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Abstract

Analysing and modeling of traffic play a vital role in
designing and controlling of networks effectively. To con-
struct a practical traffic model that can be used for various
networks, it is necessary to characterize aggregated traffic
and user traffic. This paper investigates these character-
istics and their relationship. Our analyses are based on a
huge number of packet traces from five different networks
on the Internet. We found that: (1) marginal distributions
of aggregated traffic fluctuations follow positively skewed
(non-Gaussian) distributions, which leads to the existence
of “spikes”, where spikes correspond to an extremely large
value of momentary throughput, (2) the amount of user traf-
fic in a unit of time has a wide range of variability, and (3)
flows within spikes are more likely to be “elephant flows”,
where an elephant flow is an IP flow with a high volume of
traffic. These findings are useful in constructing a practical
and realistic Internet traffic model.

1 Introduction

Analysing and modeling of traffic play a vital role in de-
signing networks and controlling traffic effectively. To con-

struct a practical traffic model, it is necessary to character-
ize both aggregated traffic and user traffic for the following
reasons. Firstly, the characteristics of aggregated traffic are
essential metrics for designing network bandwidth. This is
because the fluctuations of aggregated traffic strongly af-
fect the queuing behavior of routers. Knowledge of the
fluctuations is also useful in the evaluation of QoS mech-
anisms such as diffentiated services and queue scheduling
algorithms. Secondly, the characteristics of user traffic are
important for the purposes of traffic engineering. Several
recent papers have proposed router algorithms to control
per-flow bandwidth [7, 9, 17]. Exact knowledge of these
characteristics is helpful in fixing the parameters for such
algorithms or proposing more efficient algorithms. Charac-
terising user traffic is also useful in estimating the perfor-
mance experienced by individual users.

Up to now, a number of studies have investigated the
characteristics of aggregated traffic and user traffic. The
numerous papers on aggregated traffic have revealed that
fluctuations of aggregated traffic in various networks ex-
hibit self-similarity [8, 16]. Self-similarity means that traf-
fic fluctuations exhibit long-term time correlation. It has
also been found that the marginal distributions of aggre-
gated traffic fluctuation play a key role in determining net-
work performance [1, 4, 11]. Here, marginal distribution in-
dicates a distribution of throughput per unit time (see lower
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part of Fig. 1). On the other hand, several papers on user
traffic have revealed that the duration of individual user traf-
fic follows heavy-tailed distribution [3, 20]. The character-
istics were modeled by the well known “Pareto ON/OFF”
model. Recent measurement-based studies have also found
that the size or average rate of user traffic exhibits quite a
wide range of variability [14, 21].

Although the characteristics of aggregated and user traf-
fic have been widely studied, few reports have discussed the
relationship between them1, which is essential for consis-
tently incorporating both characteristics into a traffic model.
Since aggregated traffic is the superposition of user traffic,
the two characteristics are related. Knowing the relation-
ship is also useful for determining traffic engineering pol-
icy. For instance, let us consider the following case. Aggre-
gated traffic sometimes exhibits extremely large values (i.e.,
bursts) which may cause severe packet loss or long queue-
ing delays at routers. If we know the characteristics of user
traffic when bursts occur, we can establish a per-flow traffic
engineering policy to control these bursts.

In this study, we analyzed the characteristics of aggre-
gated traffic and user traffic and investigated the relationship
between the two. We obtained a huge number of packet
traces from five different networks on the Internet. The
rest of this paper is organized as follows. Section 2 de-
scribes how the traffic data was collected. Section 3 studies
the characteristics of aggregated traffic fluctuations and dis-
cusses spikes. Here, a spike is an extremely large value of
momentary throughput. In Section 4, we define per-time-
unit flow and investigate the characteristics of user traffic.
We also demonstrate the existence of elephant flows, which
are IP flows with high volume traffic. Section 5 explains
that elephant flows occur more frequently in spikes. Section
6 discusses the results and section 7 concludes this paper.

