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Abstract— In SoC designs, efficient communication

between the hardware IPs and the on-chip processor

becomes very important, however the interface is usu-

ally affacted by the processor core specification. Thus

in this paper, we focus on developing an efficient in-

terface circuit architecture for the communications be-

tween the on-chip processor and embedded hardware

IP cores. we also propose a method to synthesize it.

Experimental results show that our method could ob-

tain optimal interface circuits and works well through

designing a MPEG-4 encode application.

I. Introduction

The growing demand for hardware/software systems,
together with the ability to put the entire system on a
single chip using deep sub-micron technologies, has led to
the evolution of complex hardware/software system-on-
chips (SoCs). While the complexity of SoCs increases, so
does the demand to reduce their time-to-market. Typ-
ically, IP-based SoC design contains the following steps
such as application specification , hardware/software par-
tition and hardware/software integration. Though the de-
sign time of SoCs can be greatly reduced by efficient re-use
of intellectual property (IP) cores, how to develop an ef-
ficient interface circuit between the hardware IPs and the
on-chip processor becomes an important task.

One of the solutions is to generate the one automati-
cally [8]. Works in this approach include [10, 7, 5, 15].
In [10], an arbiter consists of protocol conversion FSM
and FIFOs to regulate transfers and mismatched proto-
cols are mapped into a standard communication scheme.
In [7], regular expression is used to describe protocol and
the interface is generated as a product machine from au-
tomata from both of two IPs using formal approach. In
[5], communication protocol of IP is described as FSM,
and a protocol translation algorithm is proposed, which
derives an interface FSM between two IPs. In [15], for
saving the complexity in design space exploration, param-
eterized templates are used to synthesize a hardware.

On the other hand, to integate a processor core into

SoC, the practical method is not to use a processor core,
but use a configurable one so as to satisfy the preformance
requirements and the area constraints. When SoC appli-
cation is implemented on a configurable processor core,
such as [12, 13], and several hardware IPs, generating the
interface between the processor core and the hardware IPs
requires: (1) to communicate with the hardware IP (2) to
communicate with the configurable processor core.

In the literature, most of the previous works assumes
that both of connected IPs have same model for inter-
face description. However most of the used IPs are not
standard IPs, if one side of them is a configurable pro-
cessor core, the interface is affected by the processor core
specification, such as instruction set, pipeline stages.

In this paper, we propose an architecture of the inter-
face circuit to communicate with a configurable processor
core and a hardware IP. We also propose a method for syn-
thesizing the one. The models of the interface in previous
works are based on FSM and so on. We use architecture
templates of the interface circuit. Our proposed archi-
tecture and method enable us to obtain optimal interface
circuits.

This paper is organized as follows. Section II de-
scribes IP-based SoC design method and target archi-
tecture. Section III proposes an architecuter of an in-
terface circuite (IFC) and a method for synthesizing the
one (IFC Synthesizer). Section IV shows the experimen-
tal results with the proposed method through a MPEG-4
encoder application. Section V gives the concluding re-
marks.

II. IP-Based SoC Design Method

In this section we describe IP-based SoC design method
and define target architecture.

A. Design Method

Figure 1 shows a design method with an interface circuit
synthesizer “IFC Synthesizer”. A designer searches hard-
ware IPs for hardware parts from a hardware IP database



Hardware Software

Interface
Circuit

HW IP Databse

HW IPHW IPHW IPHW IP

Hardware IP
Interface

Description

HW IP
Instructions

Specification

Processor Core
Synthesis
System

IFC_Synthesizer

Fig. 1. Design method with IFC Synthesizer

IP1

Memory

Processor
Core

IPn

Interface Circuit
(IFC)

Fig. 2. Architecture model of the target SoC.

and uses a processor core synthesis system for software
parts. The interface description of using hardware IP and
instruction set for hardware IP generated by the proces-
sor core synthesis system are inputs for IFC Synthesizer.
The output of IFC Synthesizer is an interface circuit
(IFC), which communicates with the processor core and
the hardware IP.

B. Architecture Model

Figure 2 shows the architecture model of the target
SoC. The architecture consists of a processor core, a mem-
ory and several hardware IPs which are connected with
each other via a shared bus. In our approach, first, the
input application is partitioned into hardware/software
parts, then the hardware parts are implemented with
hardware IPs, and the software parts are implemented
on a processor core.

