
Building Smart Appliance Integration Middleware
on the OSGi Framework

Hiroo Ishikawa, Yuuki Ogata, Kazuto Adachi, and Tatsuo Nakajima

Department of Computer Science
Waseda University

�ishikawa,ogata,karvolta,tatsuo�@dcl.info.waseda.ac.jp

Abstract

The number of various kinds of everyday objects that
contain embedded computers is increasing due to the pop-
ularity of ubiquitous computing. While component-based
software development becomes common in a variety of ap-
plication domains, ubiquitous computing requires compo-
nent frameworks that offer more advanced features than
the current component frameworks. This paper explores a
component framework in the context of a ubiquitous com-
puting system. We designed and implemented a system
coordinating various home appliances, called SENCHA.
SENCHA is built on the OSGi component framework. Al-
though the framework provides facilities for dynamically
changing environments, this paper reveals several problems
of the framework in our experience.

1 Introduction

Various objects are empowered by embedded comput-
ers and network connectivity. It makes system software,
such as operating systems and communication middleware,
widely adopted from dusts[11] to a town[4]. On the other
hand, multiple ways to use the embedded computers are
required to satisfy various kinds of users’ requirements or
even dynamically changing requirements. Thus, software
infrastructures for ubiquitous computing have to take into
account the heterogeneity of computers, networks, environ-
ments, and users.

A lot of ubiquitous computing systems have adopted
component-based software development, because the mod-
ularization of systems makes them portable and flexible.
The system’s portability is an effective characteristic in the
heterogeneous platforms. As the ubiquitous computing sys-
tems do, software component technologies also need to con-
sider the heterogeneity of ubiquitous computing, because it

is being deployed on not only enterprise and desktop plat-
forms, but also various embedded platforms[6]. The em-
bedded computers have basically poor resources on CPU
power, size, and so forth. Thus, software components that
form ubiquitous computing systems are required to deal
with the resource constraints and other embedded system’s
characteristics, unlike ones in the current resource-rich en-
vironments. Furthermore, a lot of features and services
such as augmented reality[10] and context-aware comput-
ing, will be available in a future ubiquitous computing en-
vironment. It is necessary for the software component tech-
nology to provide rich programming support by component
frameworks and tools, and take into account resource con-
straints on the embedded systems.

This paper describes our experience with component-
based ubiquitous computing system development. We have
built a smart appliance integration system on the OSGi
Component framework, or the OSGi framework[14]. The
system called SENCHA, integrates various kinds of smart
appliances and services around the user. The integration is
handled based on the user’s preference and situation. Al-
though the OSGi framework provides several facilities for
dynamic configurations, our experience with building the
system revealed the limitation of the current component
framework. This paper also presents some requirements for
future component frameworks in ubiquitous computing en-
vironments.

The rest of this paper is organized as follows. In Sec-
tion 2, the design and implementation of SENCHA are pre-
sented. Section 4 discusses the experience with building
SENCHA on the OSGi framework, and shows some re-
quirements for future component frameworks in ubiquitous
computing environments. In Section 5, related work is de-
scribed in terms of software component technologies and
their case studies in the context of ubiquitous computing.
Finally, Section 6 concludes the paper with our future di-
rections.

1

Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04)

0-7695-2124-X/04 $20.00 © 2004 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286945329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 SENCHA: Coordination of Smart Appli-
ances

Ubiquity of smart appliances and services makes users
difficult to find and choose the services that will satisfy the
user’s requirements at every moment. In order to solve this
problem, SENCHA addresses dynamic integration of the
heterogeneous services and appliances according to every
user’s requirements and context. SENCHA focuses on the
following three technologies: service discovery, appliance
information filtering, and appliance control.