2 Traffic Data

We obtained packet traces from five different networks
on the Internet. We captured packet data at a main com-
munication link in each network. None of the links were
severely congested, but all had sufficient traffic. As is well
known, traffic exhibits a wide range variability during long-
term measurement. For example, the average traffic vol-
ume is quite different during busy daytime periods than dur-
ing less busy night periods. Therefore, we should capture
traces during an adequate period to avoid the effect of non-
stationarity. In this paper, all traces were captured within a
period of 300 seconds during daily busy hours. We assumed

1The most well known work is the one by Willinger et al. [20]. They
found that superposition of user traffic with heavy-tailed duration time
makes aggregated traffic self-similar. However, as we later show, their
traffic model cannot cover the characteristics of aggregated and user traffic
on today’s Internet. We will discuss this issue later.

that traffic variability would be stationary within this time
interval. Under these conditions, each trace had sufficient
packets to be analyzed statistically.

In our analyses, we used one-way traffic as summarized
in Table 1 because traffic volumes are asymmetrical. In-
vestigating traffic with a larger volume is meaningful from
the viewpoint of evaluating performance. The networks we
used in our analyses are briefly described below.

NTTlab This link is used as the main external connec-
tion line of NTT R&D center (NTTlab). It is a 12-Mbps
ATM circuit. We captured trace data at an Ethernet segment
connected to the external link via the gateway router. The
measurements were conducted during daily busy hours on
various weekdays in July 2001. In total, we used 56 traces
for this paper.

Waseda This link is the main external connection line for
Waseda university, which is connected to the Inter-Ministry
Research Information Network (IMnet) [5]. The link is a
100-Mbps Ethernet. The measurements were done during
daily busy hours on various weekdays in April and July
2001. We used a total of 71 traces for this paper.

OCN-SINET This link connects NTT’s Open Computer
Network (OCN) and the Science Information Network
(SINET). OCN is the commercial Internet backbone net-
work operated by NTT, and SINET is the largest Internet
backbone network for scientific research institutes in Japan.
The link is a 135-Mbps ATM circuit. The measurements
were done during daily busy hours on various weekdays in
January 2000. We obtained a total of 32 traces for this pa-
per. For information about this data, see [6].

APAN This link is one of the international lines for the
Asia-Pacific Advanced Network (APAN) [2]. It connects
the APAN Tokyo Exchange Point in Japan and the STAR
TAP in the US. The link is an OC3 circuit. We captured
trace data usingOC3mon/Coral [12]. The measurements
were done during daily busy hours on various weekdays in
August 1999. We used a total of 44 traces for this paper.

WIDE This is one of the international links for the
Widely Integrated Distributed Environment (WIDE) project
– the largest Internet research community in Japan [19]. The
line is a 100-Mbps Ethernet with an 18-Mbps CAR (com-
mitted access rate). The trace data is available from the
MAWI traffic archive [10]. All the traces were measured
during daily busy hours (14:00–). We used traces measured
on various weekdays in September to November 2001. In
total, we used 66 traces for this paper. More detailed infor-
mation on this data is given in [10].
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Table 1. Summary of data
data line direction bandwidth # traces avg packets avg rate

NTTlab ATM incoming 12 Mbps 56 1.55 × 105 3.75 Mbps
Waseda Ethernet incoming 100 Mbps 71 1.84 × 106 23.31 Mbps

OCN-SINET ATM OCN-to-SINET 135 Mbps 32 8.06 × 105 12.50 Mbps
APAN OC3 US-to-JP 155 Mbps 44 5.98 × 105 5.14 Mbps
WIDE Ethernet US-to-JP 100 Mbps 66 1.61 × 106 18.00 Mbps

0 1000 2000 3000
ti

0

5

10

X
(t

i) 
 (

M
bp

s)

NTTlab

0 1000 2000 3000
ti

0

20

40

60
Waseda

0 1000 2000 3000
ti

0

10

20

30
OCN-SINET

0 1000 2000 3000
ti

0

5

10

APAN

0 1000 2000 3000
ti

0

10

20

30

40

WIDE

0 5 10
x (Mbps)