B.1 Processor Core

The processor core is configurable. The configurable pa-
rameters include an instruction set, pipeline stages, hard-
ware units such as ALU, multiplier, register files and so
on.

The instruction set of the processor core includes
hardware-IP-instructions. The hardware-IP-instructions

are described in Subsect. A.2.

B.2 Hardware IPs

Hardware IPs distributed in the market have various ar-
chitecture and interface. In the target architecture, soft-
ware on the processor core controls the hardware IPs with
hardware-IP-instructions. To avoid bus conflicts, hard-
ware IPs should not have data transfer unit but data-path
for processing data.

We make a premise that in our work all the target
hardware-IPs in Hardware-IP Database have an interface
description in CWL [4]. IFC Synthesizer synthesizes IFC
from CWL description of the target hardware IP.

B.3 Memory

The memory in the target architecture is a simple model
like SRAM.

III. IFC Synthesizer

In this section we propose an IFC architecture and a
method for synthesizing it. In our work, the synthesizer
is called as IFC Synthesizer. In this section, we first il-
lustrate the interface of processor core and hardware IPs,
and then we propose an IFC architecture and an algo-
rithm of IFC Synthesizer, where IFC Synthesizer is the
name of the synthesizer developed in our work. Details
will be explained in the followings.

A. Interface

The interface between processor core and hardware IP
is based on ARM Coprocessor Interface [3]. The ARM
Coprocessor Interface defines a signal interface and an
instruction interface.

A.1 Signal Interface

Figure 3 shows a connection of the processor core and
hardware IPs. The processor core can connect up to 16
hardware IPs. The processor core communicates with
hardware IPs with three handshake signals as follows:

nCPI not CoProcessor Instruction (Processor Core →
Hardware IPs): A processor core wants to execute
hardware-IP-instruction.

CPA CoProcessor Absent (Hardware IP→Processor
Core): There are no hardware IPs which can execute
the hardware-IP-instruction.

CPB CoProcessor Busy (Hardware IP→Processor
Core): Hardware IP can not execute the hardware-
IP-instruction immediately since it is executing
another hardware-IP-instruction.
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A.2 Instruction Interface

Processor core sends three type of hardware-IP-
instructions: (a) CDP (processing data operations), (b)
LDC/STC (transfer data operations from / to a shared
memory) and (c) MCR/MRC (transfer data operations from
/ to a register in a processor core).

The format of hardware-IP-instruction is as follows:

CDP HW#, OP#

LDC HW#, N, Rd, Rn, offset

STC HW#, N, Rd, Rn, offset

MRC HW#, Rd1, Rd2

MCR HW#, Rd1, Rd2

CDP performs processing operation with a hardware IP.
Each hardware IP is numbered. HW# is the number.
A processor core operates a hardware IP to use HW#.
When a hardware has several functions. Each func-
tion is numbered. OP# is the number. The processor
core use OP# to select the function.

LDC/STC transfer data between a hardware IP and a
shared memory.

MCR/MRC transfer data between a processor core reg-
ister and a hardware IP register.

B. IFC

In the model of the target SoC, the processor core con-
trols hardware IPs with the interface described in Sub-
sect. A. Since hardware IPs distributed in the market
might be provided by different vendors, they do not al-
ways have the standard interface. So it will cause many
problems, such as:

1. they can not communicate on handshake communi-
cation with the signal interface.

2. hardware IP can not decode hardware-IP-
instructions by the processor core.

3. therefore processor core can not control hardware
IPs.

IFC synthesized by IFC Synthesizer communicates
with the processor core at the proxy of the hardware IP.
Figure 4 shows the architecture of IFC. Each of units is
as follows:

HANDSHAKE INST_QUEUE DECODER BUS_I/O

CONTROLLER

input result

REGISTER

BUSCPB CPA nCPI

Fig. 4. Architecture of IFC

IFC defines the mapping of the external and internal
ports of IFC.

BUS I/O controls input/output data flow via shared
bus. It (1) inputs data from shared bus to REGISTER

(2) or inputs hardware-IP-instructions from shared
bus to DECODER (3) or outputs data from REGISTER

to a shared bus.

