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Abstract The optimization of multicast routing tree B. MANY-TO-MANY MULTICAST ROUTING
is an important issue for efficient multicast communi-
cation. Some previous papers have tried to analyze Various multicast routing algorithms have been sug-
the one-to-many multicast tree and have obtained that gested [1]. Multicast routing problems are categorized to
the most efficient tree depends on the characteristics of either static or dynamic. In static routing problems, the
the receivers such as the number of receivers. For members of the multicast group remain unchanged during
many-to-many multicast, on the other hand, the effi- the lifetime of the multicast connection. In dynamic rout-
ciency of the tree has not been analyzed. This paper ing problems, members can join or leave the group during
analyzes how various components affect the efficiency the lifetime of connection. The multicast tree cost can be
of the many-to-many multicast tree. As a result, it is minimized by reconstruct tree dynamically [3],[4]. How-
shown that the most efficient many-to-many multicast ever, the dynamic routing causes a large processing over-
tree does not depend on the number of multicast mem- head in the reconstruction of the multicast tree. There-
bers. The result also tells that the diameter of the tree, fore, even the dynamic routing uses a static tree generally
the variance of node degrees, and the number of leaf [5].
nodes mostly decide the delay performance of the tree. When using a static tree in one-to-many multicast, it is

known that efficient trees are different depending on the
Index terms multicast, many-to-many, multiple re- characteristics of the receivers. If the number of receiv-
gression analysis ers is small, shortest-path tree (SPT) is efficient. On the

other hand, if the number of receiver is large, mini-
A. INTRODUCTION mum-spanning tree (MST) is efficient [2],[4]. However,

as for many-to-many multicast the efficiency of the trees
Recently, many-to-many communication such as tele-y y,y

conferencing or network game begins to spread. In such has not been analyzed.
In many-to-many multicast, the member of a multicastapplications, they have to send and receive large data on

real time. Therefore, a much wider bandwidth and a group has to send/receive large data to/from each other in
much lower delay are required. Multicasting is well real time. Therefore, the members have to send data effi-

suited for these applications since it makes efficient use of ciently with low delay. Two types of strategies to con-

Toe realizeresources [I]. . .struct multicast trees have been proposed in many-to-many
To ealze n ffiien mltiast te otimzaionof he multicast routing. One uses different one-to-many mul-Tora1ean efficient multicast, the optimization of the

multicast tree is an important issue. To invent a multicast ticast tree for every source. Since it can construct the
most efficient tree for every source, the sources can sendrouting algorithm, it iS necessary to understand the char- dat wihlwdly stemmesices,hwvr

acteristics of the multicast communication. Some previ the number of the trees increases and many control mes-
ous researches have focused on such the analysis [2]. If a

staticmulticast tree is used for one-to-many multicast, te sages are required. Thus, this method is not scalable.standc mulcast tree iS used for one-to-manymulticast, the data t a I n o o , a I

tree has no been analyed. Thispaertherefor anayze scaaber[][]scralablitissanl vner imporedtant fannctrfo
howt varioscomttredpoentsafec the delayaperformaceof the sra fmliatcmuiain[] n cod
the many-to-many muelticast tfree vesusin mulip ergesontnhetirdsrbet setesae re taeyi
hand,alsis may-o-an munyticastn routing. ffc1 f n
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C. ANALYTICAL MODEL Though we analyzed three different networks for each
network size, the obtained results were very similar.

In this paper, we assume that one static shared tree is Therefore, we will show one of the obtained results for
used for a many-to-many multicast communication. each network size. We also performed the same analyses
Many-to-many communication has to send and receive in random networks [3] generated by BRITE, and obtained
data in real time. Therefore, we assume that the the similar results as those shown in the following sec-
lower-delay tree is a higher-performance tree. As a tions.
measure of performance, the maximum end-to-end hop
counts are used. The networks are modeled as D. CORRELATION ANALYSIS
power-low networks. BRITE [9] is used for generating
the network models. Table 1 shows the numbers of nodes Figure 1 shows the diameter and the average of max hop
and links in the network models and the methods of counts of every multicast tree, and Figure 2 shows the di-
analyses. In the networks that have 8 to 15 nodes, we ameter, the variance of node degrees, and the number of
make all patterns of the shared trees that span all the nodes leaf nodes of every multicast tree in an 8-node network.
in the analyses. In the network with more than 15 nodes, Figures 3 and 4 show the above parameters in case of a
it is hard to make all patterns of the shared trees and com- 50-node network. In Figures 1 to 4, sequential numbers
plete survey is difficult. We thus use a random sampling are assigned to the multicast trees, and the tree number is
rather than all possible regression in the analysis. To be sorted in ascending order with the average of max hop
concrete, we pick out 100 patterns of the shared trees from counts when multicast group size is 3.
the network that consists of 50 nodes and 97 links. The From Figures 1 and 2, we can observe obvious charac-
number of necessary samples in random sampling is clari- teristics: As the average of max hop counts increases, the
fied by testing population. tree diameter increases, and the variance of node degrees
We calculate the following parameters: and the number of leaf nodes decrease. Even when the

