
A Hardware/Software Partitioning Algorithm for SIMD Processor Cores

Koichi Tachikaket Nozomu Togawatt.$ Yuichiro Niyaokat Jinkii Choit
hlasao Yanagisawat Tatsuo Ohtsukit

t Dept. of Electronics, Information and Communication Engineering, Waseda University
ttDept. of Information and Media Sciences, The University of Kitakyushu

Advanced Research Institute for Science and Engineering, Waseda University
3-41 Okubo. Shinjuku, Tokyo 169-8555, Japan

Tel: +81-3-5286-3396 Fax: +81-3-3203-9184
Email: tatikake8ohtsuki.comm.waseda.ac.jp

Abstract
This pasper proposes a neui harduiare/softuiare partition-
ing a.lgorithm for processor cores with SIMD instruc-
tions. Given a. compiled assembly code including SIMD
instmctions, a timing constraint of execution time, and
available hardiliare units, the proposed algorithm synthe-
sizes an area-optimi2zt.d processor core with a nevi assem-
bly code. Firstly, we assusme on initial processor core on
which a,n input assembly code can run with the short-
est execution time. Secondly uie reduce a hardviare m i t
added to a processor core one by one while the timing
constraint is satisfied. A t the same time, uie update the
a.ssembly code so that it can run o n the new processor
configuration. By repeating this process, we finally ob-
tain a processor core architecture with small arm under
the given timing constro.int. We expect that uie can ob-
tain a processor core which has a,ppropriate SIMD func-
tional units for ninning the input a,pplication program.
The promising experimental resdts w e also shown.

1 Introduction
In image processing applications such as image synthesis
and/or image corrections, each pixel in an image is com-
posed of small bits of data. For example, a pixel can be
represented by an &bit data. However, a general micro
processor has a basic bit width of 32 bits or more. In
image processing applications, how to deal with a short-
word data with a long-word functional unit is a main
problem. A packed SIMD type operation[5], [9], [lo], [151
(or a SIMD operation in short) gives one of the most ef-
fective solutions for this problem. A SIMD operation is
n-parallel h/rlcbit sul>operations executed by a modified
bbit functional unit. An instruction corresponding to a
SIMD operation is called a SIMD instruction. A fiinc-
tional unit executing SIMD operations is called a SIMD
functional unit and a processor core with SIMD instruc-
tions is called a SIMD processor core. A SIMD processor
core can be effectively applied to image processing ap-
plications since we can deal with n pixels concurrently
by modifying normal &bit functional units.

Generally, a SIMD operation has many options (see
2.3.2 in detail). Thus we can configure so many different
SIMD operations. However, a particular image applic&
tion program often uses very limited SIMD operations.
We consider that appropriate configuration for a image
processor core is required depending on application pro-
gram. a.. well as hardware costs. Hardware/software
cosynthsis must be a very powerful strategy to synthe-

size a SIMD processor core.
Hardware/software codesign is to design a hardware

part and a software part of a processor and/or a sys-
tem simultaneously depending on application programs.
Particularly the hardware/software codesign systems
such as in [l], [2], [4], [7], [12], [14], [16] synthesize micro
processor cores for given application programs. All the
systems proposed so far, however, focus on conventional
micro processor cores and then they do not deal with
SIMD operations/instructions.

We have been developing a hardware/software cosyn-
thesis system for SIhlD processor cores [ll], [13], [17],
[18]. For image processing applications, the system au-
tomatically synthesizes an optimal image processor ar-
chitecture through compiling, hardware/software parti-
tioning, and hardware/software generation. The basic
system which automatically synthesizes a digital signal
processor architecture was proposed in [171, [181. A par-
allelizing compiler with SIMD instructions was proposed
in [13]. The compiler generates an initiallyscheduled as-
sembly code including SIMD instructions given to hard-
warelsoftware partitioning. The functional unit gen-
erator for SIMD operations was proposed in [ll]. The
functional unit generator estimates area/delay values for
each functional units used in hardware/software parti-
tioning.

In this paper, we focus on hardware/software par-
titioning in our system and propose a new hard-
ware/software partitioning algorithm for SIMD proces
sor cores. Firstly, we determine the numbers and types
of hardware units added to a processor core to execute
an input assembly code. Then we reduce the number
of the hardware units or we reduce a sub-function of
the hardware units, one by one. At the same time, we
reconfigure the processor core and update the assembly
code. Finally, we obtain a processor core architecture
with small area under the given timing constraint.

