
Requirements for a Component Framework of Future Ubiquitous Computing

Hiroo Ishikawa Yuuki Ogata Kazuto Adachi Tatsuo Nakajima
Department of Information and Computer Science

Waseda University
{ishikawa,ogata,karvolta,tatsuo}@dcl.info.waseda.ac.jp

Abstract

System software for future computing environments be-
comes more complex and heterogeneous. Portability be-
comes one of the important properties of the future system
software. Component-based systems contribute the porta-
bility issues. However, component behaviors cause depen-
dencies among components and thus prevent consistent sys-
tem compositions. We have built a component-based Java
virtual machine and tried three configurations with compo-
nents in order to investigate the inter-component dependen-
cies and the effect of the component behaviors. Also, this
paper proposes requirements for a component framework
for future ubiquitous computing.

1 Introduction

In ubiquitous computing environments[8], people can
access information anywhere using a computer in the place.
Many computers in the environments are embedded in
hand-held devices and a space. We call such a device and a
space, a smart appliance and a smart space respectively.

System software such as middleware and operating sys-
tems, for smart appliances or smart spaces becomes het-
erogeneous and complex at two points. One is the diver-
sity of embedded platforms. An embedded system is spe-
cialized for an application due to the resource constraints
and costs. There will be various embedded systems in the
ubiquitous computing environments, system software will
be heterogeneous increasingly. The other is complexity and
heterogeneity of services. Although many current embed-
ded systems provide a few services, smart appliances and
smart spaces should be able to cooperate with each other
and provide various services to users. Software becomes
complex in order to integrate services or provide context-
aware services[3].

Heterogeneity and complexity of system software in-
evitably require portability. It is not necessary for a portable
system to program the complicated codes again and again.

Some portable systems provide various parameters or ac-
cessibility to their code for the differences of platforms or
requirements.

We believe that component oriented programming is
suitable for building future embedded systems. Although
component software tends to be studied in terms of build-
ing systems by assembling building blocks, we focus on
configuration capability of component-based systems. A
component-based system allows us to modify it flexibly
by replacing components. This property increases system’s
portability in the heterogeneous environments.

However, the dependencies among components and re-
source constraints become a serious problem. Components
may be developed by different developers, different lan-
guages, and different methodologies. When components
are assembled, it is necessary to understand the premises
before the use. However, in the environment where soft-
ware is built automatically, or the environment where vari-
ous systems must be built quickly, the dependencies among
components have to be clarified.

The goal of this paper is to investigate the dependencies
among components through case studies. The requirements
towards component frameworks for future ubiquitous com-
puting are shown as the result of investigation.

The reminder of this paper is organized as follows. The
next section describes about a component-based Java virtual
machine that we have built as case studies. Three case stud-
ies on component dependencies and the result are described
in Section 3 and 4. This paper finishes with conclusions and
future directions in Section 5.

2 Earl Gray: A Component-Based Java Vir-
tual Machine

For experimental environment, this research project has
built a component-based JVM, called Earl Gray, based on
the Wonka virtual machine[1] which is developed for em-
bedded systems. All components of Earl Gray are described
in Knit component description language[6].

1

Proceedings of the IEEE Workshop on Software Technologies for Future Embedded Systems (WSTFES�03)
0-7695-1937-7/03 $17.00 © 2003 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Waseda University Repository

https://core.ac.uk/display/286945328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A component of Earl Gray consists of a set of typed input
ports and output ports. The input ports of a component are
all the services that the component requires for correct func-
tioning, while the output ports consist of all the services that
the component will provide. A port type can be an interface
type. An interface type consists of a set of methods, named
constants, and other interface types. A component in Knit
is a black-box component. The internal implementation of
a component is hidden from the clients.

There are two types of components. An atomic compo-
nent is the smallest unit of composition, while a compound
component includes atomic components and/or other com-
pound components. A system is structured by the combina-
tion of these two types of components. The implementation
of an atomic component is written in C or Assembly lan-
guage. The atomic component consists of more than one C
and/or Assembly source files.

