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Abstract— This paper presents the periodic spectrum transmis-
sion for sing le-carrier freq uency -domain eq ualiz ation (S C -F D E )
employ ing space-time transmit div ersity ( S TTD ). The proposed
scheme utiliz es only ev en-numb ered samples w ithin a time-
domain data b lock to create a periodical spectrum w hich prov ides
freq uency redundancy . F req uency redundancy is used for sub -
channel comb ining b efore F D E , w hich allev iates the loss of
orthog onality caused b y F D E under freq uency selectiv e fading
channels. Therefore, the proposed scheme has an adv antag e of
enhancing the ov erall freq uency div ersity b enefi t w hile k eep-
ing the space div ersity b enefi t achiev ed b y S TTD . C omputer
simulation results show that the proposed scheme outperforms
the ty pical S C -F D E using full samples ov er relativ ely sev ere
freq uency selectiv e fading channels w hen apply ing 1 -b it/sample
transmission.

I . I N TR O D U CTI O N

In recent y ears, single-carrier modulation (SC) w ith fre-

q uency domain eq ualiz ation (F D E ) h as receiv ed a lot of

interest b ecause SC modulation essentially mak es it possib le

to reduce th e peak -to-av erage transmitted pow er ratio (PA PR )

w h ich is th e major prob lem in O F D M . F urth ermore, th is ap-

proach h as an adv antage of ex ploiting th e freq uency div ersity

b enefi t w ith out b andw idth ex pansion and w ith out decreased

data rate b ecause each b it is simultaneously modulated ov er

all sub -ch annels [1 ]-[ 4 ] .

O n th e oth er h and, th e antenna div ersity is w ell-k now n

as an effectiv e approach to create th e space div ersity effect.

In particular, space-time transmit div ersity (STTD ) h as an

attractiv e feature w h ich prov ides th e div ersity effect for tw o

transmit antennas w ith out b oth th e transmission rate reduction

and th e ch annel state information (CSI) at th e transmitter [5 ] .

A s for SC-F D E employ ing STTD , an STTD encoding only in

th e time domain signal processing h as b een introduced and its

performance is ev aluated in [6 ] .

So far, w e h av e proposed th e application of th e periodic

spectrum to SC-F D E for single antenna sy stem w ith th e aim

of enh ancing th e freq uency div ersity b enefi t [ 7 ] . Th e feature of

th is approach is to generate th e periodic spectrum b y using th e

ev en-numb ered time domain samples w ith in a b lock , w h ich

mak es it possib le to create freq uency redundancy used for

freq uency div ersity b efore F D E and conseq uently to enh ance

th e ov erall freq uency div ersity effect. Th us, as an ex tension of

th is prev ious w ork , it w ould b e interesting to inv estigate th e

effect of th e periodic spectrum on STTD .

In th is paper, w e propose th e periodic spectrum transmission

for SC-F D E employ ing space-time transmit div ersity . In th e

proposed sch eme, th e total div ersity b enefi t can b e ob tained b y

F D E of th e transmitting periodical spectrum, as w ell as STTD .

H ere, it sh ould b e noted th at, since th e proposed sch eme causes

th e data rate reduction due to th e decreased samples w ith in a

b lock , th e h igh -lev el modulation h as to b e applied so as to

k eep th e constant rate transmission. Th e effectiv eness of th e

proposed sch eme is demonstrated compared w ith th e ty pical

SC-F D E using full samples w ith parameters of th e delay

spread, th e fading correlation b etw een tw o antenna b ranch es,

and th e transmission rate.

Th e follow ing section describ es th e sy stem confi guration

of th e proposed sch eme. Section II I sh ow s th e performance

comparison b etw een th e proposed sch eme and th e ty pical SC-

F D E . F inally , Section IV summariz es th is paper.