2 Architecture Model and Instruction Set

In this section, we define our processor architecture
model and its instruction set [ll], [13], [17], [18]. Fig. 1
shows our processor architecture model. Our processor
architecture is based on a digital signal processor in [6]
and composed of one of the two processor kernels and
extra hardimre units. A processor core is constructed
by adding several hardware units to a processor kernel.
In the following, processor kernels, hardware units, and
an instruction set are defined.

135

http://constro.int

Arithmetic operation
Shift operation
Bit exteridjextract operation
Data rriove operation

ADD, SUB. MUL. MAC
SRA. SLA. su
EXTR. EXTD
EXCH. PERM

2.1 Processor Kernels
A processor kernel is (i) a RISC-type kernel or
a DSP-type kernel. A RISGtype kernel has the

Arithmetic arid logic
operdtiori

(ii)
five

ADD. SUB, SU. SRL, S L L , AND,
E. E, MUL, DIV, SLT. SEU.

pipeline stages (IF, ID, EXE, MEM, and WB) as in the
micro processor of [3]. A DSP-type kernel has the three
pipeline (IF, ID, and EXE) stages as in the DSP pro-
cessors of [6],[8]. The number of pipeline stages and
processes in each pipeline stage are fixed and cannot
be changed. A processor core will become a general-
purpose RISC core if a RISC-type kernel is selected. It
will become a DSP core if a DSP-type kernel is selected.
A hardware configuration of each processor kernel is de-
termined in the same way as in [171.

2.2 Hardware Units
Our processor core can have extra hardware units:
(1) a Y-bus for Y data memory, (2) functional units
(shifters, ALUs, multipliers, MAC units, bit exten-
ders/extractors, and data move units), (3) addressing
units, and (4) hardware loop units (see [13], [17], [18] for
detailed functions in each hardware units). A functional
unit has a functional unit type t f u (see Table 1).

All these hardware units can be added to the DSP
kernel. The hardware units except addressing units and
hardware loop units can be added to the RISC kernel.

2.3 Instruction Set
2.3.1 Basic Instructions and Parallel Instruc-

tions
Our synthesized processor core has basic instructions
such as ADD and MUL and parallel instructions such
as (ADD I I ADD) and (ADD I I MUL). The basic instruc-
tions correspond to the functions of our processor ker-
nels and hardware units. A parallel instruction executes
more than one basic instructions. All the combination of
basic instructions cannot be a parallel instruction. Our
hardware/software partitioner determines which basic
instructions should be included in a processor core and
which combination of basic instructions should be a par-
allel instruction.

Load arid store

Jump

Parallel load irrid store

SE. COM2, MAC, INC. DEC.
AODI. SUBI, SUI , SRLI. S U I .
ANDI. O R I . XORI, MULI, D I V I
E, LDY, G, STY.-.

- STXI, STYI. LDIX. LDIY. S T I X .

BEq, m. &&Z,IP. LOOP,

LDPX. STPX

LDRY. m. smy. =I. LDYI.

S T I Y . NV, p&l

_ _ z. CALL. El'. NOP. HLT

The type of ADD and SUB is defined as ALU, although ADD and
SUB can be executed by either an ALU or a MAC unit. The type
of SIMD version of A D D and SUB is also defined as ALU.

136

Tahle 1. Functional unit tvDe and its corremondinn oDerations.
“ I 0 - ~ ~

Furiction unit I FU type tf,, I Operatiom
Shifter I sft 1 Shift operation
ALU
Multiplier
Divider
MAC unit
Bit extractor/extender
Data move unit

mu1
diu
mac
ext
exh

Arithmetic and logic operations
hlultiply
Divide
irlultiply arid addition
Bit extend/extrxt
Data exchange arid permutat ion

3 2 b i t s 3 2 b i t s - -
8 b i t s

- ‘IJ 1 6 b i t s 17 16 b i t s ;b)

(a)

Figure 2. SIMD multiplications. (a) Four &bit multiplications. (b) Two 16bit bit-extend multiplications.

3

3.1 Hardware/Software Cosynthesis System
We have been developing a hardware/software cosynthe-
sis system for SIMD processor cores [111, [131, [171 , [181.
We named the system SPADES (System for processor
- Architecture Design with Estimation - type SIMD). In
this subsection, we briefly review our basic idea of the
system.

