
A Testbed for Agent-Based Multi-Purpose
Extensible Active Measurement

Marat Zhanikeev∗, Yoshiaki Tanaka∗†
∗ Global Information and Telecommunication Institute, Waseda University

1-3-10 Nishi-Waseda, Shinjuku-ku, Tokyo, 169-0051 Japan
Email: maratishe@asagi.waseda.jp

† Advanced Research Institute for Science and Engineering, Waseda University
17 Kikuicho, Shinjuku-ku, Tokyo, 162-0044 Japan

Abstract— Requirements for a measurement platform
nowadays have advanced to the level at which a number
of different in principle measurement techniques have to
be performed simultaneously. Quite common are hybrids
of passive data collections and event-driven active mea-
surements. This calls for a highly extensible measurement
platform, in which design of the probe and parameters
of probing could be accessible in realtime while the
measurement itself is being performed. In this paper,
we introduce a testbed application that was developed
with the initial requirement to be fit for a number of
different applications, such as bandwidth measurement,
performance prediction, tomography, and others, without
a loss of performance characteristics.

I. INTRODUCTION

In recent years, a number of new-generation measure-
ment platforms were brought into existence. The need
for a new generation of tools and platforms came from
the fact that the previous generation of tools would
often offer only a single measurement functionality.
For example, a tool would only measure bulk transfer
capacity or available bandwidth. Therefore, when a set
of different measurement targets was required for overall
network performance analysis, one would have to use a
number of different tools from different providers.

The main objective in the new generation is flexibility
of measurement objectives, higher precision and, gen-
erally, a higher level of intelligence on the part of the
measurement tool itself.

Besides, some measurement objectives by definition
require a complex set of measurement activities. Those
are available bandwidth measurement [1], performance
anomaly analysis [2], recently emerged tomography, i.e.
network topology discovery through active measurement,
and others.

On the top of the development of measurement tech-
nology under growing research interest, there is another
incentive which is a number of new high-performance
networks, such as Internet2 and GEANT in Europe, or
Japan Gigabit Network, which raised the issue of online
performance monitoring through active measurement.
A number of projects came to life as a product of
management experience. One example is NCC RIPE
in Europe [3], which is involved in management of
GEANT.

Other projects that are currently active in the field are
Bandwidth of the World project [4], skitter [5], SCAMPI
[6], and Surveyor [7].

However, all of the mentioned projects exhibit a low
level of flexibility of their measurement frameworks.
Some of them offer the ability to upload user-defined
code for special probing, however, the internals of the
platform itself are mainly hidden from user.

In this paper, we present a testbed for a distributed
extensible platform of end-to-end probing. It employs
client-server paradigm and round-trip probing, which
allows us not to use GPS synchronization between nodes.
One-way measurements with proper synchronization can
also fit into the proposed framework, but are not dis-
cussed in this paper. The proposed platform allows exten-
sions in probe design, probing parameters, measurement
data collection management and flexible result process-
ing functionality. Highly extensible prototype allows to
perform online analysis of measurement results, generate
events, and make decisions based on these events. The
closest to the present research is currently being under
development ETOMIC project [8].

Section 2 contains detailed description of the proposed
measurement platform, while all the extensibility advan-
tages are additionally described in Section 3. In Section
4, we display several case studies with different targets

1-4244-0106-2/06/$20.00 ©2006 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286945345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and probing procedures to display advantages of chosen
design. Some additional considerations can be found in
Section 5, which is followed by a conclusion in Section
6.

II. AGENT-BASED TESTBED DESIGN

The proposed platform implements a fully distributed
design which is based on active agents of two types:
servers and clients. Clients are the main part of mea-
surement functionality, as they require detailed config-
uration files and perform all online calculations, while
servers only respond to probing packets by sending
UDP acknowledgments back to the source. As was
mentioned earlier, unlike many existing projects, the
proposed platform does not depend on precise time
synchronization. Such a synchronization is normally very
costly to implement and requires a GPS receiver and a
sophisticated interface card for each node. This imposes
limitations upon flexibility of measurement topology and
its size.