I I . PR O PO SE D SCH E M E

A. Periodic spectrum transmission for SC-FDE

Th e freq uency spectrum of th e SC modulated signal is

ex pressed as

X(k) =

N−1∑

n= 0

x(n)e−j2π( n

N
)k ( 1 )

w h ere N is a siz e of discrete F ourier transform (D F T) and

x(n) is th e SC modulated sample in th e time domain. Th us

th e freq uency spectrum of th e SC modulated signal using only

ev en-numb ered samples is giv en b y

X(k) =

N/ 2−1∑

i= 0

x(2i)e−j2π( 2i

N
)k. ( 2 )

W h en N ′ is defi ned as N/ 2, E q . ( 2 ) can b e rew ritten in th e

follow ing form:

X(k) =

N ′
−1∑

i= 0

x(2i)e−j2π( i

N′
)k. ( 3 )

F rom E q . ( 3 ) , it can b e seen th at it h as a periodical freq uency

spectrum w ith th e period of N ′.
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Fig. 1. Comparison of frequency spectrums between full samples and only
even-numbered samples (N = 32).

Figure 1 illustrates an example of the frequency spectrum

for N = 32. From Fig. 1, it is apparent that the frequency

spectrum with only even-numbered samples is periodic while

the spectrum with the full samples has no periodicity. This

fact implies that the SC modulated signal using only even-

numbered samples is capable of creating the frequency redun-

dancy, and its redundancy can be used for frequency diversity.

B. STTD Encoding for SC-FDE

In this paper, Alamouti’s STTD encoding [5], where the

number of transmit branches is two, is applied to both the

proposed scheme using only even-numbered samples and the

typical SC-FDE using full samples in the frequency domain.

When Xp(k) is the sub-channel signal of the p-th DFT block,

STTD encoding is performed over two consecutive data blocks

(p = 0 , 1) in a sub-channel by sub-channel manner as shown in

Table I, where (.)∗ denotes complex conjugate operation. Since

STTD including the complex conjugate operation is conducted

in the frequency domain, the signal processing in the frequency

domain are originally required by both the N -point DFT

and Inverse DFT (IDFT). However, the complex conjugate

operation in the frequency domain fortunately corresponds to

performing time domain samples in reverse order and is given

by

1

N

N−1∑

k=0

X∗

p (k)ej2π( k

N
)n = x∗

p(N − n). (4)

Therefore, the complex conjugate operation of sub-channel

signals in a block is implemented only by time domain signal

processing. Figure 2 shows STTD encoding process in the time

domain. As shown in this figure, in practice, STTD encoding

can be realized without the FFT and IFFT processing at the

transmitter [6].

C. Sy stem Confi guration

Figure 3 shows a configuration of the proposed SC-FDE

scheme. At the transmitter, incoming information bits are

TAB L E I

STTD ENCODED SIG NAL Sl,p(k) OF THE k-TH SUB -CHANNEL .

Antenna index (l)

B lock index (p) 0 1

0 X0(k) X1(k)

1 −X∗

1
(k) X∗

0
(k)

Fig. 2. STTD encoding process in the time domain.

mapped into the transmit data symbols x(n) at the sampling

period of 2T . Here, it is noted that, since 22m-ary modu-

lation is adopted in the case of m-bit/sample transmission

for constant rate transmission, each sample power can be

enhanced to twice as much as that of the typical SC with the

sampling period of T . For example, considering 1-bit/sample

transmission, Q PSK and B PSK are chosen as the proposed

scheme and the typical SC scheme, respectively. Next, STTD

encoding converts the consecutive data blocks into the blocks

for two transmit branches, which can be realized without

the FFT and IFFT processing at the transmitter as shown in

Section II-B . After the guard interval insertion, these signals

are transmitted simultaneously from two antennas.

