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Abstract — The optimization of multicast routing tree
is an important issue for efficient multicast communi-
cation. Some previous papers have tried to analyze
the one-to-many multicast tree and have obtained that
the most efficient tree depends on the characteristics of
the receivers such as the number of receivers. For
many-to-many multicast, on the other hand, the effi-
ciency of the tree has not been analyzed. This paper
analyzes how various components affect the efficiency
of the many-to-many multicast tree. As a result, it is
shown that the most efficient many-to-many multicast
tree does not depend on the number of multicast mem-
bers. The result also tells that the diameter of the tree,
the variance of node degrees, and the number of leaf
nodes mostly decide the delay performance of the tree.

Index terms — multicast, many-to-many, multiple re-
gression analysis

A. INTRODUCTION

Recently, many-to-many communication such as tele-
conferencing or network game begins to spread. In such
applications, they have to send and receive large data on
real time. Therefore, a much wider bandwidth and a
much lower delay are required. Multicasting is well
suited for these applications since it makes efficient use of
the network resources [1].

To realize an efficient multicast, the optimization of the
multicast tree is an important issue. To invent a multicast
routing algorithm, it is necessary to understand the char-
acteristics of the multicast communication. Some previ-
ous researches have focused on such the analysis [2]. Ifa
static multicast tree is used for one-to-many multicast, the
most efficient tree depends on the characteristics of the
receivers such as the number of receivers. On the other
hand, as for many-to-many multicast, the efficiency of the
tree has not been analyzed. This paper therefore analyzes
how various components affect the delay performance of
the many-to-many multicast tree using multiple regression
analysis.
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B. Many-to-Many Murricast Routing

Various multicast routing algorithms have been sug-
gested [1].  Multicast routing problems are categorized to
either static or dynamic. In static routing problems, the
members of the multicast group remain unchanged during
the lifetime of the multicast connection.  In dynamic rout-
ing problems, members can join or leave the group during
the lifetime of connection. The multicast tree cost can be
minimized by reconstruct tree dynamically [3],[4]. How-
ever, the dynamic routing causes a large processing over-
head in the reconstruction of the multicast tree. There-
fore, even the dynamic routing uses a static tree generally
[3].

When using a static tree in one-to-many multicast, it is
known that efficient trees are different depending on the
characteristics of the receivers. If the number of receiv-
ers is small, shortest-path tree (SPT) is efficient. On the
other hand, if the number of receiver is large, mini-
mum-spanning tree (MST) is efficient [2],[4]. However,
as for many-to-many multicast, the efficiency of the trees
has not been analy zed.

In many-to-many multicast, the member of a multicast
group has to send/receive large data to/from each other in
real time. Therefore, the members have to send data effi-
ciently with low delay. Two types of strategies to con-
struct multicast trees have been proposed in many-to-many
multicast routing. One uses different one-to-many mul-
ticast tree for every source. Since it can construct the
most efficient tree for every source, the sources can send
data with low delay. As the members increase, however,
the number of the trees increases and many control mes-
sages are required. Thus, this method is not scalable.

The other strategy uses only one shared tree connected
with all members. Though it has to filter unnecessary
data on some application to avoid sending unnecessary
data to all members, it needs only one shared tree, and it is
scalable [6],[7]. Scalability is a very important factor for
the spread of multicast communication [8], and accord-
ingly it is desirable to use the shared tree strategy in
many -to-many multicast routing.



C. AnavLyTICAL MODEL

In this paper, we assume that one static shared tree is
used for a many-to-many multicast communication.
Many -to-many communication has to send and receive
data in real time. Therefore, we assume that the
lower-delay tree is a higher-performance tree. As a
measure of performance, the maximum end-to-end hop
counts are used. The networks are modeled as
power-low networks. BRITE [9] is used for generating
the network models. Table 1 shows the numbers of nodes
and links in the network models and the methods of
analyses. In the networks that have 8 to 15 nodes, we
make all patterns of the shared trees that span all the nodes
in the analyses. In the network with more than 15 nodes,
it is hard to make all patterns of the shared trees and com-
plete survey is difficult. We thus use a random sampling
rather than all possible regression in the analysis. To be
concrete, we pick out 100 patterns of the shared trees from
the network that consists of 50 nodes and 97 links. The
number of necessary samples in random sampling is clari-
fied by testing population.

We calculate the following parameters:

(1) Average of max hop counts: The max hop count is
the maximum end-to-end hop count along the shared
tree among all node pairs in a multicast group. When
the multicast group size is 3 to |V]-1, where |V] repre-
sents the number of nodes, we calculate the average of
max hop counts for each group size. For example,
when the multicast group size is 3 in a 15-node net-
work, we calculate the max hop counts from all pat-
terns of choosing 3 nodes out of 15 nodes, and then
calculate the average of them.