A system support is necessary for users to utilize the
ubiquitous appliances in an ad hoc manner according to
each user’s requirement and situation. Unlike consumer
electronics, it is difficult to find any other computer-
enhanced everyday things such as cups, furniture, and walls
accessible through networks. Moreover, even though a user
knows that these things are accessible, it is also difficult to
choose appropriate appliances or services provided by them
to satisfy his current requirement, because there are a lot
of smart appliances around him. Moreover, functionalities
of the smart appliances are different, even if the appliances
belong to the same category such as TVs, microwaves, and
kiosk terminals. For example, a microwave provides users
a dial interface to set the time to cook but another provides
up and down buttons for doing the same thing.

2.1 Architecture Overview

Since the appliance coordinations are different by each
user, we have adopted personal devices such as mobile
phones and PDAs as the appliance coordinator. The ben-
efits of this architecture are to be able to isolate personal
information from environments and other users, and to uti-
lize the personal information to customize the coordination.
Appliance discovery, presentations, and controls are dealt
with mainly by the coordination devices.

SENCHA provides three elements: Personal Appliance
Coordinator (Coordinator or PAC), Display Service, and
smart appliances (Fig.1). Coordinator resides in a personal
device, and moves from space to space with the user. It
aggregates the appliance information, generates user inter-
faces, and controls the appliances.

Each of the smart appliances provides more than one ser-
vices. They have own information (e.g. functional and non-
functional specifications and state information). They are
searched by Coordinators, but it can advertise their exis-
tence. When a user gets into an environment, his Coordina-
tor collects each smart appliance’s information by using a
service discovery protocol.

Display Service is used for interactions with the user.
When the user moves closer to Display Service, the Dis-
play Service detects the Coordinator by using sensors, then

requests by the Coordinator appliance control interface in
that situation, and then presents a user interface based on
the user’s preference, experience, situation, and so forth.
The user can access to each of the smart appliances or a set
of the smart appliances through the automatically generated
user interface on the Display Service.

Figure 1. Architecture of SENCHA

3 Design and Implementation

3.1 Design Goals

SENCHA integrates various appliances and services
around the user. There are a lot of environmental differ-
ences. Therefore, SENCHA takes into account the follow-
ing three design goals:

Reconfigurability of systems: For the sake of reconfig-
urability, the system has to be divided into well-
separated components. Coordinator is required to
work in heterogeneous environments where different
appliances, sensors, and protocols exist. The reconfig-
urability of the Coordinator is a crucial feature to inte-
grate appliances at any environments. Furthermore, for
time- and situation-awareness, the system is required
to change its behavior dynamically.

Portability of components: Some functionalities such as
device discovery are common among Coordinator,
smart appliances, and Display Service. Portability or
reusability of components is required for those com-
ponents. Such components have to be independent of
other components as much as possible.

Scalability of systems: There will be a lot of appliances in
ubiquitous computing environments. Coordinator on
a personal device has to deal with a large amount of
appliances and services, and organize them.

2

Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04)

0-7695-2124-X/04 $20.00 © 2004 IEEE

3.2 Component Design

Personal Appliance Coordinator: Figure 2 shows the
architecture of the Personal Appliance Coordinator (Coor-
dinator) which organize heterogeneous smart appliances.
Coordinator consists of five components: Sonar searches
smart appliances and advertises the existence of Coordina-
tor. Appliance Registry stores every smart appliance infor-
mation that Coordinator has found. UI Constructor and
Context Inference Engine generates integrated user inter-
faces based on the informations in the Appliance Registry
and the user’s preference and situation. Appliance Con-
troller receives commands from Display Service, and dis-
patches the command to the specified appliances.

Appliance
Controller

UI
Constructor

Context
Inference
Engine

Appliance
Registry

Sonar
(Appliance
Discovery)

SSDPSOAP-RPC

HTTP

HTTP

from/to smart appliancesto smart appliances

from/to Display Service RDF

Figure 2. Architecture of Personal Appliance
Coordinator

Each of five components is constructed of smaller com-
ponents. For example, Sonar, which is an appliance dis-
covery component, consists of a device discovery protocol
stack, and a discovery message handling component.