Figure 1 depicts the overview of Earl Gray. Earl Gray
consists of three layers. Each layer is represented by a
layer component, which is a kind of compound components.
Each layer component includes atomic and compound com-
ponents.

VM

Middleware

OS

Atomic Component

Compound Component

Figure 1. Architecture Overview of Earl Gray

Comprehensibility has been improved by Earl Gray. It
is not easy for someone to understand the JVM from the
source code, because function caller-callee connections are
not explicitly shown, and therefore it takes time to under-
stand the structure of the JVM. However, the links and ports
of component descriptions show the structure explicitly and
help you to understand it more easily.

3 Case Studies on Inter-Component Depen-
dency

The purpose of this experiment is to explore the implicit
dependencies among components. Component interfaces
indicate certain inter-component dependencies. However
there must be inter-component dependencies that compo-
nent interfaces can not indicate explicitly. These case stud-
ies show the implicit inter-component dependency as a re-
sult of several configurations. These case studies consist of

the following three cases: (1) replacing the thread sched-
uler, (2) replacing the bytecode verifier, and (3) extending a
real-time feature.

3.1 Replacing Thread Scheduler

The aim of this case study is to investigate how deep the
replacement of the default scheduler effects to the system.
The thread scheduler is one of the core mechanisms of the
Java Virtual Machine. Changing the scheduler ought to af-
fect the system and applications deeply. In other words, this
case study investigates which components must be changed
as a result of the replacement.

3.1.1 Implementation

This case study replaces the original thread scheduler with a
scheduler in the POSIX threads library provided by the host
operating system. The original user-level thread scheduler
implementation by Earl Gray includes a thread dispatcher
mechanism. In other words, the replacement of the sched-
uler means removing the scheduler mechanism from Earl
Gray.

When implementing a new scheduler component, most
components in the OS layer (see Figure 1) are also replaced
because the OS layer includes monitors and mutexes which
are needed to synchronize threads. Functions for synchro-
nization are provided by the POSIX threads library and are
well-suited for the job. Thus they should be used.

Since the OS layer is completely separated from other
layers, new implementation does not affect the other com-
ponents and the entire system in terms of interface depen-
dency.

3.1.2 Implicit Dependency on Scheduling Policy

The new component causes the system to stop unexpect-
edly. A race condition occurred in a function (uncompress-
ing a zip file) where push and pop functions are invoked.
The implementation of the queue structure didn’t account
for differences in thread-switch timings among the schedul-
ing policies. Originally, the queue was not prepared with a
locking mechanism for thread synchronization.

In order to solve the race condition, an additional code
for synchronization had to be implemented for the queue
component. There was an implicit dependency between the
scheduling component and the queue component behind the
component’s interfaces. It is required for the locking mech-
anism to provide an initialization and a finalization proce-
dure in addition to lock and unlock functions. As a result, I
had to add code for the initialization and finalization for the
thread synchronization mechanism outside the queue com-
ponent.

2

Proceedings of the IEEE Workshop on Software Technologies for Future Embedded Systems (WSTFES�03)
0-7695-1937-7/03 $17.00 © 2003 IEEE

3.2 Replacing Bytecode Verifier

The aim of this case study is to investigate the differ-
ence between a local component and a remote component,
and the effect of the change. A bytecode verifier can throw
exceptions when it detects an invalid bytecode sequence.
However, in case of a remote verifier, the exceptions have
to be invoked not only by an invalid bytecode sequence, but
also by network faults such as network crash and latency.
In other words, the remote bytecode verifier requires a vir-
tual machine to manage the exceptions of network faults in
addition to the default exceptions.

3.2.1 Implementation

The remote bytecode verifier consists of two parts, a stub
component and a remote verifier component. Figure 2 de-
picts the verifier setting. VM component requires a compo-
nent providing the service with a Verifier T interface.
Verifier (local or stub) component provides that service.

