3A-3

A Cosynthesis Algorithm for Application Specific Processors
with Heterogeneous Datapaths

Yuichiro Miyaoka® Nozomu Togawa't

Waseda University

miyaoka @ ohtsuki.comm.waseda.ac.jp

The University of Kitakyushu

Tatsuo Ohtsukit

Waseda University

Masao Yanagisawa*

Waseda University

togawa@env.kitakyv-v.acjp yanagi@yanagi.comm.waseda.ac jp to@ohtsuki comm.waseda.ac.jp

1 Dept. of Electronics, Information and Communcation Engineering, Waseda University
3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan, Tel: +81-3-5286-3396, Fax: +81-3-3203-9184
1 Dept. of Computer and Media Sciences, The University of Kitakyushu
1-1, Hibikino, Wakamatsu, Kitakyushu, 808-0135, Japan, Tel: +81-93-695-3264, Fax: +81-63-695-3368

¥ Dept. of Computer Science, Waseda University

3—4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan, Tel: +81-3-5286—{3392,3387 }, Fax: +81-3-{3204-4875, 3203-9184 }

Abstract— This paper proposes a hardware/software cosyn-
thesis algorithm for processors with heterogeneous registers.
Given a CDFG corresponding to an application program and a
timing constraint, the algorithm generates a processor configura-
tion minimizing area of the processor and an assembly code on
the processor. First, the algorithm configures a datapath which
can execute several DFG nodes with data dependency at one ¢y-
cle. The datapath can execute the application program at the
least number of cycles. The branch and bound algorithm is ap-
plied and all the number of functional units and memory banks
are tried. For an assumed number of functional units and mem-
ory banks, an appropriate number of heterogeneous registers and
connections to functional units and registers are explored. The
experimental results show effectiveness and efficiency of the algo-
rithm.

1. INTRODUCTION

General DSPs such as TMS320C2x[14], DSP56300[12],
DSP16xx[10], ADSP-21xx[3], and [9] have heterogeneous
datapaths, Heterogeneous registers (accumulate registers, for
example) can have flexible bit width, while general purpose
registers must have single bit width. Heterogeneous regis-
ters can salisfy application requirements with less hardware
costs. Sophisticated heterogeneous datapaths including het-
erogeneous registers can execute application programs fast.
Therefore, processors with heterogeneous datapaths can have
small costs and achieve high performance.

For processors with heterogeneous datapaths, code opti-
mization or generation is a struggled problem, since, for ex-
ample, it must be considered which of heterogeneous regis-
ters a variable is bound to. Several retargetable compilers to
processors with heterogeneous datapaths have been reported
as in [5, 6, 7, 11, 17, 18]. These retargetable compilers,
however, cannot always make a sufficient application code,
since datapath configuration of the target processor is not al-
ways suitable for a given application program. We think that
an application specific processor should be synthesized, espe-
cially for a processor with a heterogeneous datapath. A Hard-
ware/software codesign method can be effectively applied to
processors with a heterogeneous datapaths. Several researches
on a hardware/software codesign for microprocessors have
been reported as in [1, 2, 4, 13, 15]. However, they does not

0-7803-8175-0/04/$17.00 (©)2004 IEEE.

focus on heterogeneous datapaths. In [8] a hardware/software
codesign environment have been propesed. In [8], given an ap-
plication program and datapath configuration, the codesign en-
vironment generates a processor hardware description and the
object code on the processor. However, another datapath con-
figuration must be manually designed when estimated area or
the execution time of a given application program on a proces-
sor with a datapath configuration is insufficient. At the design
of a processor with a heterogeneous datapath, it is difficult to
find a performance bottleneck and to design another appropri-
ate processor datapath. Exploring datapath configuration and
compiling an application program must be close each other.

Therefore we propose a hardware/software cosynthesis al-
gorithm for processors with heterogeneous datapaths. Given a
CDFG corresponding to an application program and a timing
constraint, the algorithm generates a processor configuration
minimizing area of the processor and an assembly code on the
processor. First, the algorithm configures a datapath which can
execute several DFG nodes with data dependency at one cycle.
The datapath can execute the application program at the least
number of cycles. The branch and bound algorithm is applied
and all the number of functional units and memory banks are
tried. For an assumed number of functional units and memory
banks, an appropriate number of heterogeneous registers and
connections to functional units and registers are explored.