The configurations of Coordinator can be changed by
replacing components. This is one of the benefits of
component-based software if components are well sepa-
rated into clear roles. For example, the Context Inference
Engine component can be replaced for changing strate-
gies or methodologies of context inference according to the
user’s requirement, or a security policy for respective envi-
ronments. These configurations can be dynamically applied
by the OSGi framework.

Display Service: Display Service offers user interface for
providing services integrated by Coordinator. Display Ser-
vice consists of sensing and display components (Fig.3). In
order to detect users near Display Service, the sensing com-
ponent uses user location sensing devices such as motion
sensors, infrared sensors, and RFID tag readers. The dis-
play component is triggered by the sensing component, and
then requests appliance information to Coordinator detected
by the sensing component. Operations on the display are

delivered to the user’s Coordinator by the display compo-
nent. The operations are finally dispatched to appropriate
appliances by Coordinator.

Sensing Display

from/to PAC

Display Service

HTTP HTTP

Figure 3. Architecture of Display Service

Smart Appliances: Each smart appliance consists of
three components: Sonar, Control Point, and device drivers.
Sonar is used for only service advertisement, unlike that
of Coordinator, because smart appliances only provide ser-
vices for users, and the appliance management is entirely
handled by Coordinator. Control Point is an access point
from Coordinator or any other smart appliances.

Control
Point

Sonar

Device
Driver

from/to PAC
SSDPSOAP

Smart Appliance

Figure 4. Architecture of smart appliances

3.3 Implementation

All three elements of SENCHA are implemented on
the OSGi framework. The following sections introduce
the OSGi framework, and describe the implementation of
SENCHA in detail.

3.3.1 Overview of the OSGi Framework

The OSGi framework is a part of the OSGi Service
Platform[14]. The framework supports dynamic compo-
nent deployment, component dependency management, and
component lifetime management. Software components in
the OSGi are dynamically installed on the framework by

3

Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04)

0-7695-2124-X/04 $20.00 © 2004 IEEE

specifying the location of the component in Uniform Re-
source Locator (URL) formats. The installed components
are cached locally, thus even if the framework is terminated
accidentally, it can restart the last installed components.
The current OSGi framework deals with component depen-
dencies as the relationship between components. The com-
ponents can provide multiple services. The dependencies
among services, however, are not supported by the frame-
work. A component has one of six states on the framework
during its life time, such as INSTALLED, RESOLVED,
STARTING, ACTIVE, STOPPING, and UNINSTALLED.
State transitions are triggered by the framework.

A software component on the OSGi framework is called
bundle. A bundle is a unit of deployment. Each bundle is a
single JAR file, and is implemented in Java. A bundle must
includes a manifest file in which the bundle name, inter-
component dependencies, and others are described. The
manifest file is extended for the OSGi framework, for exam-
ple the bundle-activator field. A bundle may provide zero,
one, or multiple services. The services are defined as in-
terfaces in the Java language, and registered to an internal
bundle registry of the framework by their bundle activators.
Each bundle activator is implemented by a bundle in order
to perform customized operations when the bundle is started
and stopped.

The implementation of the OSGi framework that we
have adopted is Oscar[13]. Oscar is an open source imple-
mentation of the framework in pure Java. The developers of
Oscar maintains the Oscar Bundle Repository on the Inter-
net that contains various useful off-the-shelf bundles.

3.3.2 Device Discovery

Device discovery is performed between smart appliances
and Coordinator, and Display Service and Coordinator. In
any cases, the Sonar component is the only one component
to deal with the device discovery message. Sonar compo-
nent is installed in all three elements. The current imple-
mentation of Sonar adopts Simple Service Discovery Pro-
tocol (SSDP)[9]. The SSDP protocol stack is contained as
a component in the Sonar component.

Appliance information is described as an RDF (Resource
Description Framework) document[15]. The RDF docu-
ment can be expressed by using the following three ele-
ments: subject (or resource), predicate (or property), and
object (or value). The system can search appliance infor-
mation not only by using appliance name, but also by using
various kinds of properties. Therefore, this is very useful to
describe a service and its functionalities or characteristics.
Each appliance has own resource description in RDF-XML
file. Figure 5 shows an example of the specification docu-
ment for a TV appliance.

