SIMD operations in f u  t FU(P) .  Now 
we try to eliminate a SIMD operation op E Of (f u )  from f u. 
We can consider the two cases: 

Case A: There is another functional unit fu' E F U ( f )  such 
that op E OP(fu') .  

Case B: There is no functional unit fu' E F U ( P )  such that 
op E O f ( f u ' ) .  

Case A: In this case, the SIMD instruction corresponding to 
op can be executed by fu' instead of f u .  Thus we simply 
eliminate op from f u  and construct a new processor core F". 

Case B: In this case, we eliminate up from f u  by SIMD op- 
eration decomposition. An arithmetic SIMD operation which 
gives n-packed data from two n-packed data is called aful l  
SIMD operation. Fig. 2(a) shows an example of a full SIMD 
operation. When the type of a full SIMD operation op is ad- 
dition (ADD), subtraction (SUB), multiplication (MUL), or mul- 
tiply and addition (MAC), op is called a decomposable SIMD 
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16 bits I 16 bits I I 16 bit. I16 bits 

(a) 

Fig. 5 .  Nan-decomposed SIMD operalion (a) and ils decomposed SIMD 
sub-aperations (b). 

Example 4 Assume that the processor core P has SIMD functional 
units as in Fig. 6(a). If the SIMD operation MUL-2-ur4s in mull is 
decomposed, we have suh-operationsofMUL-2h-u, MUL-2 1-U. and 
EXTR-2-ur4s. Since mu12 has the SIMD operation MUL-Zh-U, 
it is executed by mul2. Since mull is a multiplier and it has the 
same operation type as MUL-21-U, we add it into mull as a new 
SIMD operation. Since we do not have a SIMD bit extractor in P, we 
add a SIMD bit extractor having EXTR-2-ur4s into P. Thus we 
finally obtain a new processor core P' as shown in Fig. 6(h). Since 
area for MUL-Z-ur4s is much larger than that for the total area of 
MUL-2 1-U and EXTR_Z_ur4s, area cost of the new processor core 
P' can be reduced. 0 

Since a SIMD operation op is decomposed into DOP, a 
SIMD instruction corresponding to op is eliminated from the 
assembly code C,,(P) and instruction set I (P) .  Instead, each 
q~~ E DOP is added to an instruction set. In the assembly 
code, op is replaced with DOP. Figs. 6(a) and (b) show the 
example of updating an assembly code. We may need extra 
clock cycles for a new assembly code but can reduce an area 
cost for a new processor core. 

We uy to eliminate each decomposable SIMD operation by 
decomposing it, and then we actually decompose the decom- 
posable SIMD operation if it gives minimum T,,,, value among 
other hardware unidregister reduction trials. By repeating this 
process, we expect that we can have a compact SIMD instruc- 
tion set and its corresponding SIMD functional units. 

~ 
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Processor kernel I 

MUL-Z-ur48 RO.Rl.RZ 1 1  MUL-Zh-U R3,R4.R5 
MUL-Zl-w RS.R7,RB I I MUL-2h-u R9,RlO.Rll 

mL-Zh-u RO,Rl,RlZ 1 1  MUL-21-U RO.Rl.R2 
EXTR_2_ur4s R12,R2,R2 I I MUL-2h-U R3,R4.R5 
mL-21-w R6.R7,RB 1 1  MUL-2h-U FS.RlO.Rl1 

(b) 

IV. EXPERIMENTAL RESULTS 

The proposed SIMD instruction sedfunctional unit synthesis 
algorithm has been incorporated into our SIMD processor syn- 
thesis system. The algorithm was applied to the Alpha Blend 
(image size of 640 x 480 pixels) and the Copying Machine Ap- 
plication (image size of 640 x 480 pixels). The basic bit width 
of a processor core is set to be 32 bits and the maximum number 
of basic instructions and SIMD instructions executed concur- 
rently is set to be four. In this experiment, we used an Intel 
Pentium 111 (850MHz)-based PC with 256MB memory. Also, 
we assumed the Hitachi VDEC libraries (0.35pm-CMOS) to 
obtain processor area and speed. For comparison, the sys- 
tem proposed in [I51 is also applied to both applications. The 
system proposed in [I51 deals with a normal DSP processor 
core. 

