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Abstract-Some modulation schemes with the general name of 
Elliptical Modulation Schemes, have been proposed and 
generally evaluated through computer simulations in our 
previous works, namely are Eccentricity Shift Keying (ESK), 
Inclination Angle Shift Keying (IASK) and Elliptical Phase Shift 
Keying (EPSK). This paper aimed to propose and evaluate 8-ary 
Elliptical Phase Shift Keying (8-EPSK), a new modulation 
scheme with 3-bit information transmission capability. In the 
paper, 8-EPSK was defined mathematically at first; it was then 
evaluated mathematically and by computer simulation in terms 
of BER, along with comparison to 8PSK. Both analysis results 
and simulation results showed that 8-EPSK outperforms 8PSK.  
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I. INTRODUCTION 
In addition to amplitude, frequency and phase, of a sinusoid 

signal used in existing modulation schemes, our proposed 
Elliptical Modulation Schemes, introduce additional attributes such 
as eccentricity, offset inclination angle, rotation frequency and 
rotation direction of an elliptical signal, through employing 
geometrical characteristics of an ellipse to manipulate a signal[1]. 
Introduction of new modulation variables provides Elliptical 
Modulation Schemes with higher flexibility, which implies that 
considerable types of efficient modulation schemes can be 
developed. 

Some modulation schemes with the general name of 
Elliptical Modulation Schemes have been proposed and 
generally evaluated through computer simulations in our 
previous works [1], [2], namely are Eccentricity Shift Keying 
(ESK), Rotation Frequency Shift Keying (RFSK), Inclination 
Angle Shift Keying (IASK) and Elliptical Phase Shift Keying 
(EPSK). As an instance of EPSK, 8-ary Elliptical Phase Shift 
Keying (8-EPSK) has been referred and generally evaluated 
through computer simulations [2]. In our previous works, 
mathematical analysis on definitions, signal characteristics and 
error probability, haven’t been given out. Beyond these, 
configurations of receiver also need to be discussed from point 
view of implementation complexity.  

In this paper, 8-EPSK will be defined in section II, it will 
then be analysed mathematically in terms of BER in section 
III. To give an impression on implementation complexity, 
receiver configuration of 8-EPSK will be illustrated in section 
IV. Finally, simulation results on BER performance will be 
analysed and conclusions will be drawn in section V. 

II. DEFINITIONS OF 8–EPSK 
As one of most basic Elliptical Modulation Schemes, at 

first definition of IASK will be reviewed; then definitions of  
8-EPSK will be derived from EPSK mathematically, with 
general expressions of its signals and followed by general 
discussion on two types of constellation diagrams. 

A. Inclination Angle Shift Keying (IASK) 
Distinctive waveforms can be produced by changing offset 

inclination angles, which suggests that binary numbers can be 
represented by ellipses inclined at different angles. This is 
defined as IASK. As an instance, two ellipses showed in Fig.1 
can be used to represent binary digit of 0 and 1 respectively.  

IASK signals are expressed as: 
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where a = semi-major axis, ωr = revolution angular frequency, 
ec = eccentricity, αi = offset inclination angle.  

B. General Expression of EPSK Signals 
In Elliptical Modulation Schemes, EPSK has been defined 

through combining effect of offset inclination angle and that 
of signal’s phase. EPSK signals can be generally expressed as: 
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where a, ec, ωr and αi are the same with those in (1); φj = signal’s 
phase; αi and φj are supposed to have N and K discrete values 
respectively ( N ≥1, K≥2).  

C.  8-ary Elliptical Phase Shift Keying 
By fixing N to value of “2” and M to value of “4” in (2),         

8-EPSK can be defined through combining QPSK and IASK. 
In 8-EPSK, “2” offset inclination angles are used to represent the 
first binary bits of 0 and 1, “4” phases at four quadrants in each 
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ellipse are then assigned with 2-bit message sequences from 
00~11. Thus, 8-EPSK is capable of 3-bit information 
transmission under the same carrier frequency. 

Without losing a generality, in our definitions, two offset 
inclination angles are set to be π/4 and -π/4, and four phases are 
set to be π/4, 3π/4, 5π/4 and 7π/4, respectively. Substituting all 
eight pairs of αi and φj to (2), and then simplifying expression 
of each unit signal, general expressions of 8-EPSK signals can 
be achieved as: 
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where i =0,1,2,3; j=0,1; the way of deciding value of j will be 
discussed later. Waveforms of 8-EPSK signals then can be made 
in Fig.2.  