SENCHA uses the LOCATION field in the Alive and the

<!-- subject -->
<rdf:Description rdf:about="urn:sencha:TV1">

<!-- predicates and objects -->
<ssdp:serviceName>
urn:sencha:TV1

</ssdp:serviceName>
<ssdp:serviceType>
upnp:sencha:TV

</ssdp:serviceType>
<ssdp:location>
:8080/axis/property.rdf

</ssdp:location>
<ssdp:cacheControl>300</ssdp:cacheControl>
<core:friendlyName>TV</core:friendlyName>
<core:room>roomA</core:room>
<core:owner>all</core:room>

<core:functionType
rdf:resource=

"urn:homecomp:function:TVFunction" />
<core:function>TV</core:function>

<core:URLBase></core:URLBase>
<core:WEBPort>:8080</core:WEBPort>
<soap:controlURL>
/axis/services/LightService

</soap:controlURL>
</rdf:Description>

<!-- subject -->
<rdf:Description

rdf:about=
"urn:homecomp:function:TVFunction#power">

<!-- predicates and objects -->
<function:value>on | off</function:value>
<function:mean>turn power</function:mean>
<function:method>power</function:method>

</rdf:Description>

Figure 5. An example of the appliance func-
tion specification

Response messages in order to specify the logical locations
of the appliance specifications. The location is described in
URL. After receiving these messages, Coordinator down-
loads the specifications from each URL.

Appliance Registry is implemented as an RDF database
developed by CodeRidge project[12]. The RDF database
stores the appliance information in an RDF triple format.
Therefore, the specification is transformed from RDF-XML
format to RDF triple format in order to store it in Appliance
Registry. An RDF triple is a statement that consists of a
subject, a predicate, and a object. In our example shown in
Figure 5, the RDF file has 18 triples.

3.3.3 Automatic User Interface Construction

Coordinator contains an HTTP server component in order
to generate user interface automatically, and receive URL-
based commands(described in 3.3.4) from Display Service.
Since Oscar Bundle Repository provides HTTP Service,
which is a set of components providing an HTTP server
and a servlet engine, we reuse the components as the HTTP
server components.

4

Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04)

0-7695-2124-X/04 $20.00 © 2004 IEEE

Figure 6. The procedure of user detection and
UI construction

Since we have adopted URL-based commands to oper-
ate smart appliances, we can use various document formats
that can embed URLs in a document, such as HTML, Flash
and Microsoft Power Point and so on. The current imple-
mentation of UI Constructor supports HTML documents.
The information used for the user interface are the name of
appliance, command names and the attributes of the com-
mands.

Context Inference Engine customizes user interface ac-
cording to the user’s preference and situation. Context In-
ference Engine is placed between the Appliance Registry
component and the UI Constructor component, and filters
the appliance information based on the preference and sev-
eral sensor data. This component has an internal context
database to store rules to infer the user’s context. Currently,
we are designing a new approach to solve the difficulty of
constructing many rules. In our approach, we assign each
customizing rule to an RFID tag. These tags are read by
the RFID reader on the personal device. Then, rules are
registered to Context Inference Engine. Therefore, the user
can get free of writing his/her rules one by one. The rules
are transformed to a filter, written in the Prolog, and a Pro-
log interpreter chooses appliance information by using the
filter.

3.3.4 Appliance Control

The appliance control is performed among Display Service,
Coordinator, and each smart appliance. Commands issued
from Display Service are received by Coordinator. The Ap-
pliance Control component in Coordinator parses the com-
mands, and generates SOAP stubs. Coordinator communi-
cates with each of the appliances by using the SOAP stubs.

The appliance control commands from Display Service
are encoded in URLs[8]. The standard URL syntax is ex-
tended for the control commands by a similar way to the
syntax for CGI programs so that the path elements in a URL
form contains some additional information for specifying
and controlling smart appliances.