Given an application program in C and a set of its
application data, our system synthesizes a hardware de-
scription of a processor core and generates an object
code and a software environment (compiler, assembler
and simulator) for the processor core under the con-
straint of the execution time to run the application pro-
gram. The objective is to minimize the hardware cast of
a processor core. The hardware cost of a processor core
is given by the sum of hardware costs of a processor
kernel and hardware units used in the processor core.
The hardware cost refers to area in this paper. The
execution time to run an application program is given
by multiplying the clock period by the number of clock
cycles to run the application program.

3.2 The HW/SW Partitioning Algorithm
In this subsection, we focus on a hardware/software par-
titioning algorithm for SIMD processor cores. We first
defme a hardware/software partitioning problem. Then
we propase a hardware/software partitioning algorithm
for SIMD processor cores.

3.2.1 Problem Definition
An assembly code is defined as a graph (call graph,
control-floui graph, and data-floui graph)[l7]. A call
graph G, = (x, E,) is defined as a graph represent-
ing function calls in an application program. A node
v E V, in G, represents a function. Each node in a call
graph ha5 a control-flow graph. A control-floui gmph
G,. = (x f , E,.) is defined as a graph representing con-
trol flow in a function. A node 71 E V,j in G,f represents
a basic block. Each node in a control-flow graph has a
dataiflow graph. A da,ta-floui graph G q = (Vdf, Ed.) is
a graph representing data flow in a basic block. A node

A HW/SW Partitioning Algorithm for
SIMD Processor Cores

U E V& in Gdj represents a basic instruction.
Let Bupp and Fapp be a set of basic blocks and a set

of functions, respectively, in an input asembly code.
Consider that a basic block B E Barn is executed N z e
times. NE, is calculated by our system. Let N,&
be the number of clock cycles to execute B. The num-
ber of the total clock cycles Ncycle to execute an input
assembly code can be computed as

Ncycle = N Z e . x & l e . (1)
BEBapp

The execution time Tam of an assembly code is defined
as

Tupp = Ncycle x Tcycle, (2)
where Tcycle is a clock period of a synthesized proces
sor core. Let qF be the maximum execution time of
an application program which is given by the designer.
Then a timing constraint is given by

Taw 5 r;. (3)
Then a hardware/software partitioning problem is de-

fined.
Definition 1 Given a,n initially scheduled assembly
code, N g , for ench basic block B E Barn, the timing
constraint, and available hardware units for a proces-
sor core, a harduiare/softuiare partitioning problem i s to
find a processor core configuration, an assembly code ex-
ecu td on the processor core, and an instruction set for
the processor core m d e r the timing constraint and the
hardware configuration conditions so as to minimize the
hardware cost of tb.e processor core.

3.2.2 The Algorithm
The proposed algorithm is an extended version of the
algorithm in [17] so that it can deal with SIMD instruc-
tions and SIhlD functional units. Firstly, we determine
the numbers and types of hardware units added to a pro-
cessor core to execute an input assembly code (Phase 1).
Phase 1 determines an initial processor core. An initial
processor core includes full SIMD functional units where
a functional unit with type t f u can execute all the SIMD
instructions in an input assembly code with the instruc-
tion type tiTIYt = t j u . Then we reduce the number of
the hardware units or we reduce a sub-function of the
hardware units, one by one, while the timing constraint

137

I

t
ibl

Figure 3. Instructions with the type of mu1 (a) and
a multiplier configuration for them (b).

is satisfied. At the same time, we reconfigure the pro-
cessor core and update the assembly code (Phase 2).

Our approach is heuristic but we expect that it can
find a globally good solution in a practical time since
it optimizes the numbers, types, and subfunctions of
hardware units including SIMD functional units simul-
taneously.

Phase 1. Allocate an Initial Resource: In Phase
1, we configure an initial processor core.

Let us consider processor kernel parameters. A pro-
cessor kernel type, RISC or DSP, is not determined in
Phase 1 but this is determined in Phase 2. The basic bit
width hk,ll.fu of a processor core is given a.. input and
all the other parameters are determined in the same way
as in [17]. The configuration of the ALU and shifter in
a processor kernel will be discussed later together with
other functional units.