DECODER decodes instructions from the processor
core. If the instruction is a kind of hardware-IP-
instructions and HW# field and OP# field are validate
for target hardware IP, DECODER decodes the instruc-
tion and queues it into INST QUEUE.

INST QUEUE preserves bit vectors decoded by
DECODER. If the target hardware IP is not busy, it
dequeue first bit vector to CONTROLLER.

HANDSHAKE deals with handshake protocol with the
signal interface. It is controlled with nCPI signal from
processor core and control signals from CONTROLLER,
and output CPA and CPB signals for the handshake
communication.

REGISTER saves data from / to a shared memory
and the target hardware IP. input REGISTER saves
data before hardware IP processing, and result

REGISTER saves data after hardware IP processing.

CONTROLLER controls all units in IFC with control
signals and controls hardware IP for processing data.
It consists of counter and state machine. The input
is given from INST QUEUE and HANDSHAKE. It is de-
scribed in detail in Sect. C.3.

C. IFC Synthesizer

IFC Synthesizer synthesizes IFC HDL from the inter-
face description of a hardware IP (Fig. 5). The interface
description is written in CWL. To communicate with both
of a processor core and a hardware IP, IFC must have the
interface of them. The interface to a processor core de-
scribed in Sect. A has been defined. Since the interface
to a hardware IP depends on its own specification, IFC is
synthesized for each of the using hardware IPs.
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One of the input for IFC Synthesizer is HDL template
description of IFC. Not all the units are synthesized for
each of the using hardware IPs. The units which need not
vary are template description as they are.

In Fig. 4, BUS I/O, HANDSHAKE are interfaces to a pro-
cessor core. Since the interface to a processor core has
been defined, they are independent of using hardware IP.

DECODER and INST QUEUE are also interfaces to a pro-
cessor core. In the hardware-IP-instructions, HW# indi-
cates which hardware IP is a target one, and OP# indi-
cates which function are a target one. Since HW# and OP#

depend on hardware IPs, the HDL description of DECODER
varies for them. The queue length of INST QUEUE is cor-
respond with pipeline stages of a processor core.

CONTROLLER is the interface to a hardware IP. Since the
interface to a hardware IP depends on its own specifica-
tion, the HDL description of CONTROLLER varies for the
hardware IP.

REGISTER is the interface to a hardware IP. The register
size is decided by the specification of the hardware IP.

Methods of synthesizing the units which varies for using
hardware IPs are described following sections.

C.1 DECODER

IFC Synthesizer refers hardware-IP-instructions gener-
ated by compiler to synthesize DECODER. It preserves val-
ues of the HW# and OP# correspond with a target hardware
IP. DECODER decodes hardware-IP-instructions correspond
with the target hardware IP and ignores the others.

C.2 INST QUEUE

IFC Synthesizer refers hardware-IP-instructions gener-
ated by compiler to synthesize INST QUEUE. INST QUEUE

depends on the decoded bits by DECODER and pipeline
stages of a target processor core.

S1_1 S1_2 S1_3 S1_4

S1

S2_1 S2_2 S2_3

S2

S3_1 S3_2 S3_3 S3_4

S3

S3_1
 REG_13_24_EN <= "0000";
 REG_1_12_EN <= CNT_Q(3 downto 0);
 IP_EN   <= ’1’;
 IP_CONT <= "10";

decoded instructions
from INST_QUEUE

control signals
to the units in IFC

control signals
to the hardware IP

Fig. 6. state and sub-states in CONTROLLER.

C.3 CONTROLLER

CONTROLLER sends control signals to all the units in IFC to
execute hardware-IP-instructions. CONTROLLER has state
machines to control all the units in IFC and the target
hardware IP. The state machine has states correspond
with hardware IP functions, and each of the states has
several sub-states (Fig. 6) Control signals are defined ev-
ery sub-state to execute hardware IP functions.

Figure 6 is an example to execute STC, which is one
of the hardware-IP-instruction. When IFC received STC

from a processor core, state S3, which is correspond with
STC, starts and CONTROLLER sends control signals defined
in the sub-state S3 1. Then sub-state is transitted to
S3 2, and alike.

Control signals from/to CONTROLLER are classified into
three groups:

• input signals from INST QUEUE and output signals to
BUS I/O and HANDSHAKE.

