
EarlGray: A Component-Based Java Virtual Machine
for Embedded Systems

Hiroo Ishikawa, Tatsuo Nakajima
Department of Computer Science

Waseda University

{ishikawa,tatsuo}@dcl.info.waseda.ac.jp

ABSTRACT
EarlGray is a component-based Java virtual machine (JVM)
that can be configured to satisfy various kinds of require-
ments for building future information appliances and em-
bedded systems. While the modification and extension on
an existing JVM tend to be done in an ad-hoc manner, Earl-
Gray allows developers to customize the JVM in a system-
atic manner by decomposing it into components and the
explicit descriptions of the relationship between the com-
ponents. We also examine three case studies on the cus-
tomization of the EarlGray: exchanging a scheduler, mem-
ory management, and class file verifier components. These
case studies shows the benefits and drawbacks of the current
component-based technologies.

1. INTRODUCTION
The Java programming language becomes popular in em-

bedded systems because it provides useful programming ab-
stractions such as object-orientation, multi-threading, and
exception handling. Since applications for embedded sys-
tems become more and more complex, the chance to adopt
an object-oriented programming approach will increase. In
addition, advanced embedded platforms are recently devel-
oped with multi-core processors. Concurrent programming
supports are crucial for application development environ-
ments for future embedded systems. The abstractions pro-
vided by Java are useful for developing software of compli-
cated embedded systems.

The interest to a customized Java virtual machine(JVM)[8]
is increasing due to a variety of requirements of embedded
systems. The embedded systems need to satisfy resource
constraints such as the size of memory, input/output pe-
ripherals, CPU power, and timing constraints. Thus, soft-
ware systems on an embedded system should be customized
to satisfy the constraints. Sun microsystems proposes the
Java environment specifications for embedded systems[2, 3],
where JVM is customized to each platform by system devel-
opers. However, in spite of the requirements for customizing
JVM, most of them provide only compile time option param-
eters for their customization. Thus, a developer may have
to modify the source code of a JVM to satisfy the require-
ments in an ad-hoc way. In terms of the program quality,
the modification or customization should be done in a sys-
tematic way.

Modularization of a system is a basic technique for de-
veloping complex software. The software modules can be

developed by different programmers. Moreover, in embed-
ded systems, modularization is important when hardware-
software co-design is taken into account. We can find sev-
eral JVMs implemented in hardware[12]. If a JVM is ap-
propriately modularized, exchanging software components
with hardware components is also facilitated and becomes
one of attractive features for building embedded systems.
However, though the modularization is a basic technique,
few embedded systems exploit the benefits of the modular-
ization because they are usually modified and extended in
an ad-hoc way. For example, CELinux[15], which is one ver-
sion of the Linux operating system for embedded systems,
has been developed in different domains by different working
groups, and then the results are integrated. In this case, the
developers have to investigate the inconsistency and unantic-
ipated conflicts among the patches at the patch integration
time and at runtime. Thus, they have to explore around
the source code to identify the problems. Component-based
software[13], which is one of modularization techniques, fa-
cilitates the problem because each software component is
defined as a module with the explicit relationship informa-
tion between components and context information on which
the module properly works. The notion of component-based
software is well-known in the desktop and enterprise com-
puting area, but these features are also useful in embedded
systems that need to satisfy resource constraints.

EarlGray is a component-based JVM. The system man-
ages the dependencies among components, thus it prevents
components from unanticipated linking. EarlGray borrows
the source code from an open source JVM, Wonka virtual
machine. We have modified Wonka and added the compo-
nent description. Despite these extra work, the size of the
EarlGray executable is only a few hundred bytes bigger than
that of Wonka, and the benchmarking results are also almost
the same.

