View metadata, citation and similar papers at core.ac.uk

|
P
brought to you by .{ CORE

provided by Waseda University Repository

Experiences with Building Distributed Middleware
for Home Computing on Commodity Software

Tatsuo Nakajima, Shuichi Oikawa, Hiro Ishikawa, Kunitoshi Iwasaki and Midori Sugaya
Department of Information and Computer Science
Waseda University
tatsuo@dcl.info.waseda.ac.jp

Abstract

In this paper, we describe our experiences with devel-
oping two middleware infrastructures for networked home
appliances on commodity software platforms to show what
future distributed system designers need to take into ac-
count.

1 Introduction

High level abstraction for building advanced home comn-
puting applications should be provided to develop home
appliances in an easy way. If there is no such abstrac-
tion that can be openly used by various third-parties,
a few people can make advanced applications, but this
does not make us happy since attractive and useful home
entertainment services are usually developed by usual
users. Also, in home computing environments, high level
abstraction is important to support context-awareness.
Context-awareness provides attractive features to appli-
cations, such as personalization and adaptation of the ap-
plications’ behavior according to the current situations.
However, implementing high level abstraction is not easy
since it is complex. One of ways to solve the problem is
to enhance the portability of programs by implementing
them on commodity platforms.

In this paper, we describe our experiences with devel-
oping middleware infrastructures for networked home ap-
pliances on commodity software platforms. In our project,
we have developed middleware infrastructures on com-
modity software platforms explicitly to structure complex
software for increasing portability and for reducing devel-
opment cost. We present two middleware infrastructures
for building home computing environments, which have
developed in our projects. The first middleware is used
to build HAVi-based audio and visual home appliances.
The middleware provides high level abstraction to build
advanced audio and visual home computing applications.
The second middleware is used to build a Web-based home
computing system that integrates various home appliances
by using Web-based standard protocols.

2 Software Design for Complex Software

We have developed several middleware infrastructures
on a microkernel-based operating systems in the past
projects[3, 4], and our experiences with developing them
show that the microkernel is useful to design various high-
level abstraction. However, we also found that the ab-

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)
0-7695-2087-1/04 $20.00 © 2004 IEEE

straction provided by the microkernel is too generic and
usual programmers are not easy to develop software on
the low level abstraction. Thus, it is more difficult to
write programs on microkernel-based operating systems
that provide more generic low level abstraction like L4[2]
or Exokernel[l]. Therefore, we believe that it is hard to
provide the low level generic abstraction and develop high
level abstractions on the low level abstraction.

Another approach to solve the problem is to adopt a
software platform that is widely available. The solution
allows us to build complex software on various appliances
in an easy way if the platform can be used on a wide
range of appliances. Also, adopting widely used commod-
ity platforms makes software highly portable.

We already have a lot of existing software on various
commodity platforms, and reusing these software is im-
portant to reduce development cost of complex software.
Also, there is no software platform that is suitable for
developing various types of applications because we need
to take into account a variety of requirements to design
complex software. Therefore, it is necessary to consider
tradeoffs among the requirements. This means that it is
desirable to adopt several commodity software platforms
simultaneously according to the characteristics of respec-
tive software components, and to use different software
platforms for executing respective middleware infrastruc-
tures.

In our approach, we configure several software plat-
formsin alayered structure. We call the structuring multi-
layered software platform. Software in our middleware in-
frastructures is divided into several components. For ex-
ample, one component requires to be developed rapidly,
but it does not require severe timing constraints. On the
other hand, it is more important to satisfy timing con-
straints of another component than to reduce development
cost.

Qur approach allows us to replace a lower level soft-
ware platform according to the characteristics of hard-
ware platforms. For example, we may like to replace
lower level software platforms such as Linux to either Win-
dowsCE, VxWorks or EPOC due to the availability of
device drivers, various libraries, or these resource man-
agement capabilities. Traditionally, providing multiple
software platforms assumes to adopt a generic low level
platform for supporting to build various high level soft-
ware platforms, but the generic low level platform does
not have adopted widely. Also, in the approach, it is not

nn

COMPUTER
SOCIETY

https://core.ac.uk/display/286945319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

easy to use multiple commodity software platforms simul-
taneously to build one system. Our approach is similar to
operating system emulation, which emulates an operating
system interface on another operating system interface.
For example, WINE emulates Microsoft Win32 API on
POSIX based operating systems, and Cygwin emulates
the POSIX interface on the Win32 API. The approach al-
lows us to reuse existing applications running on different
operating systems. Also, our approach is similar to a vir-
tual machine approach. The virtual machine interface 1s
a kind of a low level platform described above. Although
the approach allows us to use many applications on differ-
ent operating systems running on a virtual machine mon-
itor, there is no explicit way to use multiple commodity
software platforms for developing complex software. We
believe that we need a way to compose multiple widely
adopted software platforms in a system for developing a
large scaled complex program.