• input/output signals from/to hardware IP. They are
defined at the number of ports of the target hardware
IP. The name of them begins “IP ”.

• output signal to REGISTER. The bit width depends
on the register size.

The algorithm of synthesizing CONTROLLER is as follows.

1. Ports Decision
external and internal ports in IFC are decided.

2. States Decision
states for processing and transferring data are decided.

3. Sub-states Decision
sub-states, which define control signals to all the units,

are decided.
4. Sub-state Transitions Decision

transitions among sub-states are decided.

We illustrate them with an example CWL description
in Fig. 7.



port:
input.en EN;
input.control[1:0] CONT;
input.data[7:0] ADR;
input.data[31:0] DATA;

endport
alphabet;
signalset a = {CLK, EN, CONT, ADR, DATA};

I : {R, 1, 2’b01, x, Z };
N : {R, 1, 2’b00, x, Z };

R(Xa) : {R, 1, 2’b10, Xa, Z };
O(Xd) : {R, 1, 2’b11, x, Xd };

endsignalset
endalphabet
word;
proc(Xa,Xd):(R(Xa) N[2])[1,2] 0(Xd)[3];

endword

Fig. 7. CWL description example.

BUS_IO_S: out std_logic;
HANDSHAKE_RUN: out std_logic;
HANDSHAKE_TR: out std_logic;
REG_EN: out std_logic_vector(3 downto 0);
IP_EN: out std_logic;
IP_CONT: out std_logic_vector(1 downto 0);

Fig. 8. Ports decision

Ports Decision IFC Synthesizer decides control sig-
nals to BUS I/O and HANDSHAKE. Control signals to a hard-
ware IP are correspond with input.control in CWL de-
scription. output ports of a hardware IP are input ports
of CONTROLLER. The bit width of CWL description is equal
the one of HDL description.

output.data signals connects REGISTER. Control sig-
nals to REGISTER depend on the register size (Sect.C.4 in
detail).

Figure 8 shows output signals of CONTROLLER in VHDL
at the example in Fig. 7.

States Decision IFC Synthesizer decides states cor-
respond with hardware-IP-instructions from a processor
core. For CDP instructions, the number of states are
equal to the number of functions of the target hardware
IP. In case of Fig. 7, if the target hardware IP is num-
bered as “1” and proc is numbered as “2”, which means
HW# = 1 and OP# = 2, the processor core sends CDP 1,

2. IFC Synthesizer defines the state S CDP 2 correspond
with it.

Sub-states Decision IFC Synthesizer decides the val-
ues of each sub-states.

When a target hardware-IP-instruction is LDC/STC or
MCR/MRC, the control signals to hardware IP are “don’t
care”. In case of receiving data instructions such as LDC

and MRC, BUS I/O behaves as a data receiver from the
bus to the input REGISTER. On the contrary, in case of
sending data instructions such as STC and MCR, BUS I/O

behaves as a data sender to the bus from the result

REGISTER. In case of data transferring instructions such
as LDC and STC, HANDSHAKE TR is set to “1”, which means
transferring data.

if CURRENT_STATE = S_CDP_2_1 then
BUS_IO_S <= ’0’;
HANDSHAKE_RUN <= ’1’;
HANDSHAKE_TR <= ’0’;
REG_EN <= CNT_Q(3 downto 0);
IP_EN <= ’1’;
IP_CONT <= "10";

Fig. 9. Control signals decision at the sub-state S CDP 2 1

elsif CURRENT_STATE = S_CDP_2_2 then
if CNT_Q = 3 then

NEXT_STATE <= S_CDP_2_1;
elsif CNT_Q = 6 then

NEXT_STATE <= S_CDP_2_3;
else

NEXT_STATE <= S_CDP_2_2;
end if;

Fig. 10. Sub-state S CDP 2 2 transitions

When a target hardware-IP-instruction is CDP, the con-
trol signals to hardware IP are required. In case of Fig. 7,
proc operation is defined at word section. Since proc con-
sists of alphabets R(Xa), N, O(Xd), sub-states S CDP 2 1,
S CDP 2 2, S CDP 2 3, correspond with alphabets R(Xa),N,
O(Xd), are defined. The values of the control signals ev-
ery sub-state are defined as the value at alphabets section
in CWL description. HANDSHAKE RUN is set to “1”, which
means busy for processing data.