(2) Diameter of multicast tree: The maximum value of
end-to-end hop counts of the shared tree.

(3) Variance of node degrees: A node degree is the
number of links connected with each node. The
variance of the node degrees shows the deflection of
the node degrees in the shared tree.

(4) Number of leaf nodes: Leaf node is the node that has
only one link. This index will show the degree of the
spread of the shared tree.

Table 1. Network Model.
Number of | Number of Method of
nodes links analysis
8 13 Complete survey
9 15 Complete survey
10 17 Complete survey
11 19 Complete survey
12 21 Complete survey
13 23 Complete survey
14 25 Complete survey
15 27 Complete survey
50 97 Sampling survey

Though we analyzed three different networks for each
network size, the obtained results were very similar.
Therefore, we will show one of the obtained results for
each network size. We also performed the same analyses
in random networks [3] generated by BRITE, and obtained
the similar results as those shown in the following sec-
tions.

D. CoORRELATION ANALYSIS

Figure 1 shows the diameter and the average of max hop
counts of every multicast tree, and Figure 2 shows the di-
ameter, the variance of node degrees, and the number of
leaf nodes of every multicast tree in an 8-node network.
Figures 3 and 4 show the above parameters in case of a
50-node network. In Figures 1 to 4, sequential numbers
are assigned to the multicast trees, and the tree number is
sorted in ascending order with the average of max hop
counts when multicast group size is 3.

From Figures 1 and 2, we can observe obvious charac-
teristics: As the average of max hop counts increases, the
tree diameter increases, and the variance of node degrees
and the number of leaf nodes decrease. Even when the
network size becomes large, from Figures 3 and 4, the
same characteristics can be found. Thus, it is sure that
those four parameters, the average of max hop counts, the
diameter, the variance of node degrees, and the number of
leaf nodes, have correlation. In addition, Figures 1 and 3
show the averages of max hop counts only in cases where
the multicast group sizes are 3 and |V]-1 (7 and 49, respec-
tively). Even in cases of other group sizes, the similar
characteristics were obtained. Namely, the correlation
coefficient between the average of max hop counts and the
tree diameter is independent of the multicast group size.
In Figures 3 and 4, we can find some fluctuations in ob-
served values. These fluctuations occur due to random
sampling analyses, and will be smaller if the number of
analytical network models increases.

Figure 5 shows the correlation coefficients between the
average of max hop counts and other parameters in an
8-node network: the diameter, the variance of node de-
grees, and the number of leaf nodes. Figures 6 and 7
show the above parameters in 15- and 50-node networks,
respectively. In Figures 5 to 7, as the multicast group
size becomes larger, the correlation coefficient with the
tree diameter becomes stronger, the correlation coefficient
with the variance of node degrees remains constant, and
the correlation coefficient with the number of leaf nodes
becomes slightly weak.

Figure 8 shows the correlation coefficients between the
average of max hop counts and other parameters when
multicast group size is 3 in every network size. Looking
into Figures 5 to 8 simultaneously, the correlation coeffi-
cient between the average of max hop counts and the tree
diameter is very strong in every network size. On the
other hand, the correlation coefficients with the variance of
node degrees and the number of leaf nodes become weaker
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Figure 1. Diameter and average of max hop counts of
every tree in 8-node network.
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Figure 2. Diameter, variance of node degrees, and number
of leaf nodes of every tree in 8-node network.
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Figure 3. Diameter and average of max hop counts of
every tree in 50-node network.
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Figure 4. Diameter, variance of node degrees, and number
of leaf nodes of every tree in 50-node network.
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Figure 5. Correlation coefficients between average of max
hop counts and other parameters in 8-node network.
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Figure 6. Correlation coefficients between average of max
hop counts and other parameters in 15-node network.
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Figure 7. Correlation coefficients between average of max
hop counts and other parameters in 50-node network.
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Figure 8. Correlation coefficients between average of max
hop counts and other parameters in every network size
when multicast group size is 3.
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Figure 9. Correlation coefficients between each parameter
pair in every network size.

as the network size is larger.

Figure 9 shows the correlation coefficients among the
diameter of the tree, the variance of node degrees and the
number of leaf nodes. From Figure 9, the correlation
coefficients are strong in a small network, and those be-
come weaker as the network become larger.

In Figure 9, we can find some fluctuations in observed
values. These fluctuations will be smaller if the number
of analytical network models increases.

E. MurrpLE REGRESSION ANALYSIS

In multiple regression analysis, regarding the result as a
criterion variable, and the factors as explanatory variables,
find a regression equation shown in Eq. (1), which can
clarify the criterion variable is affected by the explanatory
variables.

y=ayx +a,x, +--+a,x,+4a,. ¢))

where

y : criterion variable,

Xy5 X950, X, s explanatory variables,

p: the number of explanatory variables,
a,,a,,,a,: partial regression coefficient, and

a, : residual.