At the receiver, the effective SC symbol is extracted by

removing the guard interval with the length of TG. The

received samples in the time domain are fed into the N -point

FFT circuit through S/P converters and are converted into the

N sub-channel signals. The k-th sub-channel signal of the p-th

block Rp(k) is given by

Rp(k) =

1∑

l=0

Hl(k)Sl,p(k) + Np(k) (5)

where Sl,p and Hl(k) are the transmitted signal and the

channel frequency response from transmit antenna l respec-

tively, and Np(k) denotes AWG N. Here, it is assumed that

the channel variation within two blocks is constant. Two

consecutive received sub-channel blocks are simultaneously

recovered by STTD decoding, which achieves the maximal

ratio combining (MRC) gain in a sub-channel by sub-channel

manner:

Y0(k) = H∗

0 (k)R0(k) + H1(k)R∗

1(k)

Y1(k) = H∗

1 (k)R0(k) − H0(k)R∗

1(k). (6)

Taking advantage of the periodic characteristic of the trans-

mitting spectrum, the proposed scheme can combine two sub-

channel signals with the frequency interval of N ′ according

to a maximal ratio, which results in N ′ sub-channel signals.

Hence, the signal of the k-th sub-channel in the p-th block



(a) Transmitter

(b) Receiver

Fig. 3. Configuration of proposed SC-FDE scheme.

after MRC combining is expressed as

Ŷp(k) = Yp(k) + Yp(k + N ′)

for k = 0, 1, . . . , N ′
− 1. (7)

After MRC combining, each sub-channel signal is multi-

plied by an appropriate weighting factor W (k) to reduce the

inter-bit interference because the frequency selective fading

introduces the loss of orthogonality among the different data

samples which spread over N ′ sub-channels [3]. The weighted

signal of the k-th sub-channel is given by

X̂p(k) = W (k)Ŷp(k). (8)

In the proposed scheme, W (k) is chosen to satisfy the min-

imum mean square error (MMSE) criterion because MMSE

can minimize the interference among samples and noise. The

MMSE-based weight of the k-th sub-channel after both STTD

decoding and MRC is expressed by

W (k) =
1

N ′
∑1

l=0(|Hl(k)|2 + |Hl(k + N ′)|2) + σ2
n

for k = 0 , 1, . . . , N ′ − 1 (9 )

w h e re σ2
n is th e v a ria n c e of A W G N .

T h e n th e w e ig h te d s u b - c h a n n e l s ig n a ls a re fe d to N/ 2- p oin t

I F F T c irc u it a n d a re tra n s form e d in to th e tim e d om a in s ig n a ls .

I n oth e r w ord s , th e a im of I F F T p roc e s s in g h e re is a c tu a lly

to c om b in e c oh e re n tly th e s u b - c h a n n e l s ig n a ls s e p a ra te d in

a d v a n c e a t th e tra n s m itte r. T h e n- th d a ta s a m p le in th e p- th

b loc k is g iv e n b y

x̂p(n) =
1

N ′

N ′
−1∑

k=0

X̂p(k)ej2π( k

N′
)n

for n = 0 , 1, . . . , N ′ − 1. (1 0 )

F in a lly , th e tim e d om a in d a ta s a m p le s a re q u a n tiz e d to re c ov e r

th e tra n s m itte d d a ta s e q u e n c e .

T A B L E II

SI M U L A T I O N P A R A M ET ER S.

M od u la tion B P SK (F u ll s a m p le s )

(m = 1) Q P SK (P rop os e d )

D e te c tion C oh e re n t d e te c tion

F F T s iz e (N ) 3 2

N u m b e r of s u b - c h a n n e ls (Nc) 3 2

G u a rd in te rv a l le n g th (TG) 8 s a m p le s

C h a n n e l m od e l 6 -ra y e x p on e n tia lly

- d e c a y in g m od e l

C h a n n e l e s tim a tion p e rfe c t

F ig . 4 . R a d io c h a n n e l m od e l.