Our paper does not present a systematic way how to
structure multi-layered software platform, but we provide
our experiences with building complex software by using
multi-layered software platform. We believe that the ex-
periences are useful to develop a systematic methodology
to build complex software by using multi-layered software
platform in the future. Also, we think that the experi-
ences are useful to develop a new structuring technique
for future distributed systems. It is necessary to develop
a more systematic structuring technique to build com-
plex middleware infrastructures that can be customized
for each application and hardware platform.

3 Two Middleware Infrastructures for
Home Computing

In this section, we describe two middleware infrastruc-
tures for home computing, that have been developed in
our projects. In [10] and [11], we show details about these
middleware infrastructures. The paper shows overviews
of these infrastructures and how they work.

3.1 Distributed Middleware for Networked
Audio and Visual Home Appliances

3.1.1 Overview

The following issues are considered when designing the
middleware.

e We like to gain experiences with building complex
middleware on commodity software.

e We like to evaluate the effectiveness of high level ab-
straction.

In the first issue, our system has been developed on
Linux and Java. Especially, our system evaluates to use
Java for embedded systems. In the second issue, we have
developed several applications on HAVi to evaluate the
effectiveness of the high level abstraction[10].

The most important component in our home comput-
ing system is HAVIi that is a distributed middleware in-
frastructure for audio and visual home appliances. HAVi
provides standard high level API to control various A/V

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)
0-7695-2087-1/04 $20.00 © 2004 IEEE

appliances. The reason to choose HAVi as a core compo-
nent in our distributed middleware for audio and visual
home appliances is that HAVi is documented very well,
and some commercial products will be available in the
near future. Therefore, it is possible to use the products in
our future experiments. The HAVi component is written
in Java, and the Java virtual machine for executing HAVi
runs on the Linux operating system. The second compo-
nent is a continuous media management component pro-
cesses audio and video streams. Currently, our system can
handle MPEG2 and DV streams, and emulates several ap-
pliances such as DV cameras and digital televisions. The
component needs to process continuous media in a timely
manner. Thus, the component has been implemented in
the C language, and runs on Linux directly.

3.1.2 How the System Works?

In this section, we present a sample scenario to build a
home appliance using our prototype system. The scenario
has actually been implemented using our prototype and
give us a lot of experiences with building distributed home
computing environments.

The scenario emulates a HAVi-based digital TV appli-
ance. A Linux process to emulate a digital TV receives
a MPEG2 stream from an IEEE 1394 device driver, and
displays the MPEG2 stream on the screen. The sender
program that simulates a digital TV tuner receives the
MPEG?2 stream from a MPEG encoder, and transmits it
to the IEEE 1394 network. Currently, the MPEG2 en-
coder is connected to an analog TV to simulate a digital
TV tuner, and the analog TV is controlled by a remote
controller connected to a computer via a serial line. A
command received from the serial line is transmitted to
the analog TV through infrared.

The receiver process contains three threads. The first
thread initializes and controls the program. When the
thread is started, it sends a DCM containing a Java byte-
code to a HAVi device. In our system, the HAVi device
is also a Linux based PC system. When the HAVi device
receives the bytecode, a HAVi application on the HAVi
device shows graphical user interface to control the emu-
lated digital TV appliance. If a user enters a command
through the graphical user interface, the HAVi applica-
tion invokes a method of the DCM representing a tuner.
Then, the HAV1 device executes the downloaded bytecode
to send a command to the emulated digital TV appliance,
and the first thread will receive the command.

After the second thread in the emulated digital TV ap-
pliance receives packets containing MPEG2 video stream
from an IEEE 1394 network, it constructs a video frame,
and inserts the frame in a buffer. The third thread re-
trieves the frame from the buffer, then the video frame
is delivered to a MPEG2 decoder according to the times-
tamp recorded in the video frame. Finally, the decoder
delivers the frame to a NTSC line connected to the ana-
log TV display.