10
-4

10
-3

10
-2

10
-1

10
0

P[
X

(t
i) 

>
  x

]

0 20 40 60
x (Mbps)

10
-4

10
-3

10
-2

10
-1

10
0

0 10 20 30
x (Mbps)

10
-4

10
-3

10
-2

10
-1

10
0

0 5 10
x (Mbps)

10
-4

10
-3

10
-2

10
-1

10
0

0 20 40
x (Mbps)

10
-4

10
-3

10
-2

10
-1

10
0 Gaussian

Actual traffic

Figure 1. Marginal distributions of traffic fluctuations

Summary We used 269 traces from five different net-
works, and all of them were captured during a period of
300 seconds. Table 1 summarizes these.

3 Characteristics of Aggregated Traffic Fluc-
tuations: Spikes

Let us analyze fluctuations of aggregated traffic for each
link. We use throughput time series X (ti) to represent
traffic fluctuations. X (ti) are defined as follows. Let
ti (1 ≤ i ≤ M) be time intervals, where M is the total
number of time intervals in a trace. For all i, the length
of ti is the same time interval τ . For each ti, we define
variable X (ti) as the throughput in ti. It is calculated with
formula X (ti) = b (ti) /τ , where b (ti) is the total number
of bits sent during the time interval ti. In this paper, the
length of τ is set to 0.1 seconds (100 milliseconds). Since
each trace covers 300 seconds, the number of time inter-
vals M for each trace is 3000 (3000 = 300/0.1). It should
also be pointed out that, while we used a time interval of
0.1 seconds, the following results also held for various time
intervals such as 0.01 seconds, 1 seconds, and 10 seconds.

Figure 1 shows the time series of throughput variables

X (ti) (upper) and their marginal distributions (lower) for
randomly chosen traces in the five networks described in
Section 2. For the comparison, we draw the curve of Gaus-
sian distributions having the same mean and standard devi-
ations (dashed lines). These figures clearly show that for all
five traces, the marginal distributions of traffic fluctuations
are not Gaussian. They are all positively skewed.

To characterize the distributions, we use skewness, de-
fined as

skewness =

〈
(X (ti) − 〈X (ti)〉)3

〉
σ3

X

, (1)

where 〈X (ti)〉 stands for the mean of X (ti) and σX is the
standard deviation of X (ti). If the distribution is skewed
positively (negatively), skewness becomes positive (nega-
tive). If the distribution is strictly Gaussian, the shape of
the distribution is symmetric and the skewness must be 0.
For the five traces in Fig. 1, we calculate the skewness of
throughput variables. Table 2 reveals that all skewnesses
take positive values. This quantitatively indicates that all the
distributions in Fig. 1 are positively skewed. In Table 2, the
traffic fluctuations of the NTTlab trace is positively skewed
most in these five traces.
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Table 2. Skewness of five traces
NTTlab Waseda OCN-SINET APAN WIDE

skewness 1.31 0.92 0.65 0.58 0.69
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Figure 2. Skewness of all traces

We calculate the skewness of throughput variables for all
traces. Figure 2 illustrates the skewness for all traces in the
five networks. Each point corresponds to one trace. While
there are a few traces with a skewness close to zero, most
have positive skewness. The average skewness is at least
0.39 for the five networks.

From the above, we conclude that marginal distributions
of traffic fluctuations are positively skewed in various net-
works. Some previous studies such as those by Addie et
al. [1], and Grossglauser and Bolot [4] also suggest that
marginal distributions of traffic fluctuations are positively
skewed and do not follow Gaussian distributions. However,
the amount of traffic data used in their studies was quite a
few. Our analyses are based on vast number of traces. This
supports the results widely for various networks — several
Internet uplinks and backbone lines.