This paper is organized as follows: Section I defines a pro-
cessor architecture. Section III proposes a hardware/software
cosynthesis algorithm for processors with heterogeneous data-
paths. Section 1V shows experimental results. Section V gives
concluding remarks.

I1. ARCHITECTURE MCGDEL

This section defines a processor architecture model for our
synthesis algorithm. Our VLIW type processor has the 3 stage
pipelines composed of IF, ID, and EXE stages. Immediate
values are decoded on the ID stage and written in the ID/EXE
pipeline registers. The processor can have one or two data
memory banks. The data bus width of data memory is fixed to
bit width of processor basic bit width bp4,;.. Besides the num-
ber of data memory banks, configuration of general purpose
registers, helerogeneous registers, and functional units can be
changed. Figure 1 shows our processor model.

250

mailto:miyaoka@ohtsulu.co-.waseda.ac.jp
mailto:to@ohtsukLcomm.waseda.ac.jp

i IFID i
‘ General
Decode Purpose
Registers
I y b
H ID/EXE i
e y
— Functional Data
— Units Mem
Heterogeneous T — T
Registers 3 g

Fig. 1. Our pipeline architecture.

Bit width of general purpose registers is bpysic. In case that
data of a general purpose register is read, the data is read at
the ID stage and saved in the TD/EXE pipeline registers. In
case that data is written in a general purpose register, data is
generated at the EXE stage and written back to the register,
The number n, of general registers is given in advance.

Data of heterogeneous registers are read and written at the
EXE stage. Data read from a heterogeneous register is (a) used
for an input of a functional unit, (b) written back to a general
purpose register, (c) writien back to another heterogeneous reg-
ister, or (d) written to data memory. To convert bit width of
data in a heterogeneous register to bit width required for (a})-
(d), a heterogeneous register can have a bit extended/extracted
unit. (e) Output data of a functional unit, (f) data in a general
purpose register, (g} data in another heterogeneous register, or
(h) data from data memory is written to a heterogeneous reg-
ister. The number of heterogeneous registers and bit width of
each heterogeneous register can be changed. Which of (a)-(h)
connections each register has and whether each register has a
bit extended/extracted unit can be changed. .

Functional units are such as ALUs, adding units, multi-
plying units, shift operation units, and bit extended/extracted
units. For the same operation type, a functional unit can
have different bit width of inputs and outputs. A proces-
sor has several functional units in a functional unit library
FU = {f1, f2,...fu}- By connecting more than one func-
tional units, a processor can have a datapath which can execute
a operation and another operation continually. For example,
by connecting an output port of a multiplying unit to an input
port of an adding unit, muitiplying and adding operation can
be executed at one cycle.

We define minimum instructions to perform as a general
processor. A processor must have a datapath which can execute
(in one or several cycles) adding operation, logical and/or/xor
operation, shift operation, and comparing operation for two
variables a and b in the data memory memnyg, and write their
operatton results to memy. A processor must have a non-
conditional branch operation and a branch-on-equal operation
for g and b.

Tg, Tip ANd Ny, and 12, denote the number of general purpose
registers, reading ports and writing ports of general purpose
registers, and heterogeneous registers respectively. ny denotes
the number of functional units in a processor. n,, € {1,2}

3A-3

nr 0w

| berrl |breg i"'i bregib:eg i"'ibtegl

Fig. 2. Instruction format.

denotes the number of data memory banks and s,,¢.,,, denotes
the number of signals which can be written to data memory
1. Let 54 be the number of signals which can be written back
to general purpose registers and s} be the number of signals
which can be written back to a heterogeneous register . As-
sume that a functional unit f; should have ny, input ports and
that the number of signals which connect a j{0 < j < nys,)-th
input of a functional unit should be sf,l_ . Then an instruction set
is composed of, at most,

g —1 nih—1 ng—lng—1
: ,
Tinst = H Smem, % 8g X Ty X H % x H H 8%,
=0 =0 =0 =0

instructions, Only the instructions which are required in order
to execute a given application program and minimum instruc-
tions as mentioned above are synthesized. Bit length for an
instruction code is beert < [10g Ri0s¢ | and bit length for speci-
fying general purpose registers is {12, + 11,) X breg, Where by,
is bit length to specify a general register and b, = [logny|
(Fig. 2).

