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Abstract— Growing demand for pro-active abilities in
network management requires performance monitoring
agents not only to be able to monitor the anomalies,
but also to predict future occurrences. Recent research in
this area would usually apply a neural network algorithm
on raw SNMP or NetFlow data to obtain the knowledge
about the patterns in performance data. The results are
not always satisfactory due to highly unpredictable nature
of cross-traffic in the network. This paper attempts to
improve the prediction quality by using data obtained from
end-to-end probing. The results prove higher resilience to
cross-traffic interference and better pattern recognition.

I. INTRODUCTION

The issue of realtime management has long been the
subject of many research works [1] [2]. This research
target brings additional complications to conventional
management problems, such as scalability through dis-
tribution and data aggregation [3], alternative sources
of performance data [4], and lightweight monitoring
and management infrastructure [5]. Real-time constraints
pose a few rather unyielding requirements, such as (1)
fast data collection without loss of important artifacts,
(2) online processing with a lightweight calculation
algorithm, and (3) prompt decision making.

Conventionally the above constraints are met using a
standard set of available monitoring technology, such as
widely used SNMP and NetFlow. Both technologies are
commonly shipped together with network equipment and
work out of the box.

To equip operation center with pro-active abilities,
it is common to use neural network algorithms with
SNMP or NetFlow data used as input. The output of a
neural algorithm is a set of patterns extracted from data,
which may help to predict future occurrences of similar
anomalies.
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However, due to intrinsic features of both SNMP and
NetFlow techniques, as well as because of interference
with highly unpredictable cross-traffic, predictions are
made with high error rate, and, therefore, are not reliable.

We do believe that the main reason of such poor
performance is not due to cross-traffic interference, but
rather because of limited ability to properly correlate
multiple data sources when using SNMP or NetFlow.
Apart from correlation error, there are also errors intro-
duced in the process of communication between oper-
ating center and each monitored entity. As SNMP, for
example, is mostly based on recursive counters, cach
dynamic metric has to have two separate readings. That
means that there should be 4 one-way communication
sessions for each metric. As the same network is usually
used for such communications, cross-traffic brings addi-
tional error in SNMP and NetFlow readings and timings
of alarms.

In this paper, we propose to use end-to-end probing
as an alternative source of performance data. End-to-
end measurements are already widely employed in end-
to-end performance discovery [4], but, as far as our
knowledge extends, end-to-end data has not been tried
with neural networks for anomaly predictions.

Section 2 offers more detailed insight into available
performance data sources. Section 3 offers comparative
results based on raw performance data, while Section 4
goes even further and introduces a pre-filtering scheme
based on simple rulesets. Comparison of the results
proves that end-to-end data offers “cleaner” view of
network performance as well as much higher validity
of predictions.



II. PERFORMANCE DATA SOURCES
A. SNMP and NetFlow Data

Even though SNMP and NetFlow are very different
technologies, they share one common feature, which is
the fact that they both operate locally at each monitored
entity. SNMP performs in accordance with Management
Information Base (MIB) description, which tells the
SNMP agent how and which data about performance to
collect. NetFlow operates in accordance with a ruleset,
that can define very small particulars of data collection.

As SNMP and NetFlow only offer data pertaining
to cach particular monitored entity, overall performance
picture of a domain requires correlation of data from
a number of SNMP or NetFlow sources. Timely and
precise aggregation and correlation of data poses a num-
ber of research problems addressed in currently ongoing
research.

For the tests within this paper we use readings of
ifinOctets counter from SNMP RMON MIB, which
stands for the number of bytes transmitted by router
interface, as indicator of utilization.

B. Data Obtained by Probing

Quite differently from SNMP and NetFlow, end-to-end
measurements offer data that are already automatically
correlated over a number of entities included in the
path. Additional advantage of end-to-end probing is the
flexibility of the probe inserted into the network. Fig.1
displays the probing method used by this paper.
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Fig. 1. Probing method with specifically designed probe structure.

Talking about probe flexibility, by using a special
probe structure in Fig.1, we can elicit a number of
independent metrics:
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Since first packet pair uses smaller size S packets
than the piggy-backed pair (S2), pairs traverse the net-
work at different speeds, and metrics M and M5 can be
considered fairly independent. The third metric that we

use is M3 = T3, which is simply the interval between
pairs in the probe at the time of arrival.