The positively skewed marginal distribution of traffic
fluctuations suggests that there are throughput variables
X (ti) whose values are extremely large. These extremely
large throughput values may cause severe packet loss or
long queueing delay at routers. That is, they are strongly
related to network performance. Therefore, it is meaningful
to characterize them. Here, we define an extremely large
throughput variable X (ti) as a spike.
Definition 1: We call a throughput variable X̂ (k) a spike if
it satisfies

X̂ (k) ≥ 〈X (ti)〉 + 2σX , 1 ≤ k ≤ NS , (2)

where 〈X (ti)〉 stands for the mean of X (ti), σX is
the standard deviation of X (ti), and NS is the num-
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ber of spikes in a trace. The set of spikes ΩS �
X̂ (k) (1 ≤ k ≤ NS) satisfies ΩS ⊂ ΩX , where ΩX is the
set of throughput variable X (ti) (1 ≤ i ≤ M).

We set a mean value plus two standard deviations for
the threshold value of large throughput variables — spikes.
Figure 3 has examples of spikes for the NTTlab and APAN
traces used in Fig. 1. In Fig. 3, the graphs at the top are
NTTlab traces and those at the bottom are APAN traces.
These two traces have the maximum and minimum skew-
ness among Table 2. The graphs at the left are the marginal
distributions of traffic fluctuations (throughput), and the
ones at right are actual time series for throughput (part of
them). The solid lines indicate 〈X (ti)〉 and the dashed lines
indicate 〈X (ti)〉 + 2σX . In the figures at right, the black
zone corresponds to spikes and the gray zone corresponds
to non-spikes.

Let us investigate the relationship between spikes and
skewness. We define the occurrence ratio of spikes in each
trace. It is calculated as NS/M , where M is the number of
throughput variables in a trace and NS stands for the num-
ber of spikes in the trace. It should also be noted that in
a Gaussian distribution, the occurrence ratio of spikes (i.e.,
the probability a random value will exceed the mean plus
two deviations) is about 0.023.

Figure 4 is a scatter plot of the occurrence ratio and the
skewness for all the traces in the five networks. Here, each
point corresponds to one trace. The solid lines represent the
linear regression, and variable R indicates the value of the
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Figure 4. Scatter plot of the occurrence ratio of spikes and skewness

correlation coefficients. It is clear that the occurrence ratio
and the skewness are positively correlated for all five net-
works. The correlation coefficients are at least 0.63. If the
occurrence ratio of spikes increases, the skewness also in-
creases. We can also see that in most traces, the occurrence
ratios of spikes are higher than the Gaussian distribution
(i.e., most of occurence ratios are greater than 0.023).

These observations can be summarized as follows. In
all traces, marginal distributions of traffic fluctuations are
positively skewed. According to positively skewed distri-
butions, there are a larger number of spikes than those cal-
culated assuming Gaussian distribution. Since spikes may
cause packet loss or queueing delays, it is necessary to know
their characteristics and causal mechanisms.

4 Characteristics of User Traffic: Elephant

This section analyzes the characteristics of user traffic.
We investigate an IP flow as user traffic. Let us first in-
troduce per-time-unit flow which is an IP flow defined in a
given time unit. We can then calculate the size distributions
of per-time-unit flows for all traces. We found that there
were quite large per-time-unit flows with non-negligible
probability. We call these elephant flows.

4.1 Per-time-unit flow

We introduce a per-time-unit flow to divide the traffic
into flows according to the time interval. We see how the
behavior of each flow contributes to the characteristics of
aggregated traffic.

Figure 5 is a diagram of per-time-unit flow. In this figure,
each rectangle corresponds to one IP flow. An IP flow is a
group of IP packets having the same combination of source
IP address, destination IP address, source port, destination
port, and the protocol field. We divide an IP flow into M
pieces, where M stands for the number of time intervals
defined in Section 3. The length of time interval τ is again
set to 0.1 seconds. For each time interval ti, we define per-
time-unit flow fl (ti, j), 1 ≤ j ≤ Nti (shaded regions in

t t t t t1 2 3 i M

fl(ti,j)

fl(ti,j-1)

fl(ti,2)

fl(ti,1)

Figure 5. Diagram of per-time-unit flow.

Fig. 5). Nti is the number of per-time-unit flows in time
interval ti. The per-time-unit flow fl (ti, j) should contain
at least one packet in time interval ti.