‘We estimate processor area by adding up area of (i) ID/EXE
pipeline registers, (ii) general purpose registers, (iii) hetero-
geneous registers, (iv) functional units, and (v) multiplexers
(for writing to general purpose registers, heterogeneous regis-
ters, and data memory banks, and input of functional units).
Let Greg and ap,,; be area of a single bit register and a 2-
1 multiplexer respectively. Area A,;,. of (i) is estimated as
Api;pe = Qreg X (bctrl +n, X bbasic + 7y X b’reg)~ Area Ag is
estimated as A, = Greg X g X bogsic + Gmuz X (Nr X bpagic X
(g — 1) + Ryy X bygsic X 1g). Area A of (iii) is estimated as
Ap = areg x 000" b, where b, is bit width of RY,. Area Ap
of (iv) is estimated as Ap =}, a7, Finally, area Ay,
of (v) is estimated as Amuz = Gmuz X 3 peatimuz(8p—1) X bp,
where g, is the number of signals which can be input to a mul-
tiplexer p and b;, is bit width of the multiplexer p.

The clock period of a processor is estimated as critical path
delay at the EXE stage, which is composed of delay of mul-
tiplexers, functional units, and writing back to registers. We
assume that d,,,,.. should be delay of a 2-1 multiplexer and we
estimate delay of an s,-1 muitiplexer as dmuz * [logsy].

[Il. A HARDWARE/SOFTWARE COSYNTHESIS ALGORITHM
FOR PROCESSCORS WITH HETEROGENEOQUS DATAPATHS

This section proposes an algorithm to synthesize a processor
with a heterogeneous datapath.

A. Problem definition

A control ftow graph (CFG) G, = (V., E;) is defined as
a graph representing control flow in a function. A CFG has
no input and output edges. A basic block is a node of a
CFG and has a data flow graph (DFG). A basic block has no
branches and joins except for its starting and ending. A DFG
Gg = (Vg, Ey) is defined as a graph representing data flow.
An ending node of a DFG may be connected 1o a starting node
in another DFG. A DEG is a set of operations from a branch or

251

3A-3

join to a next branch or join in an application. A node v € Vg
is associated with an operation in a functional unit f € FUJ or
a memory access operation. If the execution of a DFG node v
has data dependency to another DFG node v2, a DFG has an
edge (v1,v2).

Tupp. the execution time of an application program, is cal-
culated by a product of the number of total clock cycles to
execute the CDFG and a clock period of the processor. Proces-
sor configuration includes the number of data memory banks,
the number of heterogeneous registers, bit width of each het-
erogeneous register, the types and number of functional units,
and the connections among data memory, general purpose reg-
isters, heterogeneous registers, and functional units.

Definition [IL.1 (Processor synthesis problem) A processor
synthesis problem is to determine processor configuration
given a CDFG and a timing constraint in order to minimize
processor area while the execution time of a given application
program satisfies a timing constraint Tpor, that is, Top, <
Tmaz‘-

B. Proposed algorithm

The proposed algorithm is composed of two phases. One de-
termines initial processor configuration and the other explores
processor configuration. Initial processor configuration has a
sufficient number of functional units and heterogeneous regis-
ters, and can execute the application program in a small num-
ber of cycles, while processor area of the configuration is large.
The branch and bound algorithm is applied and all the number
of functional units and memory banks are tried. For an as-
sumed number of functional units and memory banks, an ap-
propriate number of heterogeneous registers and connections
to functional units and registers are explored. In this way, we
can obtain optimized processor configuration in a short time.