Probing itself is conducted in round-trip manner, with
the opposite end replying to UDP packets by small pack-
ets that serve as acknowledgment for probing source.
This way no synchronization is required between probing
ends.

III. PREDICTIONS USING RAW PERFORMANCE DATA
A. Network Model

For testing we use a middle-size network generated
using SSFNET simulator [6]. It offers good performance
for large networks and contains implementations of
NetFlow and SNMP at each node.
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Fig. 2. Network model used for simulation.

Network applied for tests is displayed in Fig.2. We
generated three separate domains with three backbone
routers among them. Number of hosts in each domain
is also random. Pareto traffic is generated among all
the domains in such a manner that backbone links are
utilized at the average rate of 20-30%.

End-to-end measurements are performed so that the
path comprises two of three backbone nodes, and SNMP
statistics are polled from a single backbone router se-
lected randomly. For the sake of simplicity, polls are
collected directly without communication. That allows
us to consider that SNMP statistics only represent the
actual trends in the traffic.

B. Neural Network Setup

Neural networks require training period to extract
existing patterns from available data. Similarly, in the



present study we use backprop neural algorithm and
split the data into training and runtime parts. Training
part is used by neural network for retrieving patterns
and matching them against the actual outcome, while
the runtime part is used for visual matching of pattern-
based predictions and actual outcome. For cach test we
split the data into five equal parts, cach consisting of
60 seconds of collected data. Training-to-runtime ratio
for SNMP data is 75%, while we use only one third of
samples for training in case of end-to-end probing data.
The input data is also different for SNMP and end-to-
end probing. For the lack of other data, in case of SNMP
we apply commonly used iflnOctets counter readings.
On the other hand, special structure of the probe allows
us to capture more metrics in parallel, and here we use
combinations of metrics, as specified in figures.

C. Simulation Results

Comparative results of predictions based on SNMP
only data and combinations including end-to-end probing
are displayed in Fig.3. It could be visually confirmed
that SNMP data is, by definition, very noisy. Short-
term drastic changes in its statistics do not necessarily
stand for a change in performance, although some weak
relation exists nevertheless. However, this mtrinsic fea-
ture of SNMP counters makes pattern recognition very
difficult, which can be seen from the prediction line in
the figure. Although major changes in the variance of
prediction amplitude match higher density areas in actual
data, the amplitude is not the same, which indicates high
prediction error. Even if a threshold were applied to
predictions, even filtered outcome would not offer any
reliable data.
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Fig. 3. Predictions using various data source combinations, with
1000 and 1400 byte packets in active probes.

On the other hand, end-to-end probing-based pre-
dictions in Fig.3 are much more accurate. End-to-end
probing is a natural way to smoothen performance data,
which is the reason for much smaller amount of spikes in
the actual data. Predictions, too, are much more accurate,
with only a few “overreactions” in Fig.3(b). We call it
overreaction, when the amplitude of prediction does not
match the amplitude in the actual data at the same point
in time.

Using combination of M, Ms, and Mj as input in
Fig.3(c) results in even more improved performance,
with less overrcactions. The best case, however, was
found in Fig.3(d), where we created a combination of
end-to-end probing and SNMP raw data. Obviously,
the patterns from SNMP became clearer with the help
of end-to-end metrics, as predictions in this case have
displayed the lowest best error rate.
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Fig. 4. More thorough best error performance comparison at various
polling and probing intervals.

This trend, however, did not apply to all test cases in
our study. The results in Fig.3 are obtained by applying
the data from measurements and polls made at 0.5
second intervals. This case of only a subset in Fig.4,
which presents prediction performance over a wider set
of polling and probing frequencies. While the previously
mentioned case of 0.5 second interval exhibits high level
of dependence on the combination of input data, some
grouping is possible with more sparse data polls.

For example, the considerable improvement of pre-
dictions with SNMP-+probing mix is not found with
higher values of interval. To generalize, we can state that
with higher values of interval SNMP data becomes less
valuable for prediction, while end-to-end probing data
remains usable.



IV. PREDICTIONS AFTER RULESET-BASED
CORRELATION

A. Rulesets as Binary Filters of Input Data

To deal with the noisy data problem experienced in
Fig.3(a), we considered using threshold-based rulesets
to filter unwanted data. The outcome of the ruleset is
binary, and, therefore, the neural network operates on a
sequence of mixed 0 and 1 entries.