For each per-time-unit flow fl (ti, j), we define its size
as b (fl (ti, j)) (bits). Throughput variable X (ti) satisfies

X (ti) =

∑j=Nti

j=1 b (fl (ti, j))
τ

. (3)

For all traces in Fig. 1, we calculate Nti for each X (ti) be-
longing to spikes (X (ti) ∈ ΩS) and non-spikes (X (ti) ∈
(ΩX − ΩS)) separately. We then take the average values of
Nti for spikes and non-spikes. Table 3 lists the results. Al-
though the average value of Nti is slightly larger in spikes
than in non-spikes, the difference is not large. Since the
numbers of Nti are almost the same, we may conclude
that a large value of X (ti) derives from large values of
b (fl (ti, j)). That is, b (fl (ti, j)) is considered to be the
major factor determining whether X (ti) is a spike or not,
and Nti is not relevant.

In the following sections, we focus on the size distribu-
tion of per-time-unit flow b (fl (ti, j)).
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Table 3. Average of Nti for spikes and non-spikes
NTTlab Waseda OCN-SINET APAN WIDE

spike 17.8 80.9 191.7 50.9 253.6
non-spike 15.2 78.2 174.3 48.3 213.7
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Figure 6. LLCD plots of b (fl (ti, j)).

4.2 Size distribution of per-time-unit flow
— occurrence of elephant flows —

We investigate the size distribution of per-time-unit flow
fl (ti, j) (i.e., the distribution of b (fl (ti, j)).).

We calculate the following complementary cumulative
distribution.

P [b (fl (ti, j)) > x] (4)

Figure 6 shows the log-log complementary cumulative
distribution (LLCD) plots of b (fl (ti, j)) for the five traces
in Fig. 1. The distributions show that b (fl (ti, j)) varies
over several orders of magnitude. That is, there are large
per-time-unit flows with non-negligible probability, while
most per-time-unit flows are relatively small. We call a large
per-time-unit flow an elephant flow.
Definition 2: We call a per-time-unit flow f̂ l (m) =
fl (ti, j) an elephant flow if it satisfies

b
(
f̂ l (m)

)
≥ 〈b (fl (ti, j))〉+ 2σb, 1 ≤ m ≤ NE , (5)

where b
(
f̂ l (m)

)
is the size of the flow, 〈b (fl (ti, j))〉

is the mean of b (fl (ti, j)) and σb is the standard
deviation of b (fl (ti, j)), and NE is the total num-
ber of elephant flows in the trace. The set of ele-
phant flows ΩE � f̂ l (m) (1 ≤ m ≤ NE) satisfies
ΩE ⊂ ΩF , where ΩF is the set of per-time-unit flows
fl (ti, j) (1 ≤ i ≤ M, 1 ≤ j ≤ Nti).

Similar to the definition of spikes, we set the mean value
plus two standard deviations for the threshold values of
large per-time-unit flows — elephant flows. The dashed
lines in Fig. 6 indicate the threshold values.

We define the occurrence ratio of elephant flows (num-
ber) and occupation ratio of elephant flows (size). They are
defined by

occurrence ratio =
NE∑
i Nti

(6)

and

occupation ratio =

∑
m b

(
f̂ l (m)

)
∑

i,j b (fl (ti, j))
. (7)

We calculate the above two ratios for the traces in Fig. 1.
Results are summarized in Table 4 and these indicate that
for all five traces, a small number of elephant flows occupy
a large part of the entire aggregated traffic 2.

This kind of phenomenon is well known as the elephant
and mice phenomenon or the vital few and the trivial many
rule. Some papers have reported that the size or average
rate of IP flows follows the elephant and mice phenomenon
[14, 21]. In this study, we found that the size of a per-time-
unit flow (i.e., momentary rate of IP flow) also have this
tendency. Thus, a small percentage of flows occupies a large
part of the whole aggregated traffic in a unit of time.