On the other hand, measurement projects have already
crossed borders among ISPs and are already used on
paths that span multiple domains. Such a scale of mea-
surement makes it hard to provide synchronization with
precision required for active measurements. As of today,
whenever a probing tool needs to scale, it has to abstain
from tightly coupled synchronization mechanisms.

A. Measurement Topology Initial Setup

Considering the issue of scalability, registration and
call-back paradigm of measurement topology creation
was adopted by the proposed platform. The initial setup
procedure for a single server-client pair is displayed in
Fig.1. Both probing server and client initially register
their IP addresses with the network operating center
(NOC). NOC collects registration messages and creates
a measurement topology based on user preferences.
Based on these preferences, all servers and clients in
the network are configured with detailed information on
their further operation.

Action diagram for this process is depicted in Fig.2.
Setup messages that are distributed to clients and servers
in the network also contain description and conditions
for generation of alarms. After NOC finishes the setup
process, it goes into idle state, at which it is ready to
accept alarms from clients in measurement topology.

As event-driven decisions is an important part of
the proposed platform, alarms that are received from
clients are processed immediately. As NOC is in the
idle state most of the time, prompt processing of alarms

Probing Client

NOC

Probing Server

send probe packets

reply to probe with UDP ACK packets

se
tu

p
pr

ob
in

g
cl

ie
nt

Set up probing server

se
nd

 d
at

a,
 a

la
rm

s

Network

re
gi

st
er

 IP
 a

dd
re

ss

register IP address

Fig. 1. Actions taken for the initial setup of the measurement
network.

can be easily provided. Decisions that NOC can make
in realtime include change of overall probing topology,
reconfiguration of client/server pairs, creation of new
probing paths, etc.

collect registers

add server

UdpPrb_SNGL_REGISTER_CLIENT()

UdpPrb_SGNL_REGISTER_SERVER()

after: start time

process alarm

react

idle

UdpPrb_SGNL_ALARM()

add client

set up all probes

Fig. 2. Action diagram for the measurement topology setup.

B. Probing Client

The most important part of the proposed platform
is the client, module diagram of which is depicted in
Fig.3. Gray modules denote areas that are implemented
by default in the operating system, and green modules
are developed by us.

Probing client functionality in Fig.3 is implemented
in three main modules : UDP client, Generator, and
Manager.

Manager is responsible for all communications with
NOC and transit of internally generated alarms to the
outside. Its functionality is quite simple and is limited
to learning of node’s own IP address, registering it along
with node description to NOC, and entering idle state,
which is interrupted only by arrival of an alarm, which
would be relayed to NOC. Setup file received from NOC
is handed over to Generator for handling.

Generator is much more complicated and is a com-
plex module. The complexity is on the part of the need

Manager

Generator

UDP client

IP encap

IP

ARP

MAC

RX TX

R
eg

is
te

r I
P

S
en

d
al

ar
m

Get IP address

Setup
probing

Alarm
s

se
tu

p

Sent Probe
Com

m
and

Mngr

Pattern1

Pattern2

Pattern3

Feedback of the
probe

Fig. 3. Module structure of probing client.

to spawn a separate thread for each probing pattern.
Generator also parses configuration files and creates
all required resources as per the description of each
probing pattern. It creates and manages result data pools
and is responsible for garbage, which is left after a
process has completed its job. Apart from spawning a
thread for the actual probing, Generator also contains
a pool of custom data processors, such as histogram,
kernel density, variance, etc., which implement a certain
statistics processing mechanism and can be linked to
a data pool. Alarms can be generated by the spawned
probing thread or by processing thread, which are not
necessarily in sync with each other.

UDP client also has a simple structure, which commu-
nicates directly with spawn Generator’s threads by pass-
ing messages. The description of each probe is received
from a thread under Generator, and is parsed, setting
up interrupts for each packet in the probe. For each
packet, an interrupt should wake it and make it transmit
another packet. UDP client also contains listeners, which
listen to a port defined in the probing pattern from NOC,
and notify UDP client upon arrival of a packet on the
specified port. The packet is processed and when all
ACK packets for each probe are collected, all timings
are passed to the thread under Generator that initially
scheduled probe for transmission.