The stub component provides the same interface as a lo-
cal bytecode verifier component. This is similar to polymor-
phism in the object-oriented programming(OOP). While the
polymorphism in the OOP is the technique to change imple-
mentation at run-time, this polymorphism-like technique is
executed at compile time. This kind of interchangeability
is a benefit of black box component models. Though the
interface is the same, implementations may vary from com-
ponent to component.

The remote verifier communicates with the stub com-
ponent by means of the RPC (Remote Procedure Call).
This implementation adopts ORBit[5], which is one of the
CORBA implementations, as the RPC mechanism.

VM

Verifier
(local)

Verifier
(stub)

Verifier
(remote)

Verifier_T

RPC

Figure 2. Verifier Setting

3.2.2 Dependency on Exception

The exception is regarded as the implicit dependency in
this case. The Verify T interface includes a function that
creates a java.lang.verifyError, which is thrown
when the verifier detects the inconsistent bytecode. Al-
though network errors corresponding to network reliability
can occur in the case of the remote bytecode verifier, the
interface does not include any functions that create network
errors or exceptions. Thus the system does not detect any

network errors corresponding to the remote bytecode veri-
fier.

In the case of this implementation, the virtual machine
and applications never expect that the remote verifier defi-
nitely returns the error, while they may assume that the lo-
cal verifier returns the result whenever it is called. In other
words, the other components in the virtual machine and ap-
plications depend on the connection with the verifier com-
ponent. This is regarded as an implicit dependency because
the verifier interface cannot indicate anything about that.

3.3 Extending a Real-Time Feature

The aim in this case is to investigate the effect of a
change when adding a new component. A component is
a unit of deployment, thus it will not be difficult to extend
a system by adding a new component. This case study im-
plements a scoped memory management component, and
integrates it with Earl Gray.

3.3.1 Implementation

The scoped memory feature, which is one of the features in
Real-time Specification for Java[2], is implemented for this
case study. The scoped memory enables an application to
deallocate the memory area explicitly by means of scopes or
blocks. For example, if a method allocates a local (within
the method) instance in the scoped memory area, the scoped
memory feature makes sure that the instance is deallocated
when the method returns. In other words, instances in the
scoped memory area are never collected by the garbage col-
lector. Instead, applications respond to memory allocation
with deallocation.

The scoped memory feature is realized by two com-
ponents. One is a scoped memory allocation component.
This component has own memory area in order to allocate
the scoped objects, while the default allocation mechanism
instantiates objects on the heap and registers them to the
garbage collector.

The other component consists of several native interface
components that function as a bridge between Java real-time
APIs and the virtual machine. The bridge components could
be implemented by means of Java Native Interface (JNI),
but requires the additional execution cost. Thus the real-
time APIs access the virtual machine through the bridge
components and the internal API table which maps an API
to a bridge function in an one-to-one manner.

3.3.2 Extensibility for the Real-Time Feature

In this case, the extensibility of Earl Gray is the problem.
This is a kind of a dependency because the real-time feature
requires either the modification of the existing components
or adding new components. As mentioned in the previous
section, the additional method entries are required on the

3

Proceedings of the IEEE Workshop on Software Technologies for Future Embedded Systems (WSTFES�03)
0-7695-1937-7/03 $17.00 © 2003 IEEE

internal API table. Moreover, it is necessary to add a code
invoking the NoHeap component which is an implementa-
tion of the scoped memory manager, because Earl Gray did
not prepare any port to extend the memory allocation mech-
anism. And the thread structure had to be extended because
of RealtimeThread and NoHeapRealtimeThread
in java.realtime.

Eventually, in order to add the scoped memory compo-
nent, three components were extended or modified in addi-
tion, instead of adding new associated components. Since
the scoped memory feature requires the modification of the
core of the system, it was impossible to solve the depen-
dency by merely appending the associated components.