While researchers such as Papagiannaki et al. [14] and
Zhang et al. [21] focused on the behavior of average flow
rate (i.e., average flow rate is equal to flow size divided
by flow duration time), this paper uses per-time-unit flows.
This is because they represent the behavior of IP flows more
accurately during a short time interval. As the rate of an IP
flow is not constant but is highly variable, our approach and
findings can directly address the relationship between flow-
level behavior and the characteristics of aggregated traffic.

2While we used the five traces in Fig. 1, the results were the same for
the rest of the traces as well.
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Table 4. Occurrence and occupation ratios of elephant flows
NTTlab Waseda OCN-SINET APAN WIDE

Occurrence ratio 3.01 % 1.15 % 2.35 % 3.22 % 4.65 %
Occupation ratio 35.72 % 39.07 % 25.59 % 41.22 % 41.30 %
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Figure 7. Occurrence ratio of elephant flows
(average)

5 Spikes and Elephants

As we have discussed in the previous subsections, there
are elephant flows, which have a large number of packets
during a given short time interval. We presume that the exis-
tence of elephant flows is closely related to spikes. In other
words, we presume that within a spike, the occurrence of
elephant flows would be higher than in other areas (e.g., in
non-spikes).

To prove this, we calculate the following statistics. For
per-time-unit flows belonging to spikes and non-spikes, we
separately calculate the occurrence and occupation ratios of
elephant flows. Their definitions are the same as those given
in formulas (6) and (7).

Figures 7 and 8 show the occurrence and occupation ra-
tios of elephant flows for all five traces. We used the aver-
age value for traces belonging to each network. The figure
shows that both ratios of elephant flows are higher in the
spikes. This means that:

1. Within spikes, the occurrence probability of elephant
flows is higher than that in non-spikes (about 1.7 – 2.9
times higher).

2. A large part of the spikes are constructed by elephant
flows (for spikes, about 42 – 61% of per-time-unit
flows are elephant flows).

We thus verified our presumption.
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(average)

The most significant result here is that there are elephant
flows in spikes at a higher probability than in non-spikes.
In other words, when there are a larger number of elephant
flows in a time interval, the throughput variable of the time
interval tends to be a spike. Our flow level analyses reveal
that the occurrence of elephant flows is an essential factor
in generating spikes.

6 Discussion

The relationship between the characteristics of aggre-
gated traffic and user traffic plays a key role in constructing
a practical and realistic traffic model. However, little work
has focused on this issue. The heavy-tailed ON/OFF source
traffic model [20] is the best well known and most valuable
one, which takes both the characteristics into account. This
traffic model reflects the characteristics of (1) self-similarity
(aggregated traffic) and (2) heavy-tailed duration (user traf-
fic). A number of measurement analysis have shown the
generality of these characteristics. The model explains both
characteristics in a consistent fashion. That is, the super-
position of heavy-tailed ON/OFF user traffic leads to the
self-similarity of aggregated traffic. Willinger et al. [20]
proved the above relationship within a rigorous mathemati-
cal framework, and Park et al. [15] also verified it by simula-
tion. The model has also been implemented on such widely
used network simulators as NS [18] or OPNET [13].

However, the model has two big weaknesses. Firstly, the
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marginal distribution of aggregated traffic fluctuations is as-
sumed to be Gaussian. As we have shown, this Gaussian
assumption does not agree with the characteristics of real
Internet traffic. Secondly, traffic is assumed to be aggre-
gated from a number of flows having the same fixed rate.
Therefore, each flow has the same size on a certain time
scale when the flow is in an ON-period. As we have seen,
flow rates (i.e., size of per-time-unit flow) vary over several
orders of magnitude.

Thus, it is essential that we include positively skewed
marginal distributions of traffic fluctuations (aggregated
traffic) and the great variability in flow rate distribution
(user traffic) in the traffic model. Our measurement-based
analyses revealed these characteristics and the relationship
between them. By considering these characteristics, we can
construct a practical and realistic Internet traffic model. Our
findings will also be useful in the setting of traffic engineer-
ing policies for user traffic. For instance, since elephant
flows make a large contribution to spikes (i.e., bursts), con-
trolling user traffic that takes the form of elephant flows will
effectively suppress bursts. We will extend our research to a
theoretical investigation of the relationship to better under-
stand these phenomena in network traffic.