C. Probing Server

Internal structure of a server is much simpler than that
of the client and is depicted in Fig.6. It lacks Generator
module, which was present in the client.

Manager

UDP serve r

IP encap

IP

ARP

MAC

RX TX

R
eg

is
te

r I
P

Get IP address

se
tu

p

Register IP

Fig. 4. Module structure of probing server.

Manager in the server performs the same task as
the Manager in the client. It also registers its internal
setup to NOC and receives setup configuration file from
it. However, in the server Manager does a little extra
work. It parses setup file and identifies which remote IP
addresses should be considered as source of probing and,
therefore, should be replied with UDP acknowledgment
packets. Remote IP addresses and ports that are not
registered by NOC, are ignored.

UDP server operates slightly differently from UDP
client and works on its own. Once all remote clients are
registered by NOC, all measurement traffic from them
can be served by UDP server in a standalone manner.

According to the proposed design, no alarms are
generated in the server, and no processing of data is
performed. Probing servers are simply bouncers for mea-
surement traffic with ability to distinguish measurement
traffic from other traffic in the network.

D. Probing Setup and Operation Datatypes

Fig.5 contains data structures used between NOC and
client and by client for internal interfaces. The main
structure in the diagram is Probing Pattern, which
contains all the data required by both the client and
the server, while a part of this structure it dedicated
for storing descriptions of alarms. We can also see
from the diagram that both ClientChild Setup and
Client Setup are included in Probing Pattern,
but their contents are different. Client Setup is
used by Generator to prepare all resources and
spawn a probing thread, which name is identified by

child process name, which is then configured by a
set of parameters contained in ClientChild Setup.

+pattern_id : int
+packet_size : int
+packet_interval : int
+probe_interval : double
+probe_size : int
+child_setup : UdpPrb_ClientChild_Setup
+alarm_setup : UdpPrb_Alarm_Setup

<<struct>>
UdpPrb_Probing_Pattern

+setup_enabled : Boolean
+params : List

<<struct>>
UdpPrb_Alarm_Setup

+dynamics_enabled : Boolean
+dynamics_param : List

<<struct>>
UdpPrb_ClientChild_Setup

+setup_id : int
+local_addr : IpT_Address
+remote_addr : IpT_Address
+local_port : UdpT_Port
+remote_port : UdpT_Port
+start_time : double
+duration : double
+probing_pattern : UdpPrb_Probing_Pattern
+child_process_name : double
+local_name : char
+remote_name : char

<<struct>>
UdpPrb_Client_Setup

<<uses>>

<<uses>>

<<uses>>

-name : string
-value : double

<<struct>>
UdpPrb_Param

<<uses>>

+probe_setup : UdpPrb_Client_Setup
+*alarm_data : void

<<struct>>UdpPrb_Alarm

Fig. 5. Data structures on the client-NOC side.

Server data structure in Fig.6 is much simpler and
contains only details of the source and destination ends
of the measurement path. The destination address and
port are verified against those of the server and source
address and port are registered inside of the server after
which probing traffic from this location is expected.

+setup_id : int
+local_addr : IpT_Address
+remote_addr : IpT_Address
+remote_port : UdpT_Port
+remote_port
+remote_addr : IpT_Address
+local_port : UdpT_Port
+local_name : char
+remote_name : char

<<struct>>
UdpPrb_Server_ Setup

Fig. 6. Data structures on server-NOC side.

III. EXTENSIBILITY OF PROBE AND RESULT

ANALYSIS DESIGN

A. Data Pools and Processing

Internal design of the probing client is shown in Fig.7
with the stress to its extensibility features. Probe Man-
ager can spawn any of the available probing threads,
which are located in the pool of Probe Clients. The pool
can contain implementations of any number of tools,
which do not interfere with each other as one traffic
pattern can specify only one measurement logic. Parallel
threads with two different probing methods are allowed
and take place in the case studies in this paper, but there
is still no interference as probing results are collected in
a separate Results/State Pool block. Results/State Pool

creates separate storage structures for each registered
probing thread.