This paper presents the design and implementation of
EarlGray and some problems while implementing it. The
problems that we found is that implicit assumptions in re-
spective components may cause a serious problem when cus-
tomzing the configuration of the system. We describe the
the detailed discussions of the problem in [6]

The rest of the paper is organized as follows. The next sec-
tion describes the design of EarlGray. We identify the issues
on embedded systems. In Section 3, we explain the imple-
mentation of EarlGray, and introduce the off-the-shelf vir-
tual machine and the component description tool on which
EarlGray is developed. Section 4 describes the evaluation of
EarlGray in terms of the size and performance. In Section

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286945321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5, we show three case studies of the system configuration of
EarlGray and the experiences with the configuration. Sec-
tion 6 describes related work in terms of modular and exten-
sible systems, and component-based system configurations.
Section 7 concludes the paper and shows some future direc-
tions.

2. DESIGN ISSUES
The goal of EarlGray is to offer systematic customiza-

tion to satisfy various requirements of future embedded sys-
tems. It can be configured and extended in a flexible and
consistent way. The systematic configuration is very im-
portant for the future embedded systems. For example,
ubiquitous/pervasive computing[17] makes embedded sys-
tems more complex because it requires computers to be em-
bedded in various artifacts including daily objects and to
interact with each other in order to provide new services. In
this case, embedded systems are required to be customized
according to the various purposes and situations because
they do not have enough resources to realize the one-size-
fits-all.

Object-oriented programming provides us another way to
configure a system in a more systematic way. A system is
implemented as a collection of software objects with strictly
typed interfaces. An object is an implementation of one
or more interfaces. Objects are inter-changeable as long as
they implement the same interface. Thus, developers can
choose different objects with the same interface for differ-
ent purposes or in different situations. The architecture of
a system is defined as a collection of interfaces, thus, de-
velopers can customize the system in a systematic way, for
example, replacing an object with an alternative. Usually
objects in an object-oriented programming language are dy-
namically loaded and instantiated at runtime. However, the
objects declare only outgoing interfaces or services they pro-
vide. The problem is that the runtime system knows nothing
about what objects are required for loading an object before
accessing the object.

In terms of the system configuration, a component-based
system should offer systematic configuration management.
Many of the existing systems can be modified their settings
by choosing parameters prepared for the system configura-
tions (e.g. Linux kernel configuration). This requires uni-
fied configuration parameters through the entire system. A
component-based system forces components to support the
configuration parameters by defining dedicated software in-
terface. In the case of non-component-based systems, pa-
rameters affect a language functions such as the #ifdef di-
rective in the C language. Thus, in the non-component-
based system, it is difficult to figure out the dependency
between parameters. Moreover, parameters are global in a
system, thus the name of the parameters have to be dif-
ferentiated. Software components communicate with others
only through their interface. Thus, it is easy to maintain the
dependencies among components or to replace components
according to the system’s requirements.

A developer can configure the EarlGray by organizing or
exchanging the EarlGray components. By unifying a way
of configuration in this manner, the configuration can be
done seamlessly between software/hardware components. A
hardware component can be deployed with several software
wrappers. On an embedded system in which a software
system tends to depend upon its hardware platform, this

makes the other software components independent of hard-
ware components as possible.

3. IMPLEMENTATION OF EARLGRAY
We are still using many programs written in the C lan-

guage, that have been developed in the past, but we like
to reuse them although they will be used under various re-
quirements that need to be satisfied. We believe that our
studies offer useful information showing how to reuse exist-
ing programs in the future, and what problems should be
solved to use them under future requirements.

To achieve the goal, we take into account the following
two issues to implement EarlGray.

Using the existing system:. Most embedded systems are
written in the C language because the C language is origi-
nally developed for writing an operating system, thus it is
suitable for programs to access to underlying hardware re-
sources. It is very important to build a component-based
embedded system based on such the existing embedded sys-
tems because developing a component-based system from
scratch requires high development cost.

Exposing relationships between components:. An Earl-
Gray component has to be specified with a set of interfaces.
Each EarlGray component has a set of input and output
interfaces. The inputs specify the services a component re-
quires, and the outputs specify the services a component
provides to others. The inputs must be connected with the
outputs. In addition, it is also required to describe the links
between components explicitly for avoiding link failures at
runtime by resolving the dependencies among components.