7 Conclusion

In this paper, we investigated the characteristics of ag-
gregated and user traffic, and the relationship between them.
We collected a huge number of packet traces from five dif-
ferent networks on the Internet. Our main findings are
as follows. (1) Marginal distributions of aggregated traf-
fic fluctuations followed positively skewed (non-Gaussian)
distributions, which led to the existence of spikes, (2) the
size of user traffic per unit time revealed a wide range of
variability, and (3) elephant flows were more likely within
spikes. These findings will be useful in the construction of
practical and realistic Internet traffic models.

References

[1] R. G. Addie, T. D. Neame, and M. Zukerman. Modeling
superposition of many sources generating self similar traffic.
In Proceedings of ICC, pages 387–391, June 1999.

[2] Asia-Pacific Advanced Network. http://www.apan.net.
[3] M. Crovella and A. Bestavros. Self-Similarity in World

Wide Web Traffic: Evidence and Possible Causes. In Pro-
ceedings of ACM SIGMETRICS, May 1996.

[4] M. Grossglauser and J. C. Bolot. On the relevance of long-
range dependence in network traffic. IEEE/ACM Transac-
tions on Networking, pages 629–640, October 1999.

[5] Inter-Ministry Research Information Network.
http://www.imnet.ad.jp.

[6] R. Kawahara, K. Ishibashi, T. Hirano, H. Saito, H. Ohara,
D. Satoh, S. Asano, and J. Matsukata. Traffic measurement

and analysis in an ATM-based internet backbone. Computer
Communications, 24:1508–1524, 2001.

[7] R. Kawahara and N. Komatsu. A scalable IP traffic control
method for weighted bandwidth allocation per flow. IEICE
Trans. Commun., E84-B(10):2815–2829, October 2001.

[8] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson.
On the self-similar nature of Ethernet traffic. IEEE/ACM
Transactions on Networking, 2(1), Feburary 1994.

[9] D. Lin and R. Morris. Dynamics of Random Early Detec-
tion. In ACM SIGCOMM, September 1997.

[10] Measurement and Analysis on the WIDE Internet.
http://www.wide.ad.jp/wg/mawi.

[11] T. Mori. A study on the difference of characteristics of self-
similar traffic with similar Hurst parameter. In IEICE Gen-
eral Conference, March 2001. (in Japanese).

[12] OC3mon/Coral.
http://www.caida.org/tools/measurement/coralreef.

[13] OPNET. http://www.opnet.com.
[14] K. Papagiannaki, N. Taft, S. Bhattacharyya, P. Thiran,

K. Salamatian, and C. Diot. A pragmatic definition of ele-
phants in internet backbone traffic. In ACM SIGCOMM In-
ternet Measurement Workshop, 2002.

[15] K. Park, G. Kim, and M. Crovella. On the effect of traf-
fic self-similarity on network performance. In Proceedings
of the SPIE International Conference on Performance and
Control of Network Systems, November 1997.

[16] K. Park and W. Willinger. Self-similar network traffic and
performance evaluation. Wiley Interscience, 2000.

[17] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair
queueing: Achieving approximately fair bandwidth alloca-
tions in high-speed networks. In ACM SIGCOMM, Septem-
ber 1998.

[18] The Network Simulator - ns-2.
http://www.isi.edu/nsnam/ns.

[19] Widely Integrated Distributed Environment project.
http://www.wide.ad.jp.

[20] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson.
Self-similarity through high-variability: statistical analysis
of Ethernet LAN traffic at the source level. IEEE/ACM
Transactions on Networking, 5(1):71–86, 1997.

[21] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the
characteristics and origins of internet flow rates. In ACM
SIGCOMM, August 2002.

Proceedings of the 2004 International Symposium on Applications and the Internet (SAINT’04) 

0-7695-2068-5/04 $20.00 © 2004 IEEE


	footer1: 