B. 1 Initial processor configuration

To configure initial processor configuration, all the DFGs in
a CFG are scheduled in the following method. To schedule a
DFG G4 = (Vy, E,) associated with a CFG node v, € V,
is to determine a pair (v, st) for all the nodes v € Vy, st €
{1,2,...}, that is, to construct S, = {(v,st}|"v € Vy}. A
node v € V; is a node executed by a functional unit (called
a functional node) or a node accessing data memory (called a
memory accessing node). A set of all the functional nodes in
Va is denoted as V. A set of all the memory accessing node
in Vy is denoted as V,,,, where V; and V;,, satisfy Vg = V; U
Vi, Vi N Vi, = ¢, Our target processor can execute several
functional nodes at one cycle which have data dependency to
one another by connecting an output of a functicnal unit to an
input of another functional unit. However, a processor cannot
execute a node to load data from memory and a node to operate
the loaded data at the same cycle and cannot execute a node to
store data to memory and a node to operate the stored data
at the same cycle. Therefore, if an edge (vi,v;) is included
in Eq and v; and v; € V; are assigned to a step st; and si;
respectively, st; < st;inwvg,v; € Vyand sty < stjiny; € ¥y,
or v; € V. Figure 3 shows the step assigning rule. DFG
nodes are assigned to steps in a topological order. To assign
a functional node and memory accessing node to a step st is
realized by assigning all the functional nodes which can be
assigned to st and memory accessing nodes satisfying resource
constraints. Figure 4 shows this algorithm.

sti o e Vr st o

vie Vm
or
vie Vm
st 0 e Vr st 0
st < st sti < st
(a) (b)

Fig. 3. A siep assigning rule. (a) In case a predecessor and successor node of
an edge is in Vy, (b) a predecessor or successor node is in Vm.

Inputs A CFG G = (V;, E.) and DFG G4 = (Vy, By).

Outputs A scheduling result {8, |Yve € V).

Step 1. Selecta CFG node ve € V. Execute st +— 1 and Sy, «— 0.

Step 2. Selectv € Vg in Gy = (Vy, Eg4) corresponding to v, in a topologi-
cal order.

Step 2.1. For v € VY, assign v to st if there are no v" where v/ € Vi,
and {(v',v) € Eg. Execute Sy, — Sy, U (v, 8t).
Step 2.2. For v € Vi, assign v to st if a memory resource constraint

is satisfied and a step st’ assigned v’ where (v/, v} € Ey is less
than st. Execute S, — Sy, U (v, st)

Step 3. Go to Step 4 if every node in V; are assigned to a step. Otherwise,
update st «— st + 1 and go to Step 2.

Step4. S, has been obtained. Select another CFG node v." and go to Step
2. Finish the algorithm when all the CFG nodes have been scheduled,

Fig. 4. Initiai scheduling algorithm.

Based on an initial scheduling result, an initial processor
configuration is configured. If a predecessor node and a suc-
cessor node of an edge are assigned to different steps, the edge
is assigned 10 a register. The lifetime of each variable is ana-
lyzed in advance.

First, we decide the number of functional units. Let V,,_ o
be a.set of nodes assigned to a step st in anode v, € V... fu(v)
denotes a functional unit or data memory corresponding to v €
V3. The number of a functional unit f; to execute V,,, . in a
cycle is ng, (ve, 8t) = {v € V,_ 5| ful(v) = fi}|- Therefore,
the number of a functional unit f; which a processor has is,

ng = vﬁ?‘ét{nﬂ (ve, 8t)}
Similarly, the number of data memory banks is determined to
be one or two.

Now, we propose an algorithm to configure the connec-
tions among functional units, data memory banks, and regis-
ters. We define a processor configuration graph in order to
represent the connections. A processor configuration graph
denotes Gy = (Vor, Epr). A node in V,,. correspond to a
pipeline register, a heterogeneous register, a functional unit, or
data memory. A processor configuration graph has an edge
(v1,w) if there is a connection between hardware correspond-
ing 10 vy and one corresponding t¢ v, The number of nodes
corresponding to functicnal units or data memory can be de-
termined as mentioned above. Thus, there are ny, functional
units associated with f; in v,,.. There are one or two nodes
associated with data memory banks. Corresponding to reading

252

Fig. 5. An example of G- satisfying configuring conditions based on G g.p.

and writing general purpose registers, nodes associated with
pipeline registers must be included in V.