network size becomes large, from Figures 3 and 4, the
(1) Average of max hop counts: The max hop count is same characteristics can be found. Thus, it is sure that

thee amaximuml enod-toepa indh muicuntalon
.

t shared those four parameters, the average of max hop counts, the
treemuamongstallounodezpairs3in IaVmu-lticast regroup.reWhen diameter, the variance of node degrees, and the number of
the multicast group size is 3 toVc-1, where lv repre- leaf nodes, have correlation. In addition, Figures 1 and 3
sents the number of nodes, we calculate the average of show the averages of max hop counts only in cases where
max hop counts for each group size. For example, the multicast group sizes are 3 and Vl-1 (7 and 49, respec-
when the multicastg s 3 inta 1-od net- tively). Even in cases of other group sizes, the similar
work, we calculate the max hop counts from all pat- characteristics were obtained. Namely, the correlation
terns of choosing 3 nodes out of 15 nodes, and then

chrceitc eeotied aey h oflto

ternslateof choosinge3nodesfoutof15nodes,and then coefficient between the average of max hop counts and the
calculate the average ofthem. tree diameter is independent of the multicast group size.

(2) Diameter of multicast tree: The maximum value of In Figures 3 and 4, we can find some fluctuations in ob-
end-to-end hop counts of the shared tree. served values. These fluctuations occur due to random

sampling analyses, and will be smaller if the number of
(3) Variance of node degrees: A node degree is the analytical network models increases.

number of links connected with each node. The Figure 5 shows the correlation coefficients between the
variance of the node degrees shows the deflection of average of max hop counts and other parameters in an
the node degrees in the shared tree. 8-node network: the diameter, the variance of node de-

(4) Number of leaf nodes: Leaf node is the node that has grees, and the number of leaf nodes. Figures 6 and 7
only one link. This index will show the degree of the show the above parameters in 15- and 50-node networks,
spread of the shared tree. respectively. In Figures 5 to 7, as the multicast group

Table 1. Network Model. size becomes larger, the correlation coefficient with the
Tumber of NumberofMethod of

tree diameter becomes stronger, the correlation coefficient
Number of Number of Method of with the variance of node degrees remains constant, and

nodes links analysis the correlation coefficient with the number of leaf nodes
8 13 Complete survey becomes slightly weak.
9 15 Complete survey Figure 8 shows the correlation coefficients between the
10 17 Complete survey average of max hop counts and other parameters when
111 1 9 T~ Complete survey mnulticast group size is 3 in every network size. Looking
12 21 Complete survey into Figures 5 to 8 simultaneously, the correlation coeffi-
13 23 Complete survey cient between the average of max hop counts and the tree
14 25 Complete survey diameter is very strong in every network size. On the
15 27 Complete survey other hand, the correlation coefficients with the variance of
50 [ 97 T~ Sampling survey node degrees and the number of leaf nodes become weaker
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1.0

0.9 Table 3. Result of analyses._(8-node_network)
Group Proportion0.8 A ~ T al a2 a3 ao

.7 3 92.0 0.596 -0.380 -0.029 2.268
. .6 > 4 93.1 0.658 -0.355 0.004 2.088
Ou -A- Dianlleter-Varianc 95.2 0.725 -0.290 0.000 1.812

-V- Diamcter-Number of lcafnodes 6 97.6 0.803 -0.201 -0.015 1.401
0.4 -4-+ Varian c-Number of leaf nodes 7 99.0 0.892 -0.103 -0.019 0.784
0.

8 9 10 11 12 13 14 15 49 50
Network size

Table 4. Result of analyses._(15-node_network)
Figure 9. Correlation coefficients between each parameter Gop Roportion

pair in every network size. size 0(o) a a2 al a0

as the network size is larger. 3 87.1 0.792 -0.340 0.131 2.071
Figure 9 shows the correlation coefficients among the 6 91.8 0.916 -0.222 0.144 0.851

diameter of the tree, the variance of node degrees and the 9 96.2 0.964 -0.135 0.097 0.355
number of leaf nodes. From Figure 9, the correlation 12 99.0 0.989 -0.062 0.047 0.130
coefficients are strong in a small network, and those be- 14 99.9 0.998 -0.019 0.015 0.040
come weaker as the network become larger.