Each of the command request contains two elements.
The first element is the device name that specifies the tar-
get appliance and it is also possible to use a query expres-
sion. A query expression is represented by a field-value
pair and is beginning with the “?” attribute, for example,
?function=light that indicates the appliance whose
function is light. The second element specifies functions,
and includes pairs of method name and its argument be-
ginning with “!”. The following line is an example of the
URL-based command expression.

http://192.168.10.222/?
?function=light&type=floor/!power=on

This command requests for switching on lighting appli-
ances on the floor. The command is transmitted to Coordi-
nator that is assigned 192.168.10.222. The path elements
following /? attribute represents a query and specifies the
appliance whose function property is light and type prop-
erty is floor. The !power=on element specifies power
function with the on value. If the first element specifies a
target appliance name, then the Appliance Controller com-
ponent retrieves the appliance information from the Appli-
ance Registry component. If the first element is a query
beginning with ? attribute, the Appliance Controller com-
ponent requests the Appliance Registry component for the
ones which have the corresponding property field-value pair
within the query element.

SOAP is adopted communication between Coordinator
and the smart appliances[16]. Each of the appliance infor-
mation includes the location of a WSDL file which defines
a SOAP stub[17]. Coordinator generates a SOAP stub from
a WSDL file for each appliances.

The current implementation adopts only SOAP-RPC to
access to the appliances, however it can communicate in
other protocols such as CORBA and Java RMI in the future
implementation.

4 Discussions

This section discusses our experience with building
SENCHA on the OSGi framework, and proposes some re-
quirements for future component frameworks.

4.1 Experience

Although the OSGi framework provides us several facili-
ties such as dynamic component deployment, lifetime man-
agement, and so forth, it is still insufficient for the dynam-
ically configurable systems. This section describes some
lessons learned from our experience with the development
of SENCHA.

5

Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04)

0-7695-2124-X/04 $20.00 © 2004 IEEE

Implicit Dependency: Component downloading facility
is useful but causes the implicit dependency. The implicit
dependency is defined as dependency that is related to com-
ponent behavior, and not described in component interface
or other descriptions such as the manifest files. In our case,
the javax.xml package implicitly depends on the runtime
environment. When Sonar runs on the framework on Java
runtime version 1.4, there is no problem because the Java
runtime 1.4 natively provides the javax.xml package. How-
ever, when Sonar runs on Java runtime version 1.3, since
it doesn’t provide javax.xml package, So, we had make a
bundle that contains javax.xml package. However, since the
OSGi framework assigns a class loader to each bundle in-
stance, and the javax.xml package assumes that it is instan-
tiated in the same space as the applications, the javax.xml
bundle didn’t work properly. We solve this problem by in-
stalling the javax.xml package to the external library direc-
tory of the Java runtime. Consequently, there is implicit de-
pendency between the implementation of the bundles and
the bundle loading mechanism.

Resource Constraints: Although the OSGi framework
manages the lifetime of components, it doesn’t take into ac-
count resources that components consume. Three elements
of SENCHA (Coordinator, Display Service, and smart ap-
pliances) will run on embedded systems. Thus, the resource
constraints significantly affects system configuration strate-
gies.

However, this is also a problem of the Java Virtual Ma-
chine. The components on the OSGi framework are run
on JVM. Therefore, in order to manage the resources, it is
necessary for the OSGi framework to import the resource
management facilities (e.g. Real-time Java API) from the
JVM.

Multi-Level Views: Multiple views of abstraction levels
are necessary to be supported by the component framework.
A component may consist of some components. For exam-
ple, Sonar, which is an appliance discovery component, in-
cludes some other components such as the SSDP protocol
stack and message handling components, and each of them
is compressed in a JAR file. The framework recognizes a
JAR file (bundle) as a minimum deployment unit, thus we
cannot dynamically configure the Sonar component by re-
placing the component inside it.