Hist ory

Probe
Man ager

Capac ity
Prober

Available
Ban dwidth

Probe
Topology

Probe

Results/
State Poo l

Results
Processor /

Alarms

Theshold

Neural Statis tics

Probe Clients

Processors

Fig. 7. Flexibility and extensible design of probing client.

B. Custom Results Processing Tools

It is obvious from Fig.7 that Results Proces-
sor/Alarms thread is the most important in the client. It
can both access Results directly in case a simple result
polling is required in setup, or it can spawn a thread from
a pool of Processors, that would perform a statistical
processing task on the results. The pool of Processors
contains implementations of various statistical methods,
some of which are displayed in the diagram, such as
threshold rule, history processing, neural learning, and
statistic tools. Some examples of statistic processors will
be mentioned in the case studies.

Any Processor has access to the data pool of a
particular probing thread, and can also create new pools
within the space of a particular probing thread. These
newly created pools may be used for communication
between processors and probing threads, when input by
a processor may affect the behavior of a probing thread.

Specification of Alarms are given in the initial setup
from NOC. They are generated by Results Processor
block, and contain basic rules. The rules that we use
are threshold, basic more/less/equal check performed on
certain variables in the Results Pool, etc. If a certain
condition is met, an alarm is created based on the metric
that caused the alarm, time of alarm occurrence, and its
ID, after which the alarm is transmitted over to NOC for
processing.

IV. CASE STUDIES

A. Test Network Setup

For all our case studies, we used the network among
campuses within Waseda University, some of which
are over 150km away from each other. The simplified
diagram of the network topology is shown in Fig.8.

Dashed lines in the diagram represent hidden topology,
which means that there are more routers on those lines,
that were skipped for simplicity of presentation.

Honjo Camp us

Waseda COE
Project Bldg.19

Main Campus

Bldg.29-7
Main Campus

Waseda
backbone

might contain
more routers

actual links

Fig. 8. Inter-campus network used for case studies.

Location of probes in Fig.8 are marked with red dots.
We have four separate locations used in case studies, and
the total of six probes, as some of probes were installed
in pairs at one location to be able to do measurement
in parallel with different setup parameters but identical
measurement environment. The results obtained in such
a fashion are easy to compare and analyze based on the
comparison of results.

Each probe is a PC with Linux operating system
installed. We used 2.4.18 kernel, that, by default, allows
the lowest interrupt granularity of 10ms in the user
space. We had an option of moving the application
into the kernel space, but, instead, used a patch in the
kernel that improved interrupt performance to a few
microseconds. The patch enables APIC hardware timer
in the kernel space, thus, providing another interrupt
stream with virtually hard realtime characteristics. Such
patching is commonly done for realtime-related research
and for audio-video processing, which is also very harsh
on time constraints.

NOC, probing client and probing server are written in
C++ and compiled with GCC version 2.95, which is a
little old, but fits very well into the applied kernel, for
which we managed to make the APIC patch work.

All the setup of measurement topology was done from
a single location in the same network, but location is not
shown as it is not related to measurement topology. Most
of Waseda Network is 100Mbps with 155Mbps outside
link, and a few locations inside of the university, which
are connected over 10Mpbs links. We deliberately used
the route through one of such links in order to perform
the case study on bulk capacity measurement.

B. Bulk Capacity Estimation

The first case study in this paper is done for bulk
capacity measurements and is the easiest in terms of
setup. The measurement was performed from Waseda
COE to Bldg.19 Main Campus as per Fig.8.