We tried two rulesets of increasing complexity in Fig.5
and Fig.6 for SNMP data, and only one simple ruleset
in Fig.7 for end-to-end probing.
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Fig. 5. Simple ruleset used for SNMP data.

Logic of SNMP ruleset in Fig.5 is a simple neighbor
correlation algorithm. When the threshold is surpassed
in (1), the algorithm checks in (2) whether the current
counter reading for the same variable on a neighboring
node experiences the same condition. The alarm, which
is the binary 1, is fired only in case the test in (2) yields
positive result, or, otherwise, the data is discarded.
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Fig. 6. More complex ruleset applied to SNMP data.

The ruleset in Fig.6 is similar to Fig.5 in logic, but has
ong additional input metric. Therefore, within the ruleset,
the behavior of utilization and queue size are correlated,
and alarm is fired only if changes in both metrics are
simultaneous.

Ruleset for probing in Fig.7 has a different design, and
imposes deviation threshold at the entrance in (1) and (2)
for measurements received from both pairs in the probe.
We remember the last 10 samples for each metric to
calculate the variance. After the deviation threshold is
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Fig. 7. Ruleset applied by probes for filtering alarms.

successfully passed by both metrics their weighted sum
is exposed to another threshold, the positive outcome of
which results in firing the alarm. For the present study
we give equal weights to both inputs.

B. Simulation Results

Fig.8 displays the three prediction cases, one raw and
two with the above SNMP-based rulesets. The effective-
ness of rulesets i1s obvious, as less than 10% of alarms
pass the rulesets. However, the value of the outcome
of rulesets is still questionable, as, after being matched
to prediction results, averagely only half of alarms are
correctly predicted. It is doubtful that predictions with
50% error rate can be considered by any pro-active
management system.
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Fig. 8. Comparison of performance with and without rulesets applied
to SNMP data.

On the other hand, rulesets, when used to probing data,
result in improvement of prediction hits in Fig.9. Two
combinations of raw data (bandwidth from one pair and
from both pairs) still exhibit almost 20 wrong binary
predictions. When the ruleset is applied, the number
of alarms is three times smaller and only 2 out of 21
predictions are wrong. The physical meaning of this
result is that ruleset only leaves the most important and



correlated performance anomalies, while preserving the
pattern of their distribution in time.
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Fig. 9. Performance comparison with and without rulesets applied
to probing data.

To compare the performance of SNMP and probing-
based predictions, we should note that changes in
SNMP-based results from application of rulesets are
mostly quantitative, while the ratio of total alarms to
predicted alarms remains averagely the same. In the
case of probing, the change is in the quality, as filtered
data is continuously improving with the decrease of total
number of alarms, i.¢. the most important alarms are last
to be filtered out of the data.

V. CONCLUSION

In this paper we attempted to deal with the issue
of low quality to performance predictions used in pro-
active management. Such predictions are conventionally
based on raw readings from either SNMP agents, or
NetFlow messages. SNMP and NetFlow have one feature
1s common, which is the fact that both have to be
dispatched to the actual monitored entity.

As performance, by definition, is attributed not to a
single network element, but rather to a path or network
domain, we assumed that end-to-end metrics obtained
through active probing would be much more able to
represent the performance of the network.

To test our assumption, we replaced the SNMP input
into neural network algorithm by the data obtained from
end-to-end probing. Comparison of the results proved
that our assumption is correct in that probing-based data
contains more evident performance patterns than raw
SNMP data.

Knowing well the common noisiness attributed to
SNMP polls, we conducted another test to compare

performance of SNMP and probing-based predictions
using only binary input. To obtain binary data we applied
rulesets to the input, the outcome of which was a time
sequence of 1 and O entries.

The rulesets helped to rectify the problem of noise
and reduce the number of false SNMP alarms, but we
discovered that patterns in filtered data were still not
strong, and only half of predictions were correct. On the
other hand, ruleset-based filtering of measurement data
resulted in improved quality of probing-based alarms,
and further decreased the number of false alarms.

As in this paper we performed simulation test with
near ideal condition for SNMP polls, practical verifi-
cation of the findings is required. As all SNMP polls
have to be transmitted over the network and, therefore,
interfere with the cross-traffic, we can assume that the
real network results for SNMP will be even worse than
those presented in this paper. Probing in this simulation
study, however, was very close to authentic, and we do
not expect any major discoveries during real network
tests.
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