I I I . P ER F O R M A N C E EV A L U A T I O N

A. Simulation parameters

T h e s im u la tion p a ra m e te rs a re g iv e n in T a b le I I . A s s h ow n

in th is ta b le , fi rs tly , m = 1 is c on s id e re d for th e n u m e ric a l

e v a lu a tion . T h e n , m ≥ 2 is c on s id e re d in Se c tion I I I -E. F ig u re

4 s h ow s th e ra d io c h a n n e l m od e l, w h e re 6 - p a th e x p on e n tia lly -

d e c a y in g m u ltip a th c h a n n e ls a re a s s u m e d . T h e p a th s e p a ra tion

is s e t to b e th e s a m p lin g p e riod T , a n d th e a m p litu d e a n d

p h a s e of e a c h ra y a re c h a ra c te riz e d b y R a y le ig h d is trib u tion

a n d u n iform d is trib u tion , re s p e c tiv e ly . H e re , it is n ote d th a t th e

d u ra tion of th e g u a rd in te rv a l TG is lon g e r th a n th e c h a n n e l

m a x im u m d e la y s p re a d a n d th e re fore n o in te rs y m b ol in te r-

fe re n c e (ISI) oc c u rs . I n ou r s im u la tion s , n o c a rrie r fre q u e n c y

offs e t a n d id e a l c loc k s y n c h ron iz a tion a re a s s u m e d , a n d th e

c h a n n e l v a ria tion w ith in tw o c on s e c u tiv e b loc k s is n ot ta k e n

in to a c c ou n t. M ore ov e r, th e c h a n n e l e s tim a tion is a s s u m e d to

b e p e rfe c t.

B . B E R v ersus Av erag e C N R Γ

F ig u re 5 s h ow s th e p e rform a n c e c om p a ris on , in te rm s of

th e B it Error R a te (B ER ) v e rs u s th e a v e ra g e C N R Γ, b e tw e e n

th e p rop os e d s c h e m e (“ P rop os e d ” ) a n d th e ty p ic a l ST T D -SC -

F D E u s in g fu ll s a m p le s (“ F u ll s a m p le s ” ) w ith a p a ra m e te r

of th e d e la y s p re a d τr m s , w h e re m = 1. T h e th e ore tic a l B ER

p e rform a n c e of ST T D u n d e r fre q u e n c y n on - s e le c tiv e R a y le ig h

fa d in g c h a n n e ls is a ls o s h ow n for re fe re n c e .

I t c a n b e fou n d from F ig . 5 th a t th e fl a t fa d in g c h a n n e ls

s u c h a s τr m s = 0 le a d to th e s a m e B ER b e tw e e n th e

p rop os e d s c h e m e a n d th e ty p ic a l ST T D -SC - F D E. I n a d d ition ,

th e B ER p e rform a n c e s of b oth s c h e m e s c orre s p on d to th e

th e ore tic a l B ER . T h is re s u lt c om e s from tw o re a s on s . O n e

is th a t Q P SK w ith th e p ow e r e n h a n c e m e n t of 3 - d B p rov id e s



Fig. 5. Performance comparison, in terms of BER versus average CNR Γ,
between the proposed scheme and the typical STTD-SC-FDE, where m = 1.

the same BER as BPSK in general and the other is that the flat

fading channels do not create the frequency diversity benefit

irrespective of the scheme.

On the other hand, it can be observed that, at τrms = 0.4T
and 1.2T , the proposed scheme has better performance than

the typical STTD-SC-FDE. This is because, in the proposed

scheme, the signal combining of two sub-channels before FDE

relaxes the loss of orthogonality due to the frequency selective

fading, which consequently enhances the overall frequency

diversity effect.

C. BER versus Delay Spread τrms

Figure 6 shows the performance comparison, in terms of

the BER versus the delay spread τrms, between the proposed

scheme and the typical STTD-SC-FDE using full samples with

a parameter of the average CNR Γ, where m = 1. It is found

from Fig. 6 that, irrespective of Γ, the BER performances

of both schemes are improved with the increase in τrms.

The reason is that the increase in τrms gives more frequency

diversity benefit regardless of the scheme.