According to the way of assigning message sequences to 
phases in each ellipse, two types of Constellation diagrams can 
be defined for 8-EPSK as showed in (a) and (b) of Fig.3. In (a), 
2-bit difference lies in neighboring signals, and radius of 
decision region r001-010 = 22b ; while in (b), 2-bit difference 
lies in each pair of diametrically opposite signals, and r001-010 
=b. Beyond this, two constellation points with the maximum 
distance has been assigned to signals with 2-bit difference in (b), 
instead of signals with 1-bit difference in (a). This also illustrates 

 
Figure 1.  An example of IASK signals 

 

Figure 2.  Waveforms of 8-EPSK signals, where A(t) is Amplitude. Upper 
two rows are signals in ellipse inclined at π/4, while lower two are signals in 
ellipse inclined at -π/4. Each row includes two signals with phase-shift of “π.”  

 

Figure 3.   Constellation diagrams of 8-EPSK 

that assignment way in (b) is more efficient than that in (a). 
Thus, (b) has been selected as Constellation diagrams of 8-
EPSK. 

8-EPSK is defined through combining IASK and phase 
modulation. Either graphically from Fig.3, or mathematically 
from (3), it can be seen that envelope of 8-EPSK signal keep 
changing in one symbol duration. Quadrature Amplitude 
Modulation (QAM) may be viewed as form of combined 
digital-amplitude modulation and digital-phase modulation. 
Although QAM is not envelop-constant with respect to 
different signals, its envelop keeps constant for each unit 
signal in one symbol duration. Based on this analysis of their 
difference, BER performance of 8-EPSK will not compared 
with that of QAM, but with that of 8PSK. 

III. MATHEMATICAL ANALYSIS ON ERROR PROBABILITY  

A. Euclidean Distance of 8-EPSK 
Mathematically, degree of similarity between two signals 

is expressed in terms of their correlation coefficient [3]: 
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or in terms of their Euclidean distance: 
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where E is the mean energy over one symbol duration. When 
E1 = E2, (5) can be simplified to: 

 )1(22 ρ−⋅⋅= bitED       .                     (6) 

By using (4), correlation coefficient of signals “100” and 
“110” can be expressed as: 
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For the difficulty in achieving numeric value of (7) 
through algebric computation, approximate computation is 
used through calculating values of 1 million sampling points 
in one symbol duration. The obtained value is positive. From 
Fig.2 and Fig.3, it can be found that beyond phase shift of π/2 
between signals “100” and “110”, waveform of “100” leans to 
the right, while waveform of “110” leans to the left. We think 
that correlation coefficient of these two signals should be 
negative, and thus conclude that (4) is not an accurate way to 
measure similarity degree of two elliptical signals. 

From Fig.4, Euclidean distance need to be discussed 
include:  

1) Euclidean distance between neighboring signals in the 
same ellipse. The only difference of such two signals is phase 
shift of π/2, and the correlation coefficient is 0. Thus, the 
Euclidean distance can be achieved from (6) as: 

EED bit 2)1(2 =−⋅⋅= ρ    ,                        (8) 

which is the same with minimum Euclidean distance of QPSK. 

 2) Euclidean distance between signals with the same 
phase but lie in different ellipses. As we analyzed above, 
correlation coefficient of elliptical signals achieved by using 
(4) might be magnified. Here, two signals have the same 
phase, and they can be regarded as a pair of IASK signals. 
Based on what have been achieved on BER performance of 
IASK in our previous works [2], we think that correlation 
coefficient smaller than 22  can be obtained by setting 
eccentricity to be some certain values. As we know, 
Correlation coefficient of two neighboring 8PSK signals 
equals to 22 . From (6), Euclidean distance is inversely 
proportional to correlation coefficient, so the Euclidean 
distance discussed here can be larger than the minimum 
Euclidean distance of 8PSK. 

Based on above analysis, we conclude that 8-EPSK can 
have larger minimum Euclidean distance than 8PSK, by 
setting eccentricity to be some certain values. 