For satisfying the first requirement, the implementation
of EarlGray is based on Wonka, an open source Java virtual
machine[18]. Since most embedded systems are developed
in the C language, it is difficult to configure the systems in a
systematic way. We verify the practical effectiveness of the
software component technology though the development of
EarlGray based on the existing open source JVM.

For the second requirement, we adopt Knit[11] as the com-
ponent description language to describe the EarlGray com-
ponents because: 1) it deals with component implementa-
tions in the C and assembly language, 2) we can define both
input and output interfaces of a component, and 3) the links
among components are explicitly described. Consequently,
the EarlGray components described in Knit satisfy the re-
quirements.

3.1 Component Description Language
We have adopted Knit to describe the components of Earl-

Gray. Knit is a component description language developed
by the Flux research group at University of Utah for de-
scribing software components in OSKit[5].

A component in Knit consists of a set of typed input ports
and output ports. The advantage of this model is that a
connection between two components is explicitly described
outside the components. Each port bundles an interface,
and the interface is implemented by a set of functions written
in C. The input ports of a component specify the services
that the component requires, while the output ports specify
the services that the component will provide. An interface
type consists of a set of methods, named constants, and the

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

other interface types. A component in Knit is a black box
component. The internal implementation of a component is
hidden from clients.

There are two types of components in Knit as shown in
Figure 1 and 2. An atomic component is the smallest unit to
compose programs, while a compound component consists
of atomic components and/or other compound components.
A system is structured by composing these two types of
components.

bundletype Collector_T = {

gc_collect,

gc_create,

...

}

unit Collector = {

imports [heap : Memory_T];

exports [gc : Collector_T];

depends { exports needs imports; };

files { "src/heap/collector.c" }

}

Figure 1: An example of an atomic component.
bundletype defines an interface of a component in
which function names are described. The depends

block indicates dependencies between interfaces in
imports and that in exports. The files block indi-
cates an implementation of the component.

A components in Knit is a compile-time component. Com-
ponents are statically combined into one executable binary
after the compilation. Unlike CORBA and COM, compo-
nent binding at run-time is not supported by Knit. The
advantage of Knit is to keep the system small to avoid
the communication overhead among components, discovery
and binding mechanism. The compilation of Knit is exe-
cuted in the following way: (1) Knit compiler checks syn-
tax and dependencies between ports. (2) The compiler cre-
ates a rename table according to the link description in
the compound components. For example, a function name
gc create is renamed to Collector gc create for avoiding
the conflict of the names of functions defined in each com-
ponent. (3) It compiles each component to a binary file by
using gcc. (4) It renames entries in the symbol table in
each object file according to the rename table created in the
phase (2). This is because Knit allows more than one com-
ponent to be implemented the same interface. The compiler
distinguishes the components with the same interface by re-
ferring the renaming table. (5) The ld linker program links
all object files into one executable program. The implemen-
tation of an atomic component in Knit is written in the C
or assembly language.

3.2 Structure of EarlGray
This section describes the structure of EarlGray. We di-

vide EarlGray components into three layers as shown in Fig-
ure 3.

The interface layer contains two components that access
to the lower layer. The Java API component includes com-
ponents that implement native interface in the Java API.
The Native Interface component enables Java and C pro-
grams to access to JVM functionalities. The Java API and

unit RuntimeMemoryArea = {

imports [

thread : Thread_T,

exception : Exception_T,

...

];

exports [

gc : Collector_T,

method : Method_T,

...

];

link {

[method] <- MethodArea

<- [thread, malloc, ...];

[gc] <- Heap

<- [exception, thread, malloc, ...];

[malloc] <- Malloc <- [];

}

}

Figure 2: An example of a compound component. A
compound component includes the link block that
explicitly connects atomic component and other
compound components. The MethodArea and Heap

component is connected with the thread interface
from outside of the Collector component. Malloc is
an internal component of the RuntimeMemoryArea com-
ponent and it connects to the Heap and MethodArea

components.

Native Interface components directly communicate with the
VM layer.