First, to perform as a general processor, our algorithm adds
a node v associated with an ALU to V. and edges between v
and nodes associated with pipeline registers.

The number of nodes associated with heterogeneous regis-
ters and a set Ep of edges are decided by applying the fol-
lowing algorithm to all the steps of all the basic blocks and
updating Gpr = (Vpr, Epr).

Let E,,; be a set of edges where (v),v;) € Egq, v1 € Vy_ 5
or Uy € V,, g A subgraph Gy = (Veus, Esub) of Gpr can
be constructed, where Vy,, is a set of all the nodes which are
vy or vy of (v1,v2) € Eyyp. Configuring conditions for Gy, in
a step st is defined as follows.

1. vy € Vi, . is associated with v,, € V. A mapping
function is denoted as By : Vi st — Vpr. If vy =
Bj(vq), vpr is corresponding to a hardware fu{vg). If
v, € Vuc,st, Bf("Ul) 75 Bf(vg).

20f vy,va € Vyom for e = [(v,v2) € Eguu,

{Bs{v1), By{v2)) must be included in E,,.

3. Let B, = {(vs,u;) € Eqn} be a set of edges where
vs & Vyst OF vy & Vo . e € K, is associated
with v, € Vpr. A mapping function is denoted as
B, : B, v Vi If vp, = By{e;), vpr is corresponding to
a heterogeneous register between B {v,) and By (v,). For
e1 = (vi; ;). €2 = (Vk, 1) € Egup, Br(ey) = Br(e2) if
Vi = Vg and Br(el) 7& B,-(eg) if W 7'5 V.

4. Ifv; € Vi s and vz € V,, o fore = (v1,v2) € Egup,
{(By(v1), Br(e)) must be included in Ep,. Similarly, if
v & Vioseand vp € V,,_, fore = (v1,22) € Egp,
(B-{e), Bf(v2)) must be included in E,,.

Figure 5 shows an example of G,,,;, and a graph satisfying con-
figuring conditions for G, in a step st.

A mapping function By which corresponds V,,_ o t0 Vi, is
decided so that the configuring condition 1 for G, is satisfied.
Then, Gy is updated as follows so that configuring conditions
2-4 for G, are satisfied.

1. If (By{v1), By(vp)) is in Ep, for {v1,v2) € FEgu
where v, and vy are in V,,_ o, Ep- is not updated. If
(Bf('vl), Bf(’tlg)) ¢ EPT, (Bf(vl), Bf(’vg)) is added to

pr

3A-3

Inputs A scheduling result {5, |Yv. € V..} and a set of subgraph Gyyp =
(Vsubr Eaub)'

Outputs A processor configuration graph Gpr = (Vpr, Epr).
Step . Calculate the number r 5, of f; as

nyg, = VE‘?@(Bt{nfi {we, st)}
Similarly, the number of data memory banks is determined to be one or
two.

Step 2. Include nodes associated with functional units, data memory banks,
and reading and writing general purpose registers. The numbers of
nodes associated with functional units and data memory banks are de-
cided at Step 1. Epr — 4.

Step 3. Add a node v associated with an ALU to V), and edges beiween v
and nodes associated with pipeline registers to Ep,-.

Step 4. Pick up a CFG node vc. st «— 0.

Step 5. Decide a mapping function By which associates functional nodes in
G oy at st 1o the nodes in Gpr. Try to update Gy and calculate the
Gpr cost.

Step 5.1. If (Bj{v1), By(va)) is in Epr for (vy,v2} € FEgus
where v1 and wg are in V,_ s, Epr is not updated. If
(BI(“l)s Bf("’Z)) ¢ Epr, Epr + Epr U (Bf(ul), Bf(vz)).

Step 5.2. Let us focus on an edge e = (v1,v2) € E, where v; €
Ve, st and v2 € Vi, 1. Let vreg be a node which is associated
with a heterogeneous register connected to an outgone edge of
B f('vl) and does not have st in lifetime. Update a mapping
function By so that B;.(e) = vreq. If there does not exist such
Vreg, Vpr — Vpr U vreg and By {e) = Ureg is added 10 Br.