In Figure 9, we can find some fluctuations in observed
values. These fluctuations will be smaller if the number Table 5. Result of analyses. (50-node network)
of analytical network models increases. Group Proportion a1 a2 a3 a

size (%) l 0

E. MULTIPLEREGRESSIONANALYSIS 3 80.6 0.869 -0.174 0.105 0.957
10 89.9 0.947 -0.107 0.107 -1.852

In multiple regression analysis, regarding the result as a 20 95.4 0.976 -0.070 0.066 -1.334
criterion variable, and the factors as explanatory variables, 30 98.2 0.990 -0.042 0.038 -0.785
find a regression equation shown in Eq. (1), which can 40 99.5 0.997 -0.018 0.017 -0.345
clarify the criterion variable is affected by the explanatory 49 100.0 1.000 -0.002 0.002 -0.028
variables.

y = aixi + a2X2 + * + apxp +aO, () Table 3, 4, and 5 show the results of multiple regression

where analyses in an 8-, 15-, and 50-node networks, respectively.
Every regression equation is estimated to be positive with

y: criterion variable, a 5% significant level. Since the explanatory variables

x x... , : explanatory variables, are normalized, the partial regression coefficients directly
I 2 ~p show how much accurately the explanatory variables ex-

p: the number of explanatory variables, plain the criterion variable. A negative partial regression
a1,a2.. a: partial regression coefficient, and coefficient shows the negative correlation coefficient be-

tween the criterion variable and its explanatory variable.
a0: residual. In other words, the larger the explanatory variable is, the

In this study, let the average of max hop counts to be cri- smaller the criterion variable is. A proportion shows how
tenon variable, and let the diameterof the tree, the van- much accurately the regression equation explains the crite-terion variable, and let the diameter Of the tree, the vari-

ro aibe
ance of node degrees, and the number of leaf nodes to be n gnvar1able.
exlntoyvribe, ssow nTal . nte nl Figure 10 shows the proportion of each size of multicastexplanatory variables, as shown in Table 2. In the anally-ou in8 211- n 0nd ewrs okn

ses, every explanatory variable is normalized by its maxi- g i 8 1
mum value. into Tables 3, 4, and 5 and Figure 10, the regression equa-

tions always explain the criterion variable appropriately
Table 2. Regression equation. since every proportion is over 80%. Moreover, a larger

Regression equation |y =a,x, ± a2x2 ± a3x3 ±a0) multicast group size brings higher proportion. Thus, the
_________________ Avrage f maxhop cunts average of max hop counts can be explained by three ele-

Criterion variable |___Average_of_max_hop_counts ments, the tree diameter, the variance of node degrees, and
Xl Diameter ofthe tree the number of leaf nodes. Every table leads us to the

Explanatory variables x, Variance of node degrees conclusion that the element that most strongly impacts the
Nubro.la oe average of max hop counts is the tree diameter, since itspartial regression coefficient iS large. Furthermore, it iS



1.00 is 3, the predicted values are similar to the observed values.
0.98 Therefore, we can conclude that the proposed regression
0.96 equation well explains the average of max hop counts.
0.94

.0 0.92 -A- Network size 8 F. CONCLUSION
090 Network size 12

0.86 t,- Network size 15 In this paper, we first clarified that the performance of a
0.84 Network size 50 multicast tree shows the similar tendency in every multi-
0.82 cast group size, in case where a shared multicast tree is
0.80 used for many-to-many multicast communication. Then,

3 7 11 15 19 23 27 31 35 39 43 47 we showed that the delay performance ofthe multicast tree
Multicast group size can be accurately explained by three elements: the tree

Figure 10. Proportion vs. multicast group size in every diameter, the variance of node degrees, and the number of
network size. leaf nodes. Moreover, we proposed a regression equation

5 that explains the performance of each multicast tree, and
Observed value evaluated it using multiple regression analyses. The ob-

4. 5 * bsrC ale
[E tained results showed that the proposed equation can ac-

4 o Predicted value curately explain the average of max hop counts, and can
apply to all size of networks.

[El ME= 0--] 11 E] E It is left for further study to propose a novel multicast
routing algorithm that suits many-to-many multicast
communication using the result of the analyses in this

2;5; lstudy.
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