The structure of the VM layer is inspired by the JVM con-
ceptual structure described in [14]. The gray box indicates
a component that is a singleton in the system. The white
box indicates a component of which multiple instances exist
in the system.

The following components are the core components for
building the EarlGray Java virtual machine.

Engine: The Engine component plays a central role of the
Java virtual machine. The Engine component includes
a bytecode interpreter and exception dispatcher.

Loader: The Loader component loads and parses Java
class files into the classfile object provided by the Class-
file component. The Loader component provides inter-
face to the Engine component and the Heap compo-
nent but also the Native Interface component, so that
the java.lang.ClassLoader class can access the Loader
component.

Heap and Collector: The Heap component allocates ob-
ject instances. The Engine component accesses the in-
stances’ variables and methods through the interface of
the Heap component. The lifecycle of the instances are
managed by the Collector component. The Collector
component also accesses to the instances allocated by
the Heap component through the Heap component’s
interface.

The Classfile and Instance component are separated from
the Loader and the Heap component respectively because

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

Figure 3: The structure of EarlGray implementa-
tion. EarlGray consists of three layers: interface,
VM, and infrastructure. The VM layer includes util-
ity components that are accessed from any compo-
nents in the VM layer. The ADT (Abstract Data
Type) component mainly provides the FIFO and
hash table object, and the String component pro-
vides the functionality to manipulate Java strings.

they are globally accessed from various components. The
Classfile component is instantiated for each Java class file
loaded into the system. The ADT (Abstract Data Type)
component and Strings component are the utilities compo-
nents used in the VM layer. The ADT component provides
several data structures commonly used from other compo-
nents such as the FIFO and hash table object.

The infrastructure layer consists of the Resource Alloca-
tor and Thread Library component. Since these two com-
ponents provide common functionality that are used in the
components in the VM layer, they are placed in the lower
layer.

All of the EarlGray component in the figure includes one
or more small components. The implementations of Earl-
Gray components are based on the source code of Wonka.
The Java API, ADT, Strings, Resource Allocator, and Thread
Library component developed by reusing the source code of
Wonka.

3.3 Implementation of Components
We have implemented the functionality contained in each

file as an atomic component. Wonka is a well-structured
Java virtual machine. Each source file of Wonka usually
contains one functionality. Since the component contains
one functionality, each atomic component is usually small.

The granularity of compound components varies depend-
ing on their functionalities. For example, the native library

component is the largest component in EarlGray, because it
includes many components implementing Java API. On the
other hand, the Class Loader component contains only four
atomic components.

In our design, an atomic component offers only one inter-
face to make an atomic component as simple as possible in
order to clearly separate the roles of atomic components and
compound components. If a component needs to offer two
interfaces, we decompose the component into two atomic
components, and create a compound component from the
two atomic components.

Currently, the infrastructure layer contains 25 atomic com-
ponents and 3 compound components. Lastly, the VM layer
contains 108 atomic components and 8 compound compo-
nents, and the interface layer contains 70 atomic components
and 7 compound components. All the atomic components
are described in Knit and implemented in C.

4. PERFORMANCE EVALUATION
This section compares EarlGray with Wonka which is the

original JVM of EarlGray in terms of the program size and
performance. In spite of the component description in Knit,
EarlGray is as almost the same size and performance as
Wonka. Each JVM is compiled by gcc version 2.95 with
-O6 option without any debugging options, and does not
include the JIT compiler nor AWT support.

4.1 Program Size
The size of each JVM without symbols is almost the same

as shown in Table 1. The component descriptions are dealt
with in order to check the connections among components
and rename the symbol tables. Thus, the descriptions are
not compiled into the binary file.

EarlGray is 128bytes bigger than Wonka. A component in
Knit can include the initialization and/or finalization func-
tions for itself. Knit compiler automatically generates the
global initialization and finalization functions that invoke
all initialization and finalization functions for components.
The difference of the size is caused by these automatically
generated routines.