Moreover, as τrms increases, the proposed scheme can

provide better BER performance than the typical STTD-SC-

FDE regardless of Γ. This is because, in the proposed scheme,

the signal combining of two sub-channels before FDE relaxes

the loss of orthogonality due to the frequency selective fading,

which results in the enhancement of the total diversity effect

as discussed in Section III-B.

D. BER versus F ading Correlation b etw een T w o Branc h es ρ

Figure 7 shows the performance comparison, in terms of

the BER versus space correlation ρ, between the proposed

scheme and the typical STTD-SC-FDE using full samples with

a parameter of the delay spread τrms, where the average CNR

Γ = 15 dB and m = 1. The theoretical BER performance of

Fig. 6. Performance comparison, in terms of BER versus delay spread τrms,
between the proposed scheme and the typical STTD-SC-FDE, where m = 1.

STTD under frequency non-selective Rayleigh fading channels

is also shown for reference.

From Fig. 7 , it can be seen that, regardless of τrms, the BER

performances of both schemes are degraded with the increase

of ρ. The reason is that the space diversity benefit created

by STTD decreases as ρ increases. Here, it is interesting to

note that both schemes give the same performance in the case

of τrms = 0. This is because the BER performance is only

dependent on the space diversity benefit in this case.

On the other hand, in the case of τrms = 0.4T and 1.2T ,

the proposed scheme provides better BER performance than

the typical SC-FDE regardless of ρ. Under such conditions,

since the space diversity is the same for both schemes, the

difference in the BER between two schemes is caused by how

much the frequency diversity effect can be exploited in each

scheme.

E. Req uired Average CNR versus T ransmission Rate m

In this section, the influence of the number of bits per

one sample m on the required average CNR at a certain

BER is evaluated and discussed. Table III shows the possible

modulations for both the proposed scheme and the typical SC

scheme. As shown in this table, the modulation level has to be

higher, especially in the proposed scheme, with the increase in

m. In detail, the proposed scheme adopts 22m-ary modulation

when m-bit/sample transmission is applied to the typical SC

scheme.

Figure 8 shows the performance comparison, in terms of

the transmission rate m versus the required average CNR

in order to satisfy the BER = 10−5, between the proposed

scheme and the typical STTD-SC-FDE, where the delay spread

τrms = 1.2T . From this Fig. 8, it is found that, for 1-bit

transmission, the proposed scheme can decrease the required

average CNR by about 1.4dB and 4.0dB in the case of ρ = 0.0
and 1.0, respectively. However, as m increases, the required



Fig. 7. Performance comparison, in terms of BER versus fading correlation
between two branches ρ between the proposed scheme and the typical STTD-
SC-FDE, where m = 1.

TABLE III

POSSIBLE MODULATIONS FOR TWO DIFFERENT SCHEMES.

bits/sample (m) 1 2 3 4

Full samples BPSK QPSK 8PSK 16QAM

Proposed QPSK 16QAM 64QAM 256QAM

average CNR of the proposed scheme is the same or larger

in some degree compared with the typical STTD-SC-FDE.

This is because the inter-bit interference due to the use of the

high-level modulation cannot be neglected with the increase

in m, which degrades the effect of FDE. Therefore, it can be

concluded that the proposed approach is effective in the low

rate transmission such as 1-bit/sample transmission, while the

typical STTD-SC-FDE is superior to the proposed scheme in

the relatively high rate transmission.

IV. CONCLUSION

We have proposed the periodic spectrum transmission for

SC-FDE employing STTD. The proposed scheme provides

the space and frequency diversity benefits and only even-

numbered samples within a time-domain SC data block create

the frequency redundancy used for enhancing the overall fre-

quency diversity benefit. Computer simulation results showed

that, when applying 1-bit/sample transmission, the proposed

scheme outperforms the typical STTD-SC-FDE using full

samples over relatively severe frequency selective fading

channels, while the typical STTD-SC-FDE provides better

BER than the proposed scheme in the relatively high rate

transmission.
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