Time (seconds)
0 50 100 150 200 250 300

B
an

dw
id

th
 (

M
bp

s)

0

10

20

30

40
histogram
kernel density

Time (seconds)
0 50 100 150 200 250 300

B
an

dw
id

th
 (

M
bp

s)

0

10

20

30

40
histogram
kernel density

Time (seconds)
0 50 100 150 200 250 300

B
an

dw
id

th
 (

M
bp

s)

0

10

20

30

40
histogram
kernel density

Time (seconds)
0 50 100 150 200 250 300

B
an

dw
id

th
 (

M
bp

s)

0

10

20

30

40
histogram

kernel

(a) 2 packets (b) 3 packets

(c) 5 packets (d) 10 packets

Fig. 9. Results of simultaneous probing performed from two neigh-
boring probes to a single destination with two different processing
methods and several probe lengths.

Two probes were installed at the source with identical
setup with exception for measurement start time, which
was shifted for half-a-second for one of probes, and
statistics processing method used in result data pool to
calculate the estimate.

Measurement itself was performed using basic packet-
pair property as described at length in [9]. The reason
why two probes were used with different estimation
methods is that calculating an estimate online is the
main part of any bulk capacity measurement method.
Most currently existing tools are using some sort of
statistical pre-filtering or processing that is meant to filter
out unwanted samples in measurement data. It has long
been established that measurements in the Internet offer
multi-modal results that require sophisticated statistical
processing to separate the modes and find the correct one
that corresponds to bulk capacity.

In Fig.9, the results are displayed for different lengths
of the probe. A probe of each length was transmitted
each second, separated by quarter of second from the
probe of another length. In such a fashion we were able
to measure roughly unchanged network conditions with
probes of different lengths.

Results in Fig.9 is a very good exhibit of prevalence of

more complex statistics processing over simple methods,
such as histogram analysis, that is used in this case study
versus kernel density, which is also used in the Nettimer
tool in [9]. From the results, the probe with kernel
density processing was able to identify spikes in data,
which stand for the period of minor congestion in the
network, which jammed the probe and minimized space
between the packets, thus depriving the sample from the
basis property of packet-pair measurement. Therefore,
on the plot this is represented as a very high spike at
near 50 and 180 seconds. As bulk capacity is calculated
as the size of the packets to the space between them
obtained in the bottleneck, i.e. B = S/T , the nature of
the spike is easily understood.

Again, quite naturally, longer trains (5 and 10 packets)
are much less stable even on broadband networks, and
congestion spikes in these cases are stronger and more
vivid. Longer trains are much more susceptible to even
minor fluctuations in probing traffic, which is proven by
the results.

C. Online Neural Performance Predictions

This case study required a more complicated setup
procedure, while the measurement itself became simpler.
The case study addresses the problem of neural predic-
tions of network performance. Predictions were made
based on simple RTT measurements from Waseda COE
and Honjo Campus on network diagram in Fig.8, which
is not only the longest available path within Waseda (9
hops), but also is partially optical, which offers higher
end-to-end delays and more interesting measurement
material for predictions.

Although the probe structure in pattern setup is simple
and specifies regular single packets sent to a single
location, the neural prediction part is more complex.
Totally 500 probes were transmitted, and when the 500th
result entered the pool, it triggered Backprop algorithm
implementation of neural network, that processed a setup
number of first samples as learning material, after which
it would predict the final, hidden part. When the pre-
diction is made, results processor block of the client
comprises actual and predicted results and pass the data
over to NOC for display.

Results of this case study are displayed in Fig.10.
Three probing intervals were used in different probing
sessions, from half-a-second to 5 seconds in the last case.
Predictions on plots are represented as red thick lines
over the area-filled blue-colored actual measurement
results.

Probe Number
360 380 400 420

R
T

T
 (

m
s)

0

5

10

15

20
actual
predicted

Probe Number
120 140 160 180 200 220

R
T

T
 (

m
s)

0

5

10

15

20
actual
predicted

Probe Number
0 10 20 30 40 50

R
T

T
 (

m
s)

0

2

4

6

8

10
actual
predicted

(a) probing every 0.5 seconds (b) probing every second

(c) probing every 5 seconds

Fig. 10. Online neural network (Backprop) predictions based on a
single-packet RTT measurement results (zoomed view into the most
interesting match regions).