Table 1: The size of program in EarlGray and
Wonka

Program Size (byte)

Earl Gray 567496
Wonka 567368

4.2 Performance
In order to measure the performance of EarlGray, we

have executed the Richards and DeltaBlue benchmark pro-
grams[16] on EarlGray and Wonka. The Richards is a set of
medium-sized language benchmark programs that simulates
the task dispatcher in the kernel of an operating system.
The DeltaBlue is a constraint solver benchmark program.

Table 2 shows the results of the benchmarks on EarlGray
and Wonka. All benchmarks were measured on a 1.2GHz
Pentium 3 with 1024MB of RAM running Linux version
2.4.20. EarlGray was compiled with gcc version 2.95.4 at
optimization level -O6. The results were reported by using

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

Table 2: Performance Evaluation (Execution Time)
Benchmarks Wonka EarlGray

richards gibbons 198ms 198ms
richards gibbons final 195ms 195ms
richards gibbons no switch 231ms 231ms
richards deutsch no acc 322ms 321ms
richards deutsch acc final 700ms 697ms
richards deutsch acc virtual 700ms 700ms
richards deutsch acc interface 755ms 753ms
DeltaBlue 87ms 88ms

the benchmark programs themselves. Therefore, they does
not include any JVM initializations.

The performance of EarlGray is as almost the same as that
of Wonka. Each result is the average of 100 times execution.
There are a few differences between EarlGray and Wonka.
This is because the locations of functions in an executable
file compiled by Knit are different from the one in the orig-
inal executable file and the result improves the cache effect.
In the Knit version, two sets of functions in two atomic com-
ponents respectively are placed closely in the executable file,
if the components are compounded into one component.

5. CASE STUDIES ON COMPONENT-BASED
CONFIGURATION

This section shows three configurations by replacing or
adding components and describes the side effect of the con-
figurations as case studies. In each case study, we found
some problems of a component-based system. Although
component interfaces indicate inter-component dependen-
cies, there are other inter-component dependencies that com-
ponent interfaces cannot indicate explicitly. The case stud-
ies described in this section show the implicit inter-component
dependencies appeared when configuring a system. We have
examined the following three cases: replacing thread sched-
uler with a scheduler provided by a host operating system,
modifying bytecode verifier with a bytecode verifier executed
in a remote machine, and adding a scoped memory man-
agement feature for real-time applications that is one of the
features described in the Real-Time Specification for Java[1],
to EarlGray.

5.1 Configuration Method
The EarlGray specifies a collection of component inter-

faces. Each component should implement one of the inter-
faces. A component interface is the definition of an end
point that other components connect to and communicate
with. A port is an instance of the component interface. The
number of links among ports depends on how many ports
each component provides. The ports are classified into two
types, input ports and output ports. Components are ex-
plicitly composed by connecting an input port and an output
port by a connector. For example, in the second case study
we developed another verifier component that implements
the classfile verifier interface Verifier T, and then switched
the connection of the original verifier to the new verifier.
The reconnection is operated on the compound component
that involves the verifier components.

This approach makes the system architecture or the rela-
tionship between components clearer than the original source

code. For example, it is difficult to understand the relation-
ship among the functions without examining all source code
files in Wonka. However, it is much easier to understand
the relationship among components by examining compo-
nent description files. The component description allows us
to configure the system by changing links between compo-
nents. Since the links define all dependencies among compo-
nents, the configuration can be determined in a systematic
way.

5.2 Thread Scheduler
This experiment aims to change a system to use alterna-

tive functionalities provided by a platform, instead of them
included originally. This change is realized by replacing
components. The experiment changes a scheduler compo-
nent and investigates the effect of the change to the entire
virtual machine. Because the thread scheduler is one of the
core mechanism of the Java virtual machine, the effect of
the replacement must be examined.

We have replaced the original thread scheduler with a
scheduler that maps a thread in the virtual machine to a
thread provided by the Linux kernel directly. The origi-
nal thread scheduler’s implementation includes a thread dis-
patcher mechanism and the threads are multiplexed on a sin-
gle Linux thread. This replacement takes a scheduler mech-
anism away from Earl Gray, and the Linux kernel schedules
the threads.