Figure 9 shows control signal decision at sub-state
S CDP 2 1 correspond with alphabet R(Xa).

Sub-state Transitions Decision IFC Synthesizer de-
cides a sequence of sub-states to execute operations. In
CWL description, a sequence of word is expressed as reg-
ular expression of alphabet. In case of proc operation in
Fig. 7, the sequence of alphabet is R, N, N, R, N, N, O,

O, O. Figure 10 shows sub-state transitions of S CDP 2 2

correspond with N.

C.4 REGISTER

When IFC Synthesizer decides REGISTER, we must know
the resister size required. The size is given by the pro-
cessor core synthesis system. Hardware-IP-instructions
used in the application, include the length of transferring
data,therefore we can decide the size of required registers.

C.5 IFC

IFC is the top layer of all the units in IFC. IFC Synthesizer
decides the mapping of all the units and external ports in
IFC. Mapping is independent of the target hardware IP.
Though external ports to the bus and the processor core is
also independent, external ports to the hardware IP vary
for a target hardware IP. We can decide the number and
bit width of them from port section in CWL description
of the target hardware.
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TABLE I
hardware IP information.

function area response time
[mm2] [cycles/MB]

RGBtoYCrCb[1] 0.3904 489
DCT/IDCT[6] 2.4480 1192
ME/MC[2] 3.6000 1032

IV. Experimental Results

We implement IFC Synthesizer in Ruby Language [9].
We design MPEG-4 encoder as a SoC application in Sys-
temC under the design framework[14]. The design envi-
ronment is as follows: OS: Linux 2.4, CPU: Intel Pentium
III 500MHz, RAM: 192MB.

Figure 11 shows MPEG-4 encode algorithms. We parti-
tion them into hardware parts and software parts to esti-
mate the performance as a representative. Color space
convert (RGBtoYCRCb), motion estimation (ME), motion
compensation (MC) and discrete cosine transform / in-
verse discrete cosine transform (DCT/IDCT) are imple-
mented by hardware IPs, quantization / inverse quan-
tization (DCT/IDCT), variable length coding (VLC) are im-
plemented by software.

Table I shows using hardware IPs information: the area
of hardware IP, cycles during processing data.

Table II shows the results of synthesized processor
cores[13]. The processor kernel is (1) RISC-type or (2)
DSP-type. RISC-type kernel has five pipeline stages com-
posed of IF , ID , EXE , MEM and WB stages. DSP-
type kernel has three pipeline stages composed of IF, ID
and EXE stages. The optional hardware units are func-
tional units (ALU, multiplier), register files, and address-
ing units. They can be added to the processor kernel.

Table III shows the results of synthesizing IFC with syn-
thesized processor cores in Tab. II by IFC Synthesizer.
IFC Synthesizer synthesizes optimal IFCs correspond
with a target hardware IP and the target processor core.
The main reason the area of processor core B is larger
than A is that the number of pipeline stage of B is more
than the that of A.

TABLE II
configuration of synthesized processor cores.

Name Processor Core Area Frequency Hardware configuration
[mm2] [MHz] Kernel Issue #ALUs #Regs

A 5.9723 81.300 RISC 4 ALU∗2,Mult∗2 47
B 1.7554 70.225 DSP 2 ALU∗1,Mult∗1 8

TABLE III
synthesized IFC information.

function Processor Core Name IFC area
[mm2]

RGBtoYCrCb A 0.1080
RGBtoYCrCb B 0.1148
DCT/IDCT A 0.1028
DCT/IDCT B 0.1108
ME/MC A 0.1547
ME/MC B 0.1638

The maximum of the execution time of IFC Synthesizer
is 9.4436 [sec], the minimum is 4.3475 [sec], the av-
erage is 6.5534 [sec]. However, in case of designing
manually, the design of IFC requires about three days.
IFC Synthesizer reduces the cost of designing IFC.

V. Conclusion

In this paper, we presented an architecture of inter-
face circuit to communicate with a processor core and
a hardware IP, and a method for synthesizing it.Using
the synthesis system “IFC Synthesizer”, we can reduce
the interface circuit development cost to less than 10
[min], while it would cost about three days by manual de-
sign.IFC Synthesizer generates a HDL description of the
interface circuit to communicate with the processor core
and the hardware IP.
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