B. Decision Region and BER Performance of 8-EPSK 
Distance between constellation points at the same 

quadrant but in different ellipses, such as d110-010, can not be 
simply expressed by their geometrical distance, and here, the 
distance is measured by taking its Euclidean distance as 
reference. As we concluded above, Euclidean distance of 
signals “010” and “110” is larger than 8PSK’s minimum 
Euclidean distance, at some certain values of eccentricity. The 
same conclusion then can be drawn with respect to the 
distance between constellation points. In 8-EPSK, this 
distance is directly proportional to the value of eccentricity, 
thus it is generally called “dec” in the following discussions. 

From Fig.4, Decision region of 8-EPSK is divided by two 
axes, and radii of decision region for different signals are 
different, which can be generally expressed as: 

brr == →→ 010001001010
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22010011 ar =→
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222
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where a = semi-major axis, ec=eccentricity; a is directly 
proportional to ec. Substituting (12) to (9) and (10), we have: 

2
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2
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  .                    (14) 

Known graphically from Fig.4, (13) and (14) are inversely 
proportional to the eccentricity, while (11) is directly 
proportional to the eccentricity.  Among these three (13) is the 
only one stands for 2-bit difference, and (11) is larger than 
(14) at any eccentricities. To achieve the best performance, 
we should try to average (11), (14) and “dec”, and make (13) 
to be the largest by setting eccentricity to be some small 
values. Without considering “dec”, better performance can be 
achieved just through decreasing value of eccentricity. As dec 
is directly proportional to the eccentricity, the best 
performance can be achieved when dec is twice of (14): 

0110102 →×= rd ec  .                              (15) 

Eccentricity obtained from (15) is called optimum 
eccentricity. Defining the optimum eccentricity as “k”, then 
the minimum radius of decision region can be expressed as: 

2
min 22
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Defining distance from constellation point to the centre 
point of constellation diagrams in 8PSK as “A” (Fig.4), then 
some values of a corresponding to typical ec, and value of 
(16), can be obtained and summarized in Table I.  

Characteristic on effect of eccentricity to performance of 
IASK has been investigated in [2], from the result it can be 
concluded that “k”in (16) should be larger than 0.4. From 
Table I, the minimum radius of decision region has the 
smallest value when 

 Arr ec 47.09.0min == =
 .                         (17) 

 

Figure 4.  Signal space of 8-EPSK and 8PSK 
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TABLE I.  CORRESPONDING VALUES OF SEMI-MAJOR AXIS  AND  
MINIMUM RADII OF DECISION REGION TO SOME TYPICAL ECCENTRICITY 

ec 0.9 0.8 0.7 0.6 0.5 0.4 
a 1.51A 1.29A 1.18A 1.11A 1.07A 1.04A 

rmin 0.47A 0.55A 0.59A 0.63A 0.65A 0.67A 
 

From Fig.4, the minimum radius of decision region in 
8PSK is: 

AAAr 38.0)8/sin()2/sin(min ≈== πθ   .            (18) 

From (17) and (18), 8-EPSK has larger minimum radius of 
decision region than 8PSK. 

Theoretic BER of M-ary PSK is given our as: 
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where d is the minimum distance between constellation points 
[4], which is twice of minimum radius of decision region. 

Doubling (17) and (18), and then substituting the achieved 
results to (19), we have: 

PSKeEPSKeEPSKPSKEPSK PPddrr 8_8_888 <⇔>⇔> −−−    (20) 

For 8-EPSK, all signals have the same possibility to be 
transmitted, thus accurate d8-EPSK should be the average value 
and the performance in (20) will be improved. Based on 
above analysis, we conclude that 8-EPSK outperforms 8PSK 
on error performance.  

IV. RECEIVER OF 8-EPSK 
Demodulation of 8−EPSK signals is consisted of two steps: 

the last two bits can be determined by identifying which 
quadrant the coming signal lies in; and then the first bit can be 
detected by identifying which ellipse has been used to send out 
the information. Thus, we combined coherent demodulator and 
correlation detector in the receiver (Fig.5) [5] ~ [7]. 

Last two bits of received signal can be detected by 
determine its phase, and the detection can be accomplished by 

using QPSK receiver block diagram directly. However, the 
carrier recovery circuit in Fig.5 is more complex in 
comparison with that in QPSK receiver. From (3), beyond 
carrier frequency, value of “j” also needs to be determined 
when carrying out carrier recovery. In Fig.3, four signals 
consists of small-size square have odd number of “1”, and “j” 
in (3) equals to 1; four signals consists of big-size square have 
even number of “1”, and then “j” in (3) equals to 0. This 
method of determining value of “j” can be employed in 
modulation, and then carrier recovery circuit in the receiver 
can obtain the information from modulator. 