4.2 Requirements

From our experience with developing SENCHA on the
OSGi framework, we present several requirements for fu-
ture component frameworks in a ubiquitous computing en-
vironment. Although each requirement might have been al-
ready claimed by others such as Architecture Description

Languages (ADLs)[7], we have found that these require-
ments in the context of the ubiquitous computing systems
are very important. Therefore, these requirements must
consider as the essentials of the future component frame-
works.

Connector Abstractions and Their Configurations:
Connector abstraction, or simply, connector is a compo-
nent as glue between other components. The connectors
are adopted by many ADLs. Although ADLs claim that the
benefit of the connectors make the relationship among com-
ponents explicitly, we notice that the connector is useful for
changing relations between components. The connectors
facilitate to change the relations between components. For
example, we can change from a local connection between
components to the TCP/IP connection by changing the con-
nector from a local connector to a TCP/IP connector without
generating complicated stubs and proxies.

Moreover, the connectors are useful for calculate mem-
ory consumption during configuration time. The memory
usage is very important information for embedded systems
because some of them have to operate applications with-
out a secondary storage for saving data. Since the connec-
tors make the relationship among components explicit, the
framework can know components currently activated and
cooperated.

Dependency Management: In order to realize heteroge-
neous configurations, inter-component dependency must be
taken into account by a component framework for ubiqui-
tous computing. So, dependency management is a crucial
feature for such dynamically changing environments.

There are two types of dependencies between compo-
nents: explicit dependency and implicit dependency. While
the explicit dependencies are described in every compo-
nent’s interface, manifest file, etc, the implicit depen-
dencies are related to the implementation or behavior of
components[5]. The implicit dependency is occurred by the
difference between an expected characteristic and the real
characteristic of a component. For example, as described
above, it becomes an implicit dependency that whether a
bundle is instantiated on the OSGi framework or under the
framework. Another example mentioned by [5] shows that
thread scheduling policies and network reliability can be the
implicit dependencies among components. The purpose of
the dependency management should make the implicit de-
pendency explicit.

5 Related Work

Connector abstraction is discussed in Architecture De-
scription Language (ADL) researches[7]. ArchJava, which

6

Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04)

0-7695-2124-X/04 $20.00 © 2004 IEEE

is one of the ADLs, provides the connector abstraction as
a language construct. The case study conducted by the au-
thors have built an ubiquitous computing system in Arch-
Java with the connector abstractions[1]. It is pointed out
by the paper that program understanding, the correctness
of implementation, and software evolution are improved by
connectors. Although the paper mentioned the configura-
bility in terms of introducing software evolution, they didn’t
mention the usage of the connectors in the dynamic nature
of ubiquitous computing, and didn’t describe the dynamic
configuration of a system. ArchJava works as a preproces-
sor of a Java compiler, thus runtime functionality is limited
by the Java virtual machine. In the context of ubiquitous
computing, a component framework is required to support
dynamism of systems, for example, dynamic component
deployment by the OSGi framework.

Beanome is a thin layer constructed on the top of the
OSGi framework and is motivated by the limitations of
the OSGi framework[2][3]. The authors of the paper also
point out the necessity of dependency management on the
framework. They classify the limitations in the follow-
ing three points: bundle-to-package, bundle-to-service, and
service-to-service dependencies. According to the papers,
bundle-to-service and service-to-service dependencies are
implicit dependencies in the current OSGi framework. The
implicit dependency that we have pointed out is classified
into the service-to-service dependency. In order to resolve
the implicit dependencies, the authors propose Beanome.
Beanome adds component types to each components. The
component types are defined in extended OSGi manifest
files described as XML documents. The Beanome compo-
nent type description allows us to describe required services
in detail by using the regular expression, but it doesn’t care
the order of activation as this paper mentioned. Also, there
is no field for describing resource consumption in the com-
ponent type description.