Step5.3. For e = (vi,v2) € E, where 1 € Vo and
v2 & Vi st. Brle) has been determined at an iteration by
st — 1. If (Br(e), By(va}) is not in Epr, Epr — Epr U
(Br(e), Bylv2)).

Step 6. Select B which has the minimum Gy cost and update Gpr.

Step7. st — st 4 1 and go to Step 5. if the steps for all the st are tried, go
to Step 4. Finish the algorithm if all the CFG nodes are tried.

Fig. 6. A processor configuration algorithm.

2. Let us focus on an edge e = (v1,v2) € £, where
vy € V,, s and v € V,,_ 5r. Let vy be a node which is
associated with a heterogeneous register connected to an
outgone edge of By(v;) and does not have st in lifetime,
Update a mapping function B,. so that B,.(e) = ¥req. If
there does not exist such vyeg, a NEW vy is included in
Vpr and B, (€) = vy is added to B,.

3. Fore = (v;,v2) € E, where vy € V,, o and vo & Vi, o1,
B.(e) has been determined at an iteration by st — 1. If
(B:(e}, Bf(va)) is not in E,,., {B.(e), Bs{vz)) is in-
cluded in Epy.

The algorithm selects By which has the minimum G, cost
and updates G, where Gy, cost is defined by estimating pro-
cessor area as mentioned in Sect. IL. The processor configura-
tion algorithm is shown in Fig. 6.

An initial processor configuration is obtained by applying
the processor configuration algorithm to an initial scheduling
result. An initial processor configuration has the minimum
number of cycles executing the application program, Based
on a madel in Sect. II, area and a clock pericd of the processor
is estimated.

253

3A-3

Inputs A processor configuration graph Gpr = (Vpr, Epr) oblained by
means of applying the processor configuration algorithm.

outputs A updated processor configuration graph Gpr’' = (V') Epr’).

Step. 1 Try to reduce for one of all the registers as following two reduction
methods. Calculate processor area and the execution time of the appli-
cation program.

1. Focus on two heterogeneous registers which have same bit width
and have no overlap in their lifetime. If a register vy is , Update
all the edges which have vy in either side of edges by replacing
v2 to vy, Vpr — Vipr \ v2 and Update Epr.

2. Reduce a heterogeneous register which has the same bit width as
general purpose registers and Save a content of the heterogeneous
register in a general register. Update all the edges which have the
heterogeneous register v in either side of edges by replacing v2
to a pipeline register. Vpr — Vp,- \ v and Update Epy.

Step 2. Actually update a processor configuration which has the minimum
area under the timing constraint of all the candidates. New Gpr is ob-
tained. If there are more than one such processor configurations, select
the candidate in which the number of edges in Fypr including the node
associated with the heterogeneous register is the most.

Step 3. Finish if there are no registers that can be reduced in Step 1 or all the
candidates do not satisfy a timing constraint.

Fig. 7. An algorithm to reduce heterogeneous registers.

B.2 Exploring a processor configuration

Based on an initial processor configuration, the maximum
numbers of functional units and data memory banks are de-
termined. We apply a branch and bound method which sub-
problems are constructed by branching about the number of
functional units and data memory banks. When the numbers
of functional units and data memory banks are determined, we
have only to configure registers, Therefore we optimize pro-
cessor configuration in a short time. We solve the sub-problem
as follows. First we schedule a CDFG under a constraint of the
numbers of functional vnits and data memory banks. Figure
4 can be easily applied to it by modifying that assigned nodes
are restricted by resource constraints. The processor config-
uring algorithm is applied to the scheduling resuit. While a
timing constraint is satisfied, a heterogeneous register reduc-
tion ajgorithm shown in Fig. 7 is applied.

IV. EXPERIMENTAL RESULTS

We have implemented the proposed algorithm in C++ on
Sun Ultra Sparc 3 750MHz. We use gcc 2.95.3 as a com-
piler. To estimate area and delay of hardware, we use VDEC
libraries (CMOS and 0.35 ym technology)'. We use area and
delay in Table I for estimation of functional units. We assume
that area and delay of 2-1 multiplexer are @z =167[:m?]
and dpur =0.23[ns], respectively and that area and writ-
ing delay of a single bit register are a,., =383[um?] and
dreg ==0.40[ns], respectively. We assume that basic bit width
of a processor is 16 bit.