When implementing a new scheduler component, the mon-
itor and mutex components in the infrastructure layer are
also replaced to use the Linux thread library to synchronize
threads.

As a result of direct mapping to the scheduler provided by
the host operating system, the number of components in the
infrastructure layer was decreased. The components in the
infrastructure layer originally consist of 17 core components
and 4 sub components. 8 components in 17 core components
are used only inside of the infrastructure layer. The 8 com-
ponents contain mechanisms for thread management such as
interrupt handling, timer, generating random number, and
so on. The direct mapping implementation does not need
these actual implementations. The remaining 9 components
are still used when the new scheduler component is selected.

Since the infrastructure layer is completely separated from
other components, the new implementation forces none of
the other components to be modified in terms of explicit de-
pendencies among components. It is difficult to implement
the scheduler interface because there is no development en-
vironment for developing a component individually. So the
new scheduler component is based on the previous sched-
uler component. However, in terms of system configurations,
EarlGray achieves to separate the scheduler component well.

5.3 Bytecode Verifier
The second experiment changes a system to use compo-

nents on a remote machine, instead of ones on the local
machine. We investigated the difference between a local
component and a remote component, and the effect of such
a replacement.

We had an experiment on local-remote configuration by
means of bytecode verifier components. The bytecode ver-
ifier component running in a local host is the original im-
plementation. We developed an another bytecode verifier
component that runs on a remote host based on the origi-

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

nal implementation. The remote bytecode verifier consists
of two components, a stub component and a remote veri-
fier component. The VM component requires a component
providing the service with the Verifier T interface. The
Verifier (local or stub) components provide the service
with Verifier T interface. The stub component provides
the same interface as the local bytecode verifier component.
Therefore, the default verifier can be replaced by the remote
bytecode verifier without modifying the other codes in the
virtual machine. The remote bytecode verifier communi-
cates with the stub component by using the remote proce-
dure call (RPC). We have adopted ORBit[9], which is one
of the CORBA implementations, as an RPC mechanism.

The configuration in this experiment is done as described
in Section 5.1. Although a compound component identifies
links among components in the compound component, it
cannot describe a link through the computer network. It
means that Knit cannot treat the dependencies among com-
ponents on different hosts. Thus, in this case, the system
configuration is not safe.

5.4 Scoped Memory
The aim in the third experiment is to investigate the ef-

fect of a change when adding a new component. This ex-
periment implements the scoped memory feature which is
one of the features described in Real-time Specification for
Java[1]. The scoped memory enables an application to deal-
locate memory area explicitly when a program exits from
the current scope. For example, if a method allocates a lo-
cal (within the method) instance in the scoped memory area,
the scoped memory feature makes sure that the instance is
deallocated when the method is returned. In other words,
instances in the scoped memory area are never collected by
the garbage collector, instead, applications need to manage
memory allocation and release explicitly.

The scoped memory feature is realized by two compo-
nents. One is a scoped memory allocation component. This
component has own memory area in order to allocate the
scoped objects, while the default allocation mechanism in-
stantiates objects on the heap and registers them to the
garbage collector. The other component consists of several
native interface components which are bridges between Java
real-time APIs and the virtual machine.

The implementation of the scoped memory API requires
the thread structure to be extended in order to include a
pointer to a scoped memory area. Because the specification
defines that a scoped memory area is created in a thread
and destroyed when the thread is terminated.

Fortunately, the extension of the thread data structure did
not affect the other components. However, the modification
of a data structure might affect the implementation of the
other components because the memory layout is changed if
the data structure is modified. This causes a chain of the
modifications of components.

Consequently, this case study shows that we still have to
be careful to extend a component-based system with ad-
ditional components. Because there is a chain of implicit
dependencies among components.

5.5 Discussions
According to the three experiments, there are implicit de-

pendencies among components even though components are
well-separated. The experiments show how implicit depen-

dencies are caused according to the behavior of components.
Since component interfaces cannot represent the component
behavior, another mechanism is required to specify the be-
havior. The last case study shows that architecture design
is very important for evolving a component-based system.