6 Conclusion and Future Directions

This paper has explored the development of an ubiqui-
tous computing system on the OSGi framework, and has
shown the experience and some requirements for future
component frameworks. The systems for ubiquitous com-
puting is necessary to be dynamically configurable and ex-
tensible due to the heterogeneity and the mobility of smart
appliances and users. The OSGi framework allows us to de-
ploy components dynamically, and consequently configure
a system dynamically. We have designed and implemented
SENCHA that consists of three elements: Personal Appli-
ance Coordinator, Display Service, and Smart Appliances.
Each of the elements consists of components, and runs on
the OSGi framework. As a result of our experience with
building SENCHA, ubiquitous computing system requires

a component framework that provides advanced features
such as connector abstraction and dependency management.
We are designing a new component framework satisfying
the requirements presented in this paper. Our component
framework aims at supporting: connectors, component be-
havior description that makes the implicit behavior explicit,
and dynamic configuration including automatic component
selection and deployment according to the inter-component
dependency, the component behavior, and the characteris-
tics of platforms.

References

[1] Jonathan Aldrich, Vibha Sazawl, Craig Chambers, and
David Notkin. Language Support for Connector Abstrac-
tions. In proceedings of the European Conference on
Object-Oriented Programming, July 2003.

[2] Humberto Cervantes and Jean-Marie Favre. Comparing
JavaBeans and OSGi Towards and Integration of Two
Complementary Component Models. In proceedings of
the 28th Euromicro Conference on Component Based
Software Engineering, September 2002.

[3] Humberto Cervantes and Richard S. Hall. Beanome: A
Component Model for the OSGi Framework. In proceed-
ings of the Software Infrastructure for Component-Based
Applications on Consumer Devices, September 2002.

[4] Cooltown research. http://cooltown.hp.com/
research/

[5] Hiroo Ishikawa and Tatsuo Nakajima. A Case Study
on a Component-based System and its Configuration. In
proceedings of the 7th International Workshop on Soft-
ware and Compilers for Embedded Systems, September
2003.

[6] Marija Mikic-Rakic and Nenad Medvidovic. Adapt-
able Architectural Middleware for Programming-in-the-
Small-and-Many. In ACM/IFIP/USENIX International
Middleware Conference, June 2003.

[7] Nenad Medvidovic and Richard N. Taylor. A Classifi-
cation and Comparison Framework for Software Archi-
tecture Description Languages. In IEEE Transactions on
Software Engineering, vol.26, No.1, January 2000.

[8] Tatsuo Nakajima and Ichiro Satoh. Personal Home
Server: Enabling Personalized and Seamless Home
Computing Environment. In proceedings of Percom
2004, 2004.

[9] Yaron Y. Goland, Ting Cai, Paul Leach, and Ye Gu.
Simple Service Discovery Protocol/1.0, IETF Internet
Draft, October 1999.

7

Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04)

0-7695-2124-X/04 $20.00 © 2004 IEEE

[10] Eiji Tokunaga, Andrej van der Zee, Makoto Kura-
hashi, Masahiro Nemoto, and Tatsuo Nakajima. Object-
Oriented Middleware Infrastructure for Distributed Aug-
mented Reality. In proceedings of the 6th IEEE Inter-
national Symposium on Object-oriented Real-time Dis-
tributed Computing, May 2003.

[11] B. Warneke, M. Last, B. Leibowitz, K. S. J. Pister.
Smart Dust: Communicating with a Cubic-Millimeter
Computer. IEEE Computer Magazine, vol.34, no.1, Jan-
uary 2001.

[12] CodeRidge. http://sourceforge.net/
projects/coderidge/

[13] Oscar: Open Service Container Architecture. http:
//oscar-osgi.sourceforge.net

[14] OSGi Alliance. OSGi Service Platform Release 3, IOS
Press, December 2003.

[15] Resource Description Framework. http://www.
w3.org/RDF/

[16] Simple Object Access Protocol. http://www.w3.
org/TR/SOAP/

[17] Web Service Description Language. http://www.
w3.org/TR/wsdl/

8

Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04)

0-7695-2124-X/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