Let us consider hardware unit parameters. If an in-
put assembly code includes an instruction using the Y
data memory, we add the Y data memory to a proces-
sor kernel. The number of loop registers, the number
of address registers, and the type of addressing units
are all determined by an input assembly code. Finally,
we must determine the configuration of functional units
including SIMD functional units.
Configuration of functional units: The configma,
tion of each functional unit is determined in the follow-
ing way. Let us consider a set It of the instructions
whose instruction type of tinyt = t in an input assembly
code. We construct the functional unit with the type
t f u = t so that it can execute all the instructions in
It and minimum instructions with the type of t. For
example, assume that an input assembly code includes
the instructions of MUL MUL-4-ur4s and MUL-2-sr7w
for multiplication. In this case, we construct a SIMD
multiplier as shown in Fig. 3. The SIMD multiplier is
composed of a multiplier for one, two and four data, a
Cbit and 7-bit right shifter, and a saturation unit.

The number of each functional unit is determined in
the following way. If nt-parallel instructions are exe-
cuted for a set It of the instructions with tiTlyt = t in an
input assembly code, we add rh functional units with

Inputs: Assembly code, initial processor core, and timing

Outputs: New processor core and its corresponding assem-

Phase 2.For each of a DSP-type kernel and a RISC-type

Step 1. For each U in the hardware units, subfunctions of
hardware units, and registers currently added to a
processor kernel; try to eliminate 'U or try to replace
'U with the one which has the smaller hardware cost
than U .

Step 2. Evaluate the T&(,u) value. For unlin which gives
the minimum Trate(unlin) value without violating
the given timing constraint, eliminate uvlin from a
current processor kernel or replace llnlin with the
one which has the smaller hardware cost than %in.

Step 3. Update the assembly code according to a new pro-
cessor core configuration.

Step 4. While there exists a hardware unit, sub-function,
or register which meets Step 2, repeat Steps 1-3.
Otherwise finish.

constraint.

bly code

kernel, execute Steps 1-4.

~ ~

Figure 4. The algorithm of Phase 2 (configuration
of a processor core).

the type of t f u = t to a processor kernel. For exam-
ple, amume that an input assembly code includes the
parallel instruction as below:

MUL-4-ur4s RI,R2,R3 1 1 MUL-2-sr7w R4,R5,R6

In this case, we add two multipliers whose configuration
is shown in Fig. 3(b) to a processor kernel.
Phase 2: Determine a Processor Core Configura-
tion: Phase 2 determines (1) a processor kernel type
(RISC or DSP), (2) the number of general-purpose reg-
isters, (3) whether the Y data memory is added to a
processor kernel or not, (4) the number of address reg-
isters and types of addressing units, (5) the number of
loop reasters in the hardware loop unit, and (6) func-
tional unit configuration, depending on an input assem-
bly code and timing constraint.

Firstly, we assume that a processor core has a RISC-
type kennel or a DSP-type kernel. For each of a kernel,
we reduce the parameters in (1)-(6) one by one while the
processor core satisfies the timing constraint. Finally,
we can find an processor core architecture with small
area satisfying the timing constraint.

Fig. 4 shows our proposed algorithm. In the alge
rithm, Step 1 and Step 3 are discussed later. Step 4
is trivial. In Step 2, TTUte(u) for each hardware unit,
each sut~-fimction of hardware units,' or each register
is defined as:

(4)
where and To refer to a-hardware cost and execution
time of the processor core before eliminating 71, respec-
tively, and Al(v) and TI (U) refer to a hardware cost and
execution time of the processor core after eliminating U,

respectively. Step 2 finds ,7bnir1 which gives minimum

An addressing unit and a SIMD functional unit have s u b
functions. Subfunctions of an addressing unit refer to the ad-
dressing operations such z~ post increment, post decrement, index
addition, and modulo operation. For subfunctions for a SIMD
functional unit, see the discussion later.

138

nvll ,

(fired Ibt i&t shift)

baskad data = 2 and I)

(fixed 4tit ight rhiift)

Figure 5. Original multiplier configuration.

Figure 6. Multiplier configuration (after eliminating
a subfunction in mulz).

Trate(umin) and actually eliminates u,,in from a cur-
rent processor core. By using the T , , t e (~ ~) value, we can
effectively reduce a hardware cost of a processor core
with satisfying a timing constraint.