5.5.1 Implicit Dependency on Scheduling Policy
When a scheduler component is replaced, we found that

the system was stopped unexpectedly. A race condition oc-
curs in the function to uncompress a zip file where push and
pop functions are invoked. The functions were not consid-
ered that thread switch timing is different due to a different
scheduling policy.

The original implementation assumes that the scheduler
is not preemptive. Therefore, the queue structure in the
uncompress component does not need to be protected from
concurrent accesses while accessing to it. However, Linux
kernel threads are preemptive, thus we need to use mutex
variables to protect the queue. Moreover, adding critical
sections requires the initialization of the mutex variables,
and this requires to modify the initialization component.

5.5.2 Implicit Component Behavior
Since the verifier component is located on a remote ma-

chine, we have to consider the effect of the network con-
nection between EarlGray and the verifier component. The
original verifier component is located on the local machine
and composed with in EarlGray statically, thus it returns the
result immediately after finishing verification and the behav-
ior of the verifier component is defined as verifying bytecode
sequences. In the case of using the remote bytecode verifier
component, however, it is unsure whether the result of ver-
ification is returned immediately after the verification. The
behavior of the remote bytecode verifier component is not
only defined as verifying bytecode sequences, but also the
condition of the network connection.

In the case of this implementation, the virtual machine
never expects that the remote verifier definitely returns er-
rors. Instead, the virtual machine assumes that the verifier
returns a result whenever it is invoked. In other words, com-
ponents that invoke the bytecode verifier depend on whether
a local or a remote bytecode verifier is used.

The Verify T interface includes a function that creates
java.lang.verifyError, which is thrown when the verifier
detects the inconsistency of bytecode. Although network er-
rors can occur in the case of the remote bytecode verifier,
the interface does not include any functions that handle net-
work errors. Thus, the system does not detect any network
errors caused by the remote bytecode verifier.

5.6 Summary
The result of the case studies indicates the existance of

behavioral dependencies among components. The problem
occurs because some assumptions to use respective compo-
nents are hidden behind their interfaces. Advanced software
development methods based on component-based frameworks
and aspect-oriented programming do not take into account
the ensurance of behavioral assumptions among components.
These assumptions should be described explicitly in compo-
nent specifications, and the assumptions should be checked
when components are connected. We believe that these ex-
tensions should be incorporated in future component-based
frameworks. Also, the extension will be useful in aspect-

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

oriented programming not to violate the assumptions of an
aspect’s behavior.

6. RELATED WORK
Jupiter is a modular and extensible JVM developed from

scratch[4]. It focuses on scalability issues of the JVM for
high-performance computing. The principle of design and
implementation of modules make interfaces small and sim-
ple such that UNIX shells build complex command pipelines
out of discrete programs. That principle facilitates to mod-
ification of JVM functionality. This principle is similar to
our component design. Jupiter, however, does not address
the dependency issues.

Knit has been adopted for building the current version of
OSKit[5]. The components of OSKit are well-modularized.
Moreover, design patterns are partially adopted for flexibil-
ity. Reid et al. mentioned that Knit declarations for OS-
Kit components revealed many properties and interactions
among the components that a programmer would not have
been able to learn from the documentation alone[11]. This
is the same as our observation that a component-based sys-
tem contributes comprehensibility. OSKit, however, does
not address the dependency issues except interface depen-
dency processed by Knit.

Kon and Campbell[7] proposed the inter-component de-
pendency management by the human readable descriptions
and event propagation mechanisms based on CORBA. Hard-
ware and software requirements are described in a file (e.g.
machine type, native OS, minimum RAM size, CPU speed/
share, file system, and window manager) with human read-
able descriptions. And inter-component dependency is man-
aged by the event propagation mechanisms with (un)hook
and (un)registerClient methods. However, these methods
do not take into account of any component behaviors.