Tables 111 and IV show the experimental results. In the 
tables, Consts shows timing constrains, Area shows synthesized 
processor core area, Time shows execution time for running 
an application program, and Hardware configuration shows 
hardware configuration for synthesized processor cores. In the 
tables, SIMD functional unit configuration is shown as follows: 
Assume that a synthesized SIMD processor core has two SIMD 
ALUs, alul and alu2, where ah1 and alu2 have three SIMD 
ALU operations and four ALU operations, respectively. This 
ALU configuration is shown as (2[3,4]). 

The tables indicate that, our algorithm configures appropriate 
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lime 

lmsl 
28.IU8 
33.730 
59.330 

nardware COnngYraflOn CPU 
Kcmcl XALUs *h;lUL I #MACS #Regs Addrunit HWI w p -  rimelsecl 
DSP 2 2 . .  es 11.84 
DSP 2 I ? ::.:,A; %;::;I::; k 3.21 
DSP I I I (7.3.0) XII.ZI. ~11.21 NO 4.54 

I I cansts 

73.713 
98.883 

104.277 

4.864 
4.610 

DSP I I I (5.3.0) xii.zi.~ii,zl NO 5.19 
DSP I 1 I (4.3.0) XII,ZI,YII,~I NO 5.53 
DSP I I I (3.3.0) XII,ZI,YII.ZI NO 6.03 
m 1121 311 . .  I I I  311 . .  I 11 (m . .  3 I) XII I .  21 YII  I ZI YCS 7.20 
DSP 1121 311.1.11 211.11 (8.3.11 X11.21.YII.21 Yes 32.59 

9.791 
15.131 
21.140 
36.939 

TABLE IV 

. .  ~. .~ . . 
DSP 1131 1121 n i11.3.n) x i i ,G,~L1,2j  N~ 59.44 
OSP 1131 I121 o (8.3.01 XII,ZI.YII,ZI NO 56.67 

DSP 1131 1121 o (5.3.0) XII,~I,YII.~I NO 92.85 
DSP 1131 1121 o (7.3.0) X I I , ~ I . Y [ I , Z I  NO 68.44 

Area 

Ipm21 . .  
4.~71.44~ 
2,694.991 
2,331,193 
2.088.m 

I ,me nardware cOnnguratron CPU 
ImSI Kcmel CALUs XMULs #Regs Add runit  H W I  w p  lime1sec1 

50.2~s USP 4 es 8.n 
99.~20 DSP 2 ; $:::A; c;:::: :I:::; L 118.98 

197.947 DSP 2 I (25.6.0) X[I.ZI.Y[I.ZI No 360.32 
286.531 DSP 2 I (16.6.0) X[I.21.Y[1.2] No 413.40 
398.082 OSP 2 I i10.6.01 X11.21.YII.21 No 442.25 

#ALUs for SIMD cores: #SIMD ALUs[#SIMD operations in SIMD ALUI,. . . I  (one of the ALUs is include in 
Kernel.) 
#MULs far SIMD cores: #SIMD MULs[#SIMD operations in SIMD MULI,. . .I 
#MACS for SIMD COWS: #SIMD MACs[#SIMD operations in SIMD MACI,. . .] 
#Regs: (#General registers, #Address registers, #Loop registers) 
Addrunit: Addressunitconfieuration. X11.21 forYI1.2l)meansthattheX(orY)datamemorvhastheaddressin~ 

2,048,239 

2,843,812 
1,994.750 
1.749.592 

. ,  

I 

. . , . . . . . 
444.014 OSP 2 I (9 .6.0)  Xl1,21.YII,21 No 443.49 

5.543 V I P  4144441 . . .  411 . . .  I I I1 (69 . .  6 I) XI1 . .  21 Y l l  . 21 Yes 6m.05 
19.430 OSP 213.31 1111 (41, 6.0) Xl1.2l.YI1.21 NO 1853.19 

55.765 OSP 213.31 1121 lI5.6.0) X11.21.YlI.ZI No 1993.81 
38.277 OSP 213.31 I l l ]  (20.6.0) XI1.2].Y[1.21 No 2255.04 

SIMD functional units depending on the given application pro- 
grams and timing constraints. If a similar timing constraint is 
given to a non-SIMD processor core [ 151 and a SIMD processor 
core (proposed algorithm), an area cost of a SIMD processor 
core can be 1/10 compared with a non-SIMD processor core. 

V. CONCLUSIONS 

This paper proposed an instruction setlfunctional unit synthe- 
sis algorithm for SIMD processor cores. Experimental results 
show the effectiveness of the proposed algorithm. 

In the current system, our system considers only timing con- 
straints but will incorporate constraints for power dissipation 
as well as specific configuration of hardware units in the future. 
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