SIMD functional unit reduction and assembly
code update (Steps 1 and 3): In Step 1 and Step 3,
we can deal with hardware units other than SIMD func-
tional units in the same way as in [17]. Then we discuss
here SIMD functional unit reduction and its correspond-
ing assembly code update.

For any SIMD functional unit U added to a processor
core, we consider to (a) replace U with a SIMD func-
tional unit U' which has the same functions with U and
has the smaller hardware cost than U or (b) eliminate
some suhfunction of U.

(a) is realized by calling our SIMD functional unit
generator proposed in [ll]. If U is replaced with U',

assembly code update is unnecessary since the function
of U' is just the same as that of U .

Now let us focus on the case of (b). The SIMD func-
tional unit U can execute several SIMD instructions.
Then we can consider a suhfunction corresponding to
each SIMD instruction and eliminate the sub-function
from the SIMD functional unit. After eliminating the
subfunction in a SIMD functional unit, we update an
assembly code according to a new SIMD functional unit.
Note that, we eliminate a sub-function in SIMD func-
tional units only when the SIMD instruction is executed
by another SIMD functional unit.

For example, we assume that a processor core h a
two SIMD multipliers, mull and mul2, each of which
can execute the two SIMD instructions m - 2 - u r 4 s
and MUL-4-sr7w. The SIMD multiplier configuration is
shown in Fig. 5. Each SIMD multiplier, 7ndl or mu12,
is composed of a multiplier for two and four data, a 4-

In the following, we discuss Step 1 and Step 3.

bit and 7-bit right shifter, and a saturation unit. Using
these mul1 and mu12, we can execute the following two
parallel instructions in two clock cycles.

MUL-2-ur4s Rl,R2,R3 1 1 MUL-2-ur4s R4, R5, R6
MUL-4-sr7w R7,R8,R9 I I MUL-4-sr7w RlO,Rll,R12

The first instruction is executed by using mu11 and mu12
and the second instruction is also executed by using
mu11 and 7nul2.

Consider to eliminate the sub-function corresponding
to ~ ~ ~ - 2 - u r 4 s in mu12. The configuration of 7riu12 is
changed so that it can execute only MUL-4-sr7w. We
have the new SIMD functional unit mu& as shown in
Fig. 6. mulh is composed of a multiplier for two data
and a 7-bit right shifter. Comparing the configuration
of mu12 and that of niulh, the hardware cost of mu&
must be smaller than that of mdz. However, m u l ~ can-
not execute m-2-ur4s . Then if we eliminate the sub-
function corresponding to m - 2 - u r 4 s in 7nTd2. we must
update the above assembly code as follows:

MUL-2-ur4s Rl,R2,R3
MUL-2-ur4s R4,R5.R6
MUL-4-sr7w R7,R8,R9 I I MUL-4-sr7w RlO,Rll,R12

The first instruction is executed by 7nd1 and the second
instruction is also executed by mull. The third instruc-
tion is executed by using mull and mu$.

In this way, we try to eliminate each of the hardware
units, sub-functions of hardware units. and registers in
Step 1. Then in Step 3, we update an assembly code
according to a new processor core configuration.

Based on this algorithm, we can reduce redundant
sub-functions in SIMD functional units and then we can
find an optimal processor core configuration.

4 Experimental Results and Conclusion
The propoised hardware/software partitioning algorithm
has been implemented in the C language on Sun Ultra
Workstation. The algorithm was applied to the Alpha
Blend (image size of 640 x 480 pixels) and the Copying
Machine Application (image size of 640 x 480 pixels).
The basic bit width of a processor core is set to be 32 bits
and the number of instructions executed concurrently is
set to be four.

In
the tables, Const shows timing constrains, Area shows
synthesized processor core area, Time shows execution
time for running an application program. and Hardware
configuration shows hardware configuration for synthe-
sized processor cores. In the tables. SIbiD functional
unit configuration is shown as follows: Assume that
a synthesized SIMD processor core has one ALU and
two SIMD ALUs, salul and salu2, where salul and
salv2 have two SIMD ALU instructions and one ALU
insturction, respectively. This ALU confiugration is
shown a5 (1,2[2,1]).

The tables indicate that, our hardware/software par-
titioning algorithm configures appropriate SIhiD func-
tional units depending on the given application pr+
grams and timing constraints. If a similar timing con-
straint is given to a non-SIND processor core and a
SIblD processor core, an area of a SIhiD processor core

Tables 4 and 5 show the experimental results.