Visual analysis of results brings forth a conclusion
that higher-granularity measurements should be preferred
over sparse probing if the main objective is the precision
of predictions. In Fig.10, measurement each harf-a-
second offers much higher correct prediction hits than
any other probing frequency. The worst case at 5 sec-
onds almost never is correct in its predictions, which
means that backprop algorithm failed to find any worthy
patterns in measurement data.

It should be noted that this case study is completely
different from bulk capacity measurements in the pre-
vious case, however, it could be handled by the same
probe client, which operation was defined by a different
pattern setup. The probing thread within client itself was
not aware of neural calculations, and was simply collect-
ing results from single-packet probes, while a different
block, which was responsible for neural calculations, was
not aware of probing client, and was only concerned with
the samples collected in the pool.

D. Unconventional Probe Structure

While the previous case study stressed on complicated
data processing techniques, this case study stresses on
probe structure. As was mentioned earlier, some methods
may require unconventional probe structures for various
reasons. To start with, it could be the need to learn of
dependence of interference with cross-traffic on packet
size, parallel collection of results from two separate parts
of the same probe, etc. As two vivid examples of this
consideration, we offer two separate tests for different-

size packet pairs in Fig.11 and packet size stairs in
Fig.12. Opposite to the previous case study, in the present
case there is no processing done, and the plotted data is
raw.

Bulk Capacity (Mbps)
0 25 50 75 100 125 150 175

B
in

 C
ou

nt

0.1
1

10
100

1000
10000

Bulk Capacity (Mbps)
0 25 50 75 100 125 150 175

B
in

 C
ou

nt

0.1
1

10
100

1000
10000P1P2

P3P4

T1T2

P1 P2

P3 P4

Fig. 11. Study of simultaneous traffic impact on different packet
sizes used for packet pairs within a single probe.

A probe structure in Fig.11 could be used in cases
when network impact dependence on packet size is
desirable. The front of the probe consists of a small
packet size pair and the back part contains a pair of large
packets (limited by MTU). Small packets by definition
traverse the network at a higher speed, therefore, no
interference between pairs in the probe is expected unless
the network is extremely congested, which is not the case
with Waseda University.

From the results in Fig.11, it is obvious that the
assumption was true, as distribution of modes in results
obtained from the small-sized front of the probe is far
richer than that of the other packet pair. The main
mode at 10Mbps, nevertheless, is overwhelmingly high,
which is natural given the packet-pair probing method.
However, the presence of additional modes may help in
statistical processing. In fact, there are several researches
which use data collected from measurements by various
packet sizes to create a pool of modes from which the
correct modes are selected based on statistics.

Pair position in probe
0 1 2 3

C
ou

nt
in

bi
n

0

20

40

60

80

100

120

140

P1
P2

P3
P4

P5

0123

Fig. 12. Study of susceptibility of different packet sizes to cross-
traffic interference, which can serve as light indicator to bandwidth
utilization.

Second case of unconventional probe structures is
displayed in Fig.12. It is a simple staircase of packet
sizes comprised within a single probe. The target of

this measurement was to identify a pair of different-
size probes which suffers the highest interference from
traffic at any particular point of time. This idea is very
close to self-loaded stream, which means that the probe
loads the network to the point at which it creates a small
congestion (later packets catch up with the preceding
part of the train). Based on this mechanism, such a train
might serve as a light indicator of network utilization.
In the present case, the network is only mildly utilized,
as highest response is registered in P3-P4 pair.

Client setup in the two above cases are extremely
simple, as they only have to identify packet sizes in the
probe. The design of packet size setup is such that it can
both specify a static packet size, or separate packet sizes
for each packet the probe.

E. Tomography Measurements

Tomography, or, actually, a small part of it, which
is a task to identify whether two paths are shared or
completely separate, is the most complicated of the
presented case studies. It comprises both complicated
probe structure and transmission timings, as well as
tricky calculation procedure.

Fig. 13. Probe layout for tomography measurement.