3.2 Web-based Home Appliance Middleware
3.2.1 Overview

This section presents our Web-based home computing sys-
tem. The middleware infrastructure supports a set of

COMPUTER
SOCIETY

high level protocols to integrate a variety of home ap-
pliances. Web-based means that users can access home
appliances from standard Web browsers via the HTTP
protocol. Therefore, the access to home appliances be-
comes uniform and easy due to the Web-based operations.
Also, our system connects appliances that support various
protocols for home computing such as Jini and HAVi by
converting the protocols to the HTTP protocol[6].

The following goals are taken into account to design
our system.

e Qur system should be simple. Especially, it should
be avoided to make appliances too complex.

e Our system should be integrated with various services
on the Internet.

e Qur system should support context-awareness.

Our system can realize the goals to adopt the Web-
based protocol. The most important requirement for de-
signing our Web-based home computing system is that an
appliance containing a Web server should not be modified.
Because commercial appliances do not allow us to modify
their Web servers. Also, developing a new plug and play
protocol 1s not easy since it 1s hard to standardize the
new protocol. However, automatic configuration that can
be found in Jini or HAVi must be supported for building
home computing environments because usual people does
not know how to configure home networks.

Our home computing system provides a Jini like di-
rectory server, and it makes it possible to integrate Web-
based home appliances. In our current implementation,
a directory server is implemented in Java because there
are many exisiting class libraries to develop the directory
server easily. On the other hand, Web-based home appli-
ances are written in the C language since accessing special
devices are easier from C programs, and we assume that
complex functionalities should be implemented in the di-
rectory server. However, our system does not assume the
extension of the Web server to integrate commercial prod-
ucts that contains Web servers in our systern. Therefore,
our directory server finds all connected Web-based appli-
ances proactively. This means that the server contacts
a DHCP server and retrieves IP addresses leased for all
appliances connected to a network. Then, the directory
server transmits HTTP GET requests to all appliances
whose IP addresses are retrieved by the DHCP server. Ifa
file describing service specification provided by each appli-
ance is returned, the information is stored in the database
on the directory server that is used for routing HTTP re-
quests received from clients to target appliances. Also, the
information can be used to offer advanced services such as
context-awareness.

3.2.2 How the System Works?

In this section, we describe a sample scenario that shows
how our system works. In the scenario, a user has a PDA
device for controlling appliances. These appliances con-
tain Web servers, and a directory server collects informa-
tion about the currently available appliances. In the cur-
rent example, the database converts a function name to a

house code and a device code of a X10 module connected
to an appliance indicated by the function name.

When a PDA device opens a Web browser in our
home, the first HTTP GET request is snooped by a gate-
way Web server running on a router. The server re-
turns a HTML page containing a list of appliances that
are currently available in our house. The page is au-
tomatically generated by the directory server using in-
formation collected from Web-based appliances. In our
example, we assume that the page contains a link to
http://A.B.C.D//?func=TV/!power=on/ that means to
turn a TV appliance on in our house, where A.B.C.D is
an IP address of the directory server.

Let us assume that a user sends a command to turn
on the TV appliance that is connected to a X10 mod-
ule by clicking the above URL. The browser of the
PDA device transmits a HTTP GET command with
http://A.B.C.D/?func=TV/!power=on/. The URL is
translated
to http://A.B.C.E/?house=a&device=4/!power=on,/ on
the directory server, and forwards the URL to the Web
server of the TV appliance, where A.B.C.E is an IP ad-
dress of the TV appliance. This means that a user ac-
cesses the television of our home without knowing the
IP address or the host name of the directory server
since the address is automatically searched by the sys-
tem. Also, “http://A.B.C.D/?func=TV/” is translated
to “http://A.B.C.E/”. This means that the user needs
not to know the actual IP address or the host name of our
television. Finally, when the Web server of the TV appli-
ance receives the URL, the server turns the power switch
of the TV appliance on by sending a X10 command to turn
on a X10 module to be connected to the TV appliance.

4 Experiences with Building Middleware
Infrastructures

4.1 Experiences with Linux

This section describes several experiences to use Linux
as an operating system for building home appliances.
Linux provides a lot of useful functionalities such as net-
working, file systems, window systems, and web browser
to build a variety of future information appliances. There-
fore, it is easy to create advanced applications using these
features. Also, there are several extensions to support
real-time resource management. Especially, Linux/RT[9],
that is used in our project, provides a resource reserva-
tion capability that is useful to make continuous media
processing predictable. These features are desirable to
build future networked home appliances.