Consequently, it is difficult for a component-based sys-
tem to extend to a real-time system by means of the compo-
nent technology, especially in case that the system does not
provide the extensibility for real-time features.

4 Discussions

According to the experiments, when a system is con-
figured with components, there are implicit dependencies
between components even though components are well-
separated as in the first case. These studies indicate the
dependencies on component behavior. Since component in-
terfaces cannot describe the component behavior, another
methodology should describe it. This chapter proposes a
methodology to describe component behavior based on fi-
nite state machines. The last case study showed that com-
ponent design and architecture design are important for the
evolution of a component-based system.

Currently, we are proposing Component Interaction Pro-
tocol (CIP) as a requirement for our component framework.
The CIP statically describes the behavior of components by
means of finite state machines. The benefit of CIP is to be
able to describe the internal state transitions of a compo-
nent which cannot be described by pre- or post-conditions
of functions. For example, state transitions of a thread can-
not be described because the function to create a thread can
effect only a state of creation. Behavior descriptions of fi-
nite state machines defined by IOA[4] or CORAL[7] allow a
description to express the internal state transitions by means
of special signatures. We are currently designing the com-
ponent behavioral protocols based on IOA and CORAL.

5 Conclusions

In a ubiquitous computing environment where system
software becomes heterogeneous and complex, software
portability is an important issue. Component-based system
allows us flexible configuration to such heterogeneous plat-
forms by means of components as building units. We have
investigated the component-based systems in terms of con-
figuration capability.

This research project has built a component-based Java
Virtual Machine, Earl Gray, and has investigated the com-
ponent dependencies through three case studies. The build-
ing process of Earl Gray showed the difficulty of decom-
posing a monolithic system and the comprehensibility of
component-based systems. In any cases, the component in-
terface design have affected overall architecture.

The case study revealed the dependencies between com-
ponents. The dependencies in the first case and the second
case were implicit, thus they appeared after building the sys-
tem, while the dependency in the third case appeared during
building the system.

Although a component is defined as a unit of indepen-
dent deployment, the result of the case study indicates the
existence of behavioral dependencies among components.
The number of software components will increase in the fu-
ture, and the constraints for deploying a component become
more rigid because of rising embedded systems. The be-
havioral dependencies have to be considered for consistent
composition.

This paper has proposed finite state machines to help
solving the component behavioral dependencies. We are
currently designing the Component Interaction Protocol
based on IOA and CORAL.

References
[1] Acunia. Wonka Virtual Machine. http://wonka.

acunia.com

[2] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr and
M. Turnbull. The Real-Time Specification for Java. Addison-
Wesley, 2000.

[3] A. K. Dey, G. D. Abowd and D. Salber. A Conceptual Frame-
work and a Toolkit for Supporting the Rapid Prototyping of
Context-Aware Applications. HUMAN-COMPUTER INTER-
ACTION, vol.16, pp.99-166, Lawrence Erlbaum Associates,
2001.

[4] S. J. Garland, N. A. Lynch and M. Vaziri. IOA: A Language
for Specifying, Programming, and Validating Distributed Sys-
tems. MIT Laboratory for Computer Science, October 2001.

[5] ORBit. http://orbit-resource.sourceforge.
net

[6] A. Reid, M. Flatt, L. Stoller, J. Lepreau and E. Eide. Knit:
Component Composition for Systems Software. In proceedings
of the Fourth Symposium on Operating Systems Design and
Implementation (OSDI 2000), October 2000.

[7] V. C. Sreedhar. ACOEL on CORAL: A Component Require-
ment and Abstraction Language. In OOPSLA workshop on
Specification of Component-Based Systems, October 2001.

[8] M. Weiser. The Computer for the 21st Century. Scientific
American, 265(30), pp.94-104, 1991.

4

Proceedings of the IEEE Workshop on Software Technologies for Future Embedded Systems (WSTFES�03)
0-7695-1937-7/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