139

Tirne
[ms]

17.740
SIMD 20.0
([17]) 22.0 1 24.0

32.1)

Hardware configuration
Kernel #ALUs #SFTs #iwJLs #MACS #Regs Y-mern Addr unit HW loop
DSP 2 1 2 3 (7. 3. 1) Yes Xll.21. Yi1.21 Yes

5,672.754
3,839,427
3,672,783
3.549,223
6.299,770
4,065.268
2,873,058
2.857,929
2.656,377
2,656,377

Nor1

Consts Area
[Ins] [p“]

18.0 11.591.021
18.923
20.106
22.471
30.750
4.421
4.886
5.584
6.981

13.962
13.962

DSP 2 1 1 1 is, 3 , 1) Yea Xil.2j. Yjl,2j Yes
DSP 2 1 1 0 (8, 3 . 1) Yes X[1.2]. Y[1.2] Yes
DSP 2 1 1 0 (8. !, 0) Yes X[1.2], Y[1,2] No
DSP 2 1 1 0 (7. 3, 0) Yes Xjl.21. Y[1.2] No
DSP 0. 2[2.2] 1. 0 0, :3[1,1.1] 0. 2 1.1 (8. 3, 1) Yes X[1,2]. Y[1.2] Yes
DSP 0, 1 [3] 1, 0 0, 2[1,1] 0. ![l]’ (8, 3, 1) Yes X[1,2]. Y[l.2] Yes
DSP 0. 1[3] 1, 0 0. 1[1] 0, 0 (10, 3 , 0) Yes X[1,2]. Y(l.21 No
DSP 0, 1[3] 1, 0 0, 1[1] 0. 0 (12, 0. 0) Yes No N o
DSP 0. 1[3] 1, 0 0. 1111 0. 0 (9. 0, 0) Yes No No
DSP 0. l[jl 1, 0 0. 1111 0. 0 (9, 0, 0) Yes No No

#ALUs for SIMD cores: (#ALUs, #SIMD ALUs[#SIMD instructions in SIMD ALU1,. . .])
#SFTs for SIMD cores: (#Shifters, #SIMD Shifters[#SIMD iustructioris in SIMD Shifterl, . . .I)
#h.iULs for SIMD cores: (#MULs, #SIMD MULs[#SIMD instructions in SIMD MUL1, . . .])
#MACS for SIMD cores: (#MACS. #SIMD MACs[#SIMD instructions in SIMD MAC1, . . .])
#Regs: (#General registers, #Address registers. #Loop registers)
Addr unit: Address unit configuration. X[1.2] (or Y[1,2]) rnearls that the X (or Y) data rnernory hils the addressing
unit with post incrernerit operation.

Non
SIMD
([17])

Packed
SIMD

c m be smaller than that of a non-SIMD processor core
for both application programq. Tables 4 and 5 show
that the area of SIhlD processor core is 22-53 % smaller
than that of non-SIMD processor cores configured under
the similar timing constraints. Because the numbers of
functional units and reginsters added to SIMD proces-
sor cores are smaller than that of non-SIMD processor
cores.

By using our new hardware/software partitioning al-
gorithm, we can find a processor core architecture with
small area satisfying a given timing constraint. Now our
a lgo r i thm is a greedy heuristic approach, but for l a rge r
applications we may need more efficient heuristics. In
the future, we will improve our algorithm so that it can
optimize the configuration of each SIMD functional unit
by reducing several sub-functions at once. Thus we will
have globally optimized hardware/software partitioning.

Acknowledgement
This research is supported in part by STARC (Semicon-
ductor Technology Academic Research Center).

References
[l] H. Akaboshi and H. Yasuura, “COACH: A computer aided

design tool for computer architects,’’ IEICE Zhnsactions
on Fundamentals of Electronics, Communications and Com-
puter Sciences, vol. E76-A, no. 10, pp. 17GO-1769, 1993.

[2]N. N. Binh, M. Imai, A. Shiomi and N. Hikichi, “A hard-
ware/software partitioning algorithm for designing pipelined
ASIPs with least gate count,” in Proc. 33nI DAC, pp. 527-
532, 1998.

[3] J. L. Hennessy and D. A. Patterson, Computer Amhitecture:
A Quantitative Approach, Morgan-Kaufman, 1990.