Also, a problem occurs when we choose Linux/RT as
embedded Linux. Linux/RT extends standard Linux API
by inserting dynamic loadable kernel modules that pro-
vides real-time functionalities such as real-time synchro-
nization, fine-grained clocks and resource reservation ca-
pabilities. The interface is not standardized in the Linux
community so that software that accesses the interface
should be modified when the software is ported on other
Linux kernels. The fact decreases the value to use com-
modity software significantly.

COMPUTER
SOCIETY

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)
0-7695-2087-1/04 $20.00 © 2004 IEEE

The unpredictable worst case response time of Linux
is not appropriate for processing continuous media such
as audio and video because the response time prevents
continuous media from being processed at correct time.
The problem is caused due to the priority inversion in the
Linux kernel, and we found that non preemptability in the
kernel is the most serious factor of the priority inversion.
However, a simple extension to make the kernel preempt-
able solves the problem[7], and Linux makes it easier to
build audio and visual home appliances than traditional
real-time operating systems.

4.2 Experiences with Java

The first experience when building our prototype sys-
tem is that the current Java does not provide a mechanism
to efficiently communicate between Java programs and C
programs running on Linux. There is two ways to solve
the problems. The first way is to add a new primitive us-
ing the Java native interface, but the approach decreases
the portability of software. The second way is to use the
socket interface. The approach is portable, but is ineffi-
cient due to the overhead caused by the Internet protocol.
We require more high level abstraction to support com-
munication between C programs running on Linux and
Java programs.

The second experience concerns the behavior of the
Java virtual machine. The implementation of threads and
synchronization is different on each virtual machine. This
means that the behavior of each virtual machine is differ-
ent. If the correctness of a program depends on the be-
havior, the portability of the program cannot be ensured.
The behavior is also quite changed on each operating sys-
tem because the behavior of each operating system differs
according to the implementation. Especially, differences
in scheduling behavior and the cost to create threads make
the behavior of Java programs unpredictable. Therefore,
1t is not easy to develop Java programs that are executed
efficiently on a variety of platforms although a lot of peo-
ple claim that Java offers ” Write Once, Run Everywhere”.
If a Java program needs to deal with timing critical pro-
cessing, the situation becomes more serious. We believe
that a commodity software platform should specify its be-
havior in a rigorous way.

Currently, the real-time specification for Java has been
developed and the specification provides a variety of mem-
ory management schemes. Especially, scoped memory al-
lows us not to use garbage collection to reclaim unused
memory, and physical memory access allows us to write
device drivers in Java. Real-Time Java can support var-
ious levels of abstraction. Thus, it seems that we can
adopt a single software platform for building various soft-
ware. However, although Real-Time Java provides a low
level abstraction for memory management, high level ab-
straction is still provided by other services such as file and
network services, and the abstraction may not be appro-
priate to build complex embedded software. Therefore,
Real-Time Java will not replace all programs written in
the C or C++ language, but we think that Real-Time
Java is useful to reduce the development cost of complex
software. Because Java hides memory management issues
from programmers, but they may need to know the cur-

rent memory utilization to build stable software, and Real-
Time Java provides a way to control physical resources
allocated to respective applications.

4.3 Middleware for Home Computing

In our project, HAVi based middleware has been de-
veloped first, and we have developed several applications
on Jini and UPnP for evaluating home computing middle-
ware. Our experiences show that HAVi is too complex to
be installed in home appliances. Thus, the cost of an ap-
pliance is increased by adopting HAVi. Also, it is difficult
to use Jini for build home appliances due to the current
implementation of Jini. It is necessary to completely reim-
plement the current implementation of Jini to be used for
building embedded systems. Also it is necessary to define
a standard protocol between Jini-based devices for sat-
isfying the interoperability among appliances. Thus, we
believe that Jini is not suitable to be used for embedded
systems in the near future.

We think that it is important to integrate with Web ser-
vices to develop attractive applications, but HAVi and Jini
need different API to access Web services and to control
home appliances. UPnP is promising in the near future
because each appliance needs to implement a small size
of programs to support UPnP. Also, UPnP adopts Web-
based protocols to control appliances. Thus, it is easy
to be integrated with Web services. However, the nam-
ing scheme provided by UPnP for identifying appliances
is very weak.

4.4 High Level Abstraction

We have implemented several home computing applica-
tions on our implementation of HAVi. One of these appli-
cations is a remote control application that is integrated
with a Web server. It enables the application to convert
commands from the embedded Web server to commands
to access the HAVi API. This means that it is easy to build
an application to control home appliances from a variety
of control devices embedding Web browsers. We believe
that the key factor to realize fantastic home computing
environments is to provide high level API that enables us
to build a variety of home applications easily.