All the details on tomography can be found in [10],
which describes the algorithm used in this case study.
The probing network topology is displayed in Fig.13. As
synchronization between two source probes is required,
we created a two-step communication, one is the prepa-
ration stage between N and c1 with c2 and the actual
tomography measurements between c1 with c2 and s1
with s2.

The measurement algorithm is as follows :

1) c1 and c2 send probing packets to N.
2) N expects probing packet from two locations,

when they arrive, after a certain timeout ACK
packets are sent to c1 and c2, thus, implementing
the synchronization mechanism.

3) c1 and c2, upon reception of a probe from N ,
trigger tomography measurements, which is when
two packets back to back are sent to separate loca-
tions, with a small interval between transmission
of probe. Random intervals between probes are
decided at c1, while c2 has a fixed interval. This
way, probe from c2 may be queued both before
and after the probe from c1, which is the main
requirement of tomography.

4) When the ACKs from s1 and s2 are received back
at c1 and c2 their order may be different from the
order in which they were sent. To indicate this, c1
and c2 would immediately send a 100-byte packet
in case the order changed, and 60-byte packet in
case the order did not change.

5) N makes digital results from the packet sizes. If
100-byte packet is received, it assigned −1 as the
result, and +1 otherwise.

The actual implementation of the measurement in
probes is done in two separate measurements :

1) Measurement from N to c1 and c2, when the
probing thread sends the measurement probe to
each of the servers, which, in this case, are c1
and c2. When the tomography measurement itself
is completed, N receives packets from c1 and
c2, which are treated at ACK packets for the
measurement, and are analyzed for their size.

2) The actual tomography measurement, details on
which can be found in [10].

Results of the case study are displayed in Fig.14 and
consist of both signs as they are received from c1 and
c2, as well as the logical XOR performed on them,
which leaves only those samples at which the signs
did not match. All the data is plotted on horizontal
axis of interval between probes, which could be both
negative and positive, which speaks for the order of
probes transmitted from c1 and c2.

As both paths in our case study contain shared seg-
ment, the lower plot in Fig.14 is roughly empty. Random
spikes in it can be explained by the imperfection of the
synchronization mechanism that we are using as well as
precision problem, which is natural with very small gaps
between probe transmissions. Those spikes are scarce
and random, which allows us to disregard them and

(a) Sign 1

(b) Sign 2

(c) Tomography
result

Exit space between probes
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

A
rr

iv
al

 o
rd

er
si

gn

-1

0

1

Exit space between probes
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

A
rr

iv
al

 o
rd

er
si

gn

-1

0

1

Exit space between probes
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3T

om
og

ra
ph

y
re

su
lt

0

1

Fig. 14. Results of tomography test, which proves that with the
exception of a few spikes at small space between probes, the results
prove the fact that topology is in fact shared.

declare the fact that the topology of both paths is, in
fact, shared. Please, refer to [10] to find out the look of
tomography result plot in cases when the topology is not
shared.

V. ADDITIONAL CONSIDERATIONS

A. Self-Loaded Agents Based on Multi-Kernel Machines

In this paper nodes are either clients or servers, and
do not contain both. Of course, it is possible to run a
client at the node, which operates as a server, which
will make this node both a client and a server, but
this is manual work and seriously harms flexibility of
measurement topology.

Another approach could be a self-loading of clients
and servers into measurement nodes, which would other-
wise be simple containers for measurement agents. This
would replace the registration/callback communication
paradigm used in this paper and, instead, would be
completely agent-based, when agents would be uploaded
to nodes at runtime.

This, however, in its perfect implementation, requires
changes in operating system, or, to be specific, a multi-
kernel structure. Projects like this already exist, and one
of them is called UML Linux. Currently it is primarily
used for research, where it’s possible to create an actual
network with interfaces, real communication, etc., within
a single machine. We are planning to use this concept
to be able to upload agents at remote nodes at runtime.

Although multi-kernel functionality is not so much
required for self-loaded agents, it is a must for the next
important prospective feature, - self-monitoring.