In this study, let the average of max hop counts to be cri-
terion variable, and let the diameter of the tree, the vari-
ance of node degrees, and the number of leaf nodes to be
explanatory variables, as shown in Table 2. In the analy-
ses, every explanatory variable is normalized by its maxi-
mum value.

Table 2. Regression equation.

Regression equation Yy =ax, +a,x, +ax; +a,

Crifterion variable vy - Average of max hop counts

x, - Diameter of the tree

Explanatory variables | x, : Variance of node degrees

x, - Number of leaf nodes

Table 3. Result of analyses. (8-node network)
Group | Proportion a a “ a
size (%) ' ’ } !
3 92.0 0.596 | -0.380 | -0.029 [ 2.268
4 93.1 0.658 | -0.355 | 0.004 [ 2.088
5 95.2 0.725 [ -0.290 | 0.000 [ 1.812
6 97.6 0.803 | -0.201 | -0.015 | 1.401
7 99.0 0.892 | -0.103 | -0.019 [ 0.784

Table 4. Result of analyses. (15-node network)

Group | Proportion a u “ Y
size (%) ' ’ } !
3 87.1 0.792 [ -0.340 | 0.131 ] 2.071
6 91.8 0916 [ -0.222 | 0.144 | 0.851
9 96.2 0964 | -0.135 | 0.097 | 0.355
12 99.0 0.989 | -0.062 | 0.047 | 0.130
14 99.9 0.998 | -0.019 | 0.015 | 0.040
Table 5. Result of analyses. (50-node network)
Group | Proportion a a a a
size (%) ' ’ ; ’
3 80.6 0.869 | -0.174 | 0.105 | 0.957
10 89.9 0947 | -0.107 | 0.107 | -1.852
20 95.4 0.976 | -0.070 | 0.066 | -1.334
30 98.2 0.990 | -0.042 | 0.038 | -0.785
40 99.5 0.997 | -0.018 | 0.017 | -0.345
49 100.0 1.000 | -0.002 | 0.002 | -0.028

Table 3, 4, and 5 show the results of multiple regression
analyses in an 8-, 15-, and 50-node networks, respectively.
Every regression equation is estimated to be positive with
a 5% significant level. Since the explanatory variables
are normalized, the partial regression coefficients directly
show how much accurately the explanatory variables ex-
plain the criterion variable. A negative partial regression
coefficient shows the negative correlation coefficient be-
tween the criterion variable and its explanatory variable.
In other words, the larger the explanatory variable is, the
smaller the criterion variable is. A proportion shows how
much accurately the regression equation explains the crite-
rion variable.

Figure 10 shows the proportion of each size of multicast
group in 8-, 12-, 15-, and 50-node networks. Looking
into Tables 3, 4, and 5 and Figure 10, the regression equa-
tions always explain the criterion variable appropriately
since every proportion is over 80%. Moreover, a larger
multicast group size brings higher proportion. Thus, the
average of max hop counts can be explained by three ele-
ments, the tree diameter, the variance of node degrees, and
the number of leaf nodes. Every table leads us to the
conclusion that the element that most strongly impacts the
average of max hop counts is the tree diameter, since its
partial regression coefficient is large. Furthermore, it is
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Figure 12. Observed value and predicted value in
50-node network when multicast group size is 3.

observed that the partial regression coefficients of both the
variance of node degrees and the number of leaf nodes are
slightly large when the multicast group size is small.
This fact brings that these two elements also affect the av-
erage of max hop counts when multicast group size is
small.

Figure 11 shows both the observed values and the pre-
dicted values when multicast size is 3 in an 8-node net-
work, and Figure 12 shows them in a 50-node network in
the same fashion. Looking into Figures 10, 11 and 12 at
the same time, it is observed that the proportion becomes
higher as the network size is smaller. Thus, the proposed
regression equation more accurately explains the average
of max hop counts when network size is smaller. Though
the proportion is the lowest when the multicast group size

is 3, the predicted values are similar to the observed values.
Therefore, we can conclude that the proposed regression
equation well explains the average of max hop counts.

F. Concrusion

In this paper, we first clarified that the performance of a
multicast tree shows the similar tendency in every multi-
cast group size, in case where a shared multicast tree is
used for many-to-many multicast communication. Then,
we showed that the delay performance of the multicast tree
can be accurately explained by three eclements: the tree
diameter, the variance of node degrees, and the number of
leaf nodes. Moreover, we proposed a regression equation
that explains the performance of each multicast tree, and
evaluated it using multiple regression analyses. The ob-
tained results showed that the proposed equation can ac-
curately explain the average of max hop counts, and can
apply to all size of networks.

It is left for further study to propose a novel multicast
routing algorithm that suits many-to-many multicast
communication using the result of the analyses in this
study.
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