[4] I. J. Huang and A. M. Despain, “Synthesis of instruction sets
for pipelined microprocessors,’’ in Proc. 31st DAC, pp. 5-11,
1994.

[5] Intel, MMX Technology Amhitecture Overview, http://www.
intel.com/technology/itj/q31997/articles/art 2.htm, 1997.

Corists Area Tirne Hardware colfiguration
[IIlS] [pd] (ms] Kernel #ALUs #SFTs #h?ULs #Regs Y-niern Addr urd HW loop

100.0 5,086,785 99.421 DSP 2 1 1 (48, 6, 0) Yes X[1.2]. Y[1,2] No
50.5 8,753,937 50.295 DSP 4 1 4 (69, 6. 1) Yes X[l,Z]. Y[1.2] Yes

250.0 3,944.657 249.138 DSP 2 1 1 (3 1 , 6, 0) Yes X[1,2], Y[1.2] No
500.0 2.668.161 499546 DSP 1 1 1 (12. 6, 0) Yes X[1.2]. Y[1.2] No

50.0 3,155,438 49.837 RISC 1, 1[2] 1. 0 0. 1[1] (10. 0, 0) Yes No No

5.7 10,698,879 5.688 DSP 0. 4[2.2.2,2] 1, 0 0. 4[1.1.1,1] (69, 6, 1) Yes X[1.2]. Y 1.21 Yes
10.0 5,500,743 9.783 DSP 2. 2[2,2] 1. 0 0, 1[1] (44. 6. 0) Yes X[l,Z]. Y[rl.Z] No

100.0 2,696.463 99.881 DSP 1. 1[2] 1. 0 0. l[l] (6, 6. 0) Yes X[1.2]. Y(1,2] No

[6] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor
Fundamentals: Architectures and Features, Berkeley Design
Technology, Inc., 1994-1998.

[7] H. Liu and D. F. Won, “Integrated partitioning and schedul-
ing for hardware/software codesign,” in Pmc. Intenzational
Conference on Computer Design, 1998.

[8] V. K. hladisetti, Digital Signal Processors, IEEE Press, 1995.
[9] MIPS Technologies, MIPS Eztension for digital media with

30, 1997.
[lo] M. Mittal, A. Peleg, and U. Weiser, “Mh,fX technology ar-

chitecture overview,’‘ Intel Technology Journal, 3rd Quarter,
1997.

[ll] Y. Miyaoka, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “A
hardware unit generation algorithm for a hardware/software
cosynthesis system of digital signal processor cores with
packed SIMD type instructions,” 25ansactions on I n f o n a -
tion Processing Society of Japan, vo1.43, no& pp.1191-1201,
2002, (in japanese).

[12] E. F. Nurprasetyo, A. Inoue, H. Tomiyama, and H. Yasuura,
“Soft-core processor architecture for embedded system de-
sign,” IEICE Trans. on Electron, vol.E81-C, no.9, pp.141G
1423, 1998.

[13] N. Nonogaki, N. Togawa, M. Yanagisawa, and T. Ohtsuki,
“A pardlelizing compiler in a hardware/software cosynthe-
sis system for image/video processor with packed SIMD type
instruction sets,’‘ IEICE Technical &port, VLD2000-139,
ICD2000-215,2001, (in japanese).

[14] J. Sato, A. Y. Alomary, Y. Honma, T. Nakatta, A. Shiomi, N.
Hikichi and M. Imai, “PEAS-I: A hardware/software codesign
system for ASIP development,’’ IEICE Transactions on f i n -
damentals of Electronics, Communications and Computer
Sciences, vol. E77-A, no. 3, pp. 483-491, 1994.

[15] Sun hJicrosystems, VIS Instruction Set User’s Manual, 1997.
[t G] Tensilica, Xtensa Microprocessor: Overview Handbook,

http: //www. tensilica.com/.
[17] N. Togawa, h.I. Yanagisawa, and T . Ohtsuki, “A hardware/

software cosynthesis system for digital signal processor cores,”
IEICE Pans. on findamentals, vol. E82-A, no. 11, pp. 2325-
2337, 1999.

[18] N. Togawa, M. Yanagisawa, and T. Ohtsuki, “A hardware/
software cosynthesis system for digital signal processor cores
with two types of register files,” IEICE Trans. on Fundamen-
tals, vol. E83-A, no. 3, 2000.

140