The algorithm has been applied to an FIR filter and a DCT
in which basic bit width of variables is 16 bit and 32 bit mul-
tiplying and accumulate operation are used. The results are
shown in Table II. For different timing constraints, different
processor configuration can be obtained. In order to compare

!The libraries in this study have been developed in the chip fabrication pro-
gram of VLSI Design and Education Center (VDEC), the University of Tokyo
with the collaboration by Hitachi Ltd. and Dai Nippon Printing Corporation.

TABLEI
FUNCTIONAL UNITS.

Unit Area [pm®] Delay [ns)
ADDI16 25,259 1.44
ALUL6 78,915 2,82
MULI16 356,948 5.71
ADD32 41,963 2.49
ALU32 151,194 325

our results with existing systems, we have picked up two pro-
cessor synthesis systems (which are referred to as [15] and [16]
in References. [15] synthesizes a simple processor with a ho-
mogeneous datapath. [16] synthesizes a processor which has
two types of register files and a homogeneous datapath. Com-
parison results have been shown in Table III. It shows that our
system can synthesize processors with less area than existing
systems which synthesize processors with homogeneous data-
paths. When the timing constraint of 60 us is given, System
1 and 2 cannot output a processor configuration meeting the
timing constraint.It is because processors synthesized by sys-
tem 1 and 2 cannot have chains among the functional units and
no processors satisfy the timing constraint. Qur proposed al-
gorithm synthesizes a processor with less area compared with
System 1 because of the following reason: In a processor syn-
thesized by system 1, all the registers and functional units must
have bit width of 32 bits. In a processor synthesized by the pro-
posed algorithm, however, registers and functional units can
have flexible bit width. The processor can have both 16 bits
and 32 bits resources. Qur proposed algorithm synthesizes a
processcr with less area compared with System 2 because of
the following reason: A processor synthesized by system 2 can
have 32-bit and 16-bit registers and functional units. Since the
synthesized processor, however, has a homogeneous datapath,
it must have connections and multiplexers between all the reg-
isters and all the functional units. A processor synthesized by
the proposed algorithm can have only connections and multi-
plexers required in order to execute a given application pro-
gram. Therefore we can synthesize a processor with less area.

V. CONCLUSION

In this paper, we proposed a hardware/software cosynthe-
sis algorithm for processors with heterogeneous datapaths. In
the future, we will incorporate SIMD functional units into the
processor modet and establish the algorithm to optimize the
processor configuration.

REFERENCES

[11 H. Akaboshi, and H. Yasuura, COACH: A computer aided design tool
for computer architectures, IEICE Transactions on Fundamentals of
Electronics, Ce ications and Computer Sciences, vol. ET6-A, no.
10, pp. 17601769, 1993,

[2] A. Alomary, T. Nakata, Y. Honma, M. Imai, and N. Hikichi, “An ASIP
instruction set optimization algorithm with functional moedule sharing
constraint,” in Proceeding of 1993 IEEE/ACM International Conference
on Comuputer-Aided Design, pp. 526-532, 1993.

&

—

Analog Devices, ADSP-2 100 Family User’s Manual, 1995.

[4] N.N. Binh, M. Imai, A. Shtomi, and N. Hikichi, “A hardware/software
partitioning aigorithm for designing pipelined ASIPs with least gate
count,” in Proceedings of 33rd Design Automarion Conference, pp.
527-532, 1996.

254

[5]

6]

[8

9

—

(1a

1]

{12]

[13]

[14]

[13]

TABLEII
EXPERIMENTAL RESULTS.