B. Self-Monitoring Features for Parallel Operation

The present paper did not perform monitoring of CPU
usage or memory consumption during measurement. It
is acceptable for the cases with a single agent per node,
which was our case, but it will not work in complicated
measurement topologies, where one node could host a
few probing clients and servers.

This is another reason for adopting multi-kernel ap-
proach, that would allow to move self-monitoring fea-
tures into the coordination base beyond the scope of
kernels. In other words, self-monitoring would exist in
the master process, and its indicators could be used to
make decisions on whether or not to host another agent.
Some of these indicators could be memory and CPU
consumption, number of connections created on the same
link, and others.

This feature would allow use of a research-based
measurement topology by multiple users. Currently, most
of such projects allow its registered users to schedule a
test, which is then verified subject to time collisions with
other tests. A multi-kernel self-monitored approach could
be a feasible solution to this problem.

Both of additional features that are mentioned above
are scheduled to be implemented in the next stage of the
development of the platform.

VI. CONCLUSIONS

This paper presented an extensible agent-based plat-
form for active measurement. The main objective of
the platform is its extensibility, as well as the ability
to use various measurement techniques without major
changes in design and code. In order to implement that
we adopted client/server based approach, and registra-
tion/callback paradigm of distributed computing. Servers
and clients register their locations and parameters with
NOC, and when, based on this information, measurement
topology is decided, NOC configures each client-server
pair in the network.

The importance of server and client are not the same.
Servers are very simple and are only able to distinguish
between cross traffic and measurement probes. Clients,
on the other hand, contain all the functionality logic
and are quite complicated multi-thread message-passing
applications, which are able to host any number of
probing threads, running in parallel.

The clear separation of data processing, alarm gen-
eration, and probe transmission blocks in the design
of the probing client, a fairly high level of functional
flexibility was achieved. This was verified on a number
of case studies with completely different objectives and
complexity of data processing requirements. In each of
those case studies, all the work was done at probing
clients and NOC received only final results. In the
case study for tomography we even managed to use
probing clients for two-level probing without changes
in probe design, which, again, proves the advantage of
such a open functionality approach and separation of
functionality within the probing client.

However, there are still issues that are being looked
into at the current stage of the project. The two we
listed above are self-loading mechanism for distribution
of agents over measurement topology, and node-based
self-monitoring features.

REFERENCES

[1] J. Navratil and R. Les.Cottrell, “ABwE :a practical approach
to available bandwidth estimation,” in Passive and Active Mea-
surement Workshop, La Jolla, California, USA, April 2003.

[2] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis
of network traffic anomalies,” in 2nd ACM SIGCOMM Work-
shop on Internet Measurement, New York, NY, USA, November
2002, pp. 71 – 82.

[3] “RIPE NCC measurement project,” available at :
http://www.ripe.net/ttm.

[4] “Internet end-to-end performance monitoring - bandwidth
to the world (IEPM-BW),” Available at : http://www-
iepm.slac.stanford.edu/bw/.

[5] “Skipper/skping measurement tool,” available at :
http://www.caida.org/tools/measurement/skitter/skping.

[6] “SCAMPI measurement project,” available at : http://www.ist-
scampi.org/overview.html.

[7] “Surveyor project,” available at : http://www.advanced.org/csg-
ippm.

[8] D. Morato, E. Magana, M. Izal, J. Aracil, F. J. Naranjo,
P. Astiz, U. Alonso, I. Csabai, P. Haga, G. Simon, J. Steger,
and G. Vattay, “The european traffic observatory measurement
infraestructure (ETOMIC): A testbed for universal active and
passive measurements,” in TridentCom, 2005, pp. 283 – 289.

[9] K. Lai and M. Baker, “Nettimer: A tool for measuring bottle-
neck link bandwidth,” in 3rd USENIX Symposium on Internet
Technologies and Systems, San Francisco, CA, USA, March
2001, pp. 123–134.

[10] T. Bu, N. Duffield, F. L. Presti, and D. Towsley, “Network
tomography on general topologies,” SIGMETRICS Perform.
Eval. Rev., vol. 30, no. 1, pp. 21–30, 2002.