  Received signal lies in either of four quadrants. Detection 
of each pair of signals in the same quadrant demands one 
correlation detector, which means four correlation detectors are 
needed in the receiver. Note that for both cosine and sine, effect 
of phase-shift of π equals to effect of multiplying “-1,” and they 
have the same squared values as: 

22 )]cos([])[cos( )cos()cos( tttt rrrr ωπωωπω =+⇒−=+ ,     (21) 

22 )](s[])[sin( )(s)sin( tinttint rrrr ωπωωπω =+⇒−=+ .    (22) 

Thus, in Fig.6, through adding a squaring operation block 
following the product integrator, two signals with phase-shift 
of π can be detected by using the same reference signals. Based 
on this analysis, we reduced the number of correlation detectors 
from four to two in simulations. Without losing generality, 
signals obtained from (3) by setting (i, j) to be (0, 0), (0, 1), (1, 
0) and (1, 1), are used as reference signals. They are expressed 
as Sref_1, Sref_2, Sref_3 and Sref_4 in order. 

In Fig.5, switch “w” is used to select one from two 
correlation detectors. If the received signal is identified in the 
first or the third quadrant, “correlation detector1” will be 
connected and activated, which is using reference signals Sref_1 
and Sref_3; if the detected data lie in the second or the fourth 
quadrant, “correlation detector2” will then be activated, and 
the reference signals are consisted of Sref_2 and Sref_4. 

In Fig.6, the upper two channels are configured to detect 
signals in ellipse inclined at π/4, while the lower two branches 
are configured to detect signals in ellipse inclined at −π/4 [8]. 

Figure 5.  8-EPSK Receiver block diagram 
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Figure 6.   Modified correlation detector of 8-EPSK  

V. SIMULATION RESULTS AND CONCLUSIONS 
In simulations, BER performance of 8-EPSK is 

investigated under AWGN and in Rayleigh fading channel 
respectively [9]. To investigate the effect of eccentricity to the 
error performance, eccentricity is set to be a variable from 0.1 
to 0.9, with unit increase of 0.1.  

Simulation results in Fig.7 and Fig.8 showed that either 
under AWGN or in Rayleigh fading channel, 8-EPSK has 
better performance than 8PSK when eccentricity is set to be 
larger than 0.5. This provides 8-EPSK with high flexibility to 
make trade-off on error performance and bandwidth efficiency 
in implementations, by setting eccentricity to optimum value. 
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Figure 7.   BER performance comparison among 8PSK and 8-EPSK at 
difference values of eccentricity, under AWGN  
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Figure 8.   BER performance comparison among 8PSK and 8-EPSK at 
difference values of eccentricity, in Rayleigh fading channel 

 From simulation results, it can also be found that in 
AWGN channel, the best performance is achieved at 
eccentricity of 0.7, and 8-EPSK at eccentricity of 0.6 
outperforms 8-EPSK at eccentricity of 0.8 and 0.9 (Fig.7); 
while in Rayleigh fading channel, 8-EPSK at eccentricities of 
0.7 and 0.8 have undistinguishable performance, 8-EPSK at 
eccentricities of 0.6 and 0.9 also have undistinguishable 
performance (Fig.8). After adding channel fading to AWGN, 
the optimum eccentricity area has shifted to larger values.  

According to analysis in section III and section IV, 
increase of eccentricity can improve the performance of 
correlation detection, at the expense of decreasing minimum 
radius of decision region. So the up-shift of optimum 
eccentricity can be illustrated that, performance of correlation 
detection is more vulnerable to the worsening of 
communication environment, in comparison with that of 
phase-detection used here. From point view of mathematical 
analysis, (16) can only be existed at the larger value of 
eccentricity after adding channel fading to AWGN. This also 
implies that some new detection methods more efficient than 
correlation detection might be developed, which should be 
capable of making better use of distinction between two 
signals in different ellipses.    

Since Correlation Coefficient can not express degree of 
similarity between two elliptical signals accurately, new 
mathematical method needs to be developed in the future 
research. Beyond this, pulse-shaping filter based on elliptical 
signals is necessary in evaluating spectral efficiency of          
8-EPSK, which is also part of our main works in the future. 
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