3A-3

App. | Const.[us] Area[pmz] Processor configuration
1 1,M
FIR 60 1.531.347 ‘ ALU 6x. ,MULI6 x 3, ADD32 x 2
16 bit heterogeneous registers x 7, 32 bit heterogeneous register x 1
70 676.761 ALUlL6 x 1, MULI16 x 1, ADD32 x 1
’ 16 bit heterogeneous registers x 5, 32 bit heterogeneous register x 2
DeT 60 656,057 . ALUle x 1, ADPIG x 3, MUIjlﬁ X 1, ADD32 x Al
16 bit heterogencous registers x 6, 32 bit heterogeneous register x 1
ALUL6 x 1, MUL16 x 1, ADD32 x 1
80 580,290 . X_ L6 . 52 x .
16 bit heterogeneous registers x 6, 32 bit heterogeneous register x |
110 568,038 ' ALUL6 x- 1.MULIS x |, ADD32 x 1
16 bit heterogeneous registers X 4, 32 bit heterogeneous register x 1
TABLE 111
RESULTS COMPARED TO EXISTING SYSTEMS.
DCT
R C A 2
Const. Area [pm?) [ons]t. Promosed S real[;zlr;l ! 3 2116]
1 1
[s} Proposed System | [15] System 2 [16] ‘:; 6::3557 ys‘,';zl326 ! ys-’;;n47l
60| 1331347 i} ! s0 | 580290 720323 649,468
70 676,761 806,326 752443 ’ ’ ’
110 568,038 693,918 643,340
S. Frohlich and B. Wess, “Integrated approach to optimized code {16] N. Togawa, M. Yanagisawa, and T. Ohtsuki, “A hardware/software

generation for heterogeneous-register architectures with multiple data-
memory banks,” in Proceedings of 14th Annual IEEE International
ASIC/SoC Conference, pp. 122-126, 2001.

N. Ishiura, M. Yamaguchi, and T. Kambe, “A graph-based algorithm of
operation binding for compilers targeting heterogeneous datapath,” in
Proceedings of The 1998 IEEE Asia Pacific Conference on Circuits and
Systems, pp. 395-398, 1998.

N. Ishiura, T. Watanabe, and M. Yamaguchi, “A code generation
method for datapath oriented application specific processor design.” in
Proceedings of SASIMI2000, pp. 71-78, 2000.

N. Ishiura and T. Watanabe, “Datapath oriented codesign method of
application specific DSPs using retargetable compiler,” in Proceedings
of 2002 Asia-Pacific Conference on Circuits and Systems, vol. 1, pp.
55-58, 2002.

S. Kurohmaru, M, Matsuo, H. Nakajima, Y. Kohashi, T. Yonezawa,
T. Moriiwa, M. Ohashi, M, Toujima, T. Nakamura, M. Hamada, T.
Hashimoto, H. Fujimoto, Y. lizuka, J. Michiyama, and H. Komori,
“A MPEG4 programmable codec DSP with an embedded pre/post-
processing engine,” in Proceedings of the IEEE 1999 Custom Integrated
Circuits, pp. 69-72, 1999.

Lucent Technologies, DSPI1611/17/18/27/28/2% Digital Signal Proces-
sor Information Manual, 1998,

P. Marwedel, “Code generation for core processor,” in Proceedings of
34th Design Automation Conference, pp. 232-237, 1997.

Motorola, DSP56300 24-bit Digiral Signal Processor Family Manual
(DSP56300FM/AD), 2000.
Overview

Tensilica, Xrensa Microprocessor: Handbook,

http:/fwww.tensilica.com.
Texas Instruments, TMS320C2x Darasheet, 1998,

N. Togawa, M. Yanagisawa, and T. Ohtsuki, “A hardware/software
cosynthesis system for digital signal processor cores,” IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. E82-A, no. 11, pp. 2325-2337, 1999.

(71

(18]

255

cosynthesis system for digital signal processor cores with two types of
register files,” IEICE Trans. on Fundamentals of Electronics, Commu-
nications and Computer Sciences, vol. E83-A, no, 3, 2000.

J. Van Praet, D. Lanneer, G. Goossens, W. Geurts, and H. De Man,
“A graph based processor model for retargetable code generation,” in
Proceedings of European Design and Test Conference, pp. 102-107,
1996,

M. Yamaguchi, N. Ishiura, and T. Kambe, “A binding algorithm for
retargetable compilation to non-erthogonal DSP architecture,” IEICE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. E81-A, no. 12, 1998,

http:/lwww.tensilica.com