7. CONCLUSION AND FUTURE DIRECTIONS
As the number of embedded systems grows, Java and Java

Virtual Machine are utilized to facilitate complex program-
ming. However, embedded systems usually involves resource
constraints, thus system software such as JVM has to be cus-
tomized. We have presented EarlGray, a configurable com-
ponent based JVM based on the Wonka virtual machine,
and some configuration experiments. Thanks to the com-
ponent description language, the visibility of the EarlGray’s
architecture is fine, because the component description lan-
guage has exposed links among the components. In ad-
dition, although these additional implementation, the size
and performance of EarlGray has been almost unchanged
from the original JVM implementation. Thus, in the case
of EarlGray, the software component technology enhanced
the system software. According to our case studies, several
problems of the current EarlGray implementation are found.
Especially, the limit of component interfaces must be solved
because reliability and safety are the primary concerns of
embedded systems in general. In addition, function-rich
consumer embedded systems such as mobile phones require
to download software components from the Internet. Thus
we need to consider the property of the link descriptions
among components. Currently we are improving EarlGray
from the functional point of view such as more real-time
supports. We are also developing a highly reliable operating
system[10], and we are planning to adopt the software com-

ponent technology to the operating system services such as
a file system and networking system.

8. REFERENCES
[1] Gregory Bollella, James Gosling, Benjamin Brosgol,

Peter Dibble, Steve Furr, and Mark Turnbull. The
Real-Time Specification for Java. Addison-Wesley, 2000.

[2] Java Community Process, ”Connected Limited Device
Configuration”.

[3] Java Community Process, ”Connected Device
Configuration.

[4] P. Doyle and T.S. Abdelrahman, ”A Modular and
Extensible JVM Infrastructure,” In proceedings of the
2nd Java Virtual Machine Research and Technology
Symposium 2002 (JVM’02), August 2002.

[5] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers, ”The Flux OSKit: A Substrate for Kernel
and Language Research,” In proceedings of the 16th
ACM Symposium on Operating Systems Principles,
October 1997.

[6] H. Ishikawa and T. Nakajima, “A Case Study on a
Component-based System and its Configuration”, In
Proceedings of 7th International Workshop on Software
and Compilers for Embedded Systems(SCOPES 2003),
2003.

[7] F. Kon and R. H. Campbell, ”Dependence Management
in Component-Based Distributed Systems,” IEEE
Concurrency, 8(1):26-36, January-March 2002.

[8] T. Lindholm and F. Yellin, ”The Java Virtual Machine
Specification,” Addison-Wesley, 1999.

[9] ORBit, http://orbit-resource.sourceforge.net/

[10] S. Oikawa, H. Ishikawa, M. Iwasaki, T. Nakajima, “
Constructing Secure Operating Environments by
Co-Locating Multiple Embedded Operating Systems”,
2nd IEEE Consumer Communications and Networking
Conference, ICCN 2005.

[11] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and Eric
Eide, ”Knit: Component Composition for Systems
Software,” In proceedings of the Fourth Symposium on
Operating Systems Design and Implementation (OSDI
2000), October 2000.

[12] M.Schoeberl, “Design Rationale of a Processor
Architecture for Predictable Real-Time Execution of
Java Programs”, In Proceedings of 10th International
Conference on Real-Time and Embedded Computing,
Systems and Applications, 2004.

[13] C. Szyperski, D. Gruntz, and S. Murer, ”Component
Software: Beyond Object-Oriented Programming, 2nd
ed.,” Addison-Wesley, 2002.

[14] B. Venners, ”Inside The Java 2 Virtual Machine,”
MacGraw Hill, 2000.

[15] CE Linux Forum. http://celinuxforum.org/

[16] M. Wolczko. Benchmarking Java with the Richards
benchmark. http://research.sun.com/people/mario/
java_benchmarking/richards/richards.html

[17] M. Weiser, “The Computer of the 21st Century”,
Scientific American, Vol.265, No.3, 1991.

[18] Wonka - The Embedded VM from ACUNIA.
http://wonka.acunia.com

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