The high level API provided by HAVi allows us to build
advanced home applications that are personalized for each
person. For example, it is easy to build a program cus-
tomizing graphical user interface according to the prefer-
ence of a user. The program identifies a user, and changes
the layout of of graphical user interface according to the
user. However, it is not easy to identify the current user
who likes to use an appliance. Also, it is not easy to rep-
resent context information to customize the behavior of
applications. For example, it is not simple to generate
graphical user interface according to the currently avail-
able appliances according to the preference of a user be-
cause the look and feel of an automatically generated GUI
is usually shabby for home appliances.

The high level API enables us to compose several appli-
ances, but it is not realistic to create an application for re-
spective compositions. Therefore, it is important to build
an application to compose appliances from a composition
specification. The specification should be declarative, and

COMPUTER
SOCIETY

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)
0-7695-2087-1/04 $20.00 © 2004 IEEE

it should be possible to compose several specifications to
reuse existing specifications. Our experience shows that
the current high level API provided by HAVi does not
have enough power to represent the composition. Espe-
cially, we believe that the naming scheme for identifying
functions contained in appliances and a variety of services
is a key issue to develop a useful composition specification.

On the other hand, we found that our naming scheme
is powerful to develop home computing applications. Our
naming scheme can support from a low level naming such
as supporting X10 device naming to a high level nam-
ing such as supporting context-aware naming. We believe
that our naming scheme is flexible enough to satisfy the
requirements such as composing appliances in a sponta-
neous way.

4.5 Distribution Transparency

The issue discussed in this section is how to manage dis-
tribution. Home appliances connected by networks store
a variety of information that should be consistent when-
ever some failures occur or the configuration of networks
is changed. Also, to build stable distributed systems, it is
important to define rigorous semantics for all operations
in systems.

The following two issues are usually ignored by the cur-
rent researches on home computing. The first issue is
how to deal with failures of appliances. There is a lot of
work to maintain consistency in distributed systems such
as transactions and process groups, and these concepts are
useful to build distributed home appliances. For example,
a digital TV appliance may invoke a transaction for on-
line shopping. The database to monitor the behavior of
users should keep the consistency even if an appliance is
turned off while modifying the database. We believe that
transactions are also a useful concept in home comput-
ing environments, and it is an important to develop an
appropriate transaction model for home computing envi-
ronments. Also, fault tolerance is an important topic in
home computing environments since it is not desirable to
fail to record a broadcast program due to the crash of an
appliance.

We believe that receovery-oriented techniques[8] are
a promising approach to make home computing reli-
able because the techniques are light-weighted. How-
ever, both middleware infrastructures and application
programs should be taken into account quick recovery
while designing them. We think that it 1s desirable to
develop a component framework that supports recovery-
oriented computing directly.

It is important to reconsider each popular abstraction
that is used currently because home computing environ-
ments require to take into account different tradeoffs from
traditional distributed systems.

We need to reconsider what low level properties can be
hidden from application programmers in distributed home
computing environments because implementing complete
distribution transparency is impossible[12].

4.6 Interface vs. Protocol

HAVi offers standard programming interface to develop
home computing applications. The interface enables us

to build portable applications that can run on various
vendor’s appliances. However, each appliance likes to ex-
tend the interface to add extra values to be appealed to
users. Also, the implementation of middleware infrastruc-
tures usually becomes large and complex due to the stan-
dard interface that likes to satisfy various requirements.
Our experiences show that standard interface-based ap-
proaches such as CORBA and DCOM are not appropriate
for home computing. Since respective home appliances are
independently upgraded or developed in a rapid way. We
believe that programming interface should be customized
for respective underlying platforms. In this case, proto-
cols among appliances are standardized, and the proto-
col should be flexible and simple. Our Web-based home
computing infrastructure chooses HTTP-based protocols.
Each vendor can choose his own implementation and pro-
gramming interface in our approach. We believe that the
approach is more suitable than traditional distributed ob-
Jjects for rapidly changing environments like home com-
puting environments. However, we need to investigate the
topic in the near future since portability is an important
topic in these environments.

4.7 Multi-Layered Software Platform

The first experience is that it is difficult to understand
the behavior of each software platform. Our knowledge
about respective platforms is qualitative. Therefore, we
may find that our assumption is wrong after developing
programs. We believe that it is important to define the
assumption of each software platform explicitly in a rigor-
ous way. Therefore, it is possible to predict the behavior
of each software platform, and a programmer can select a
suitable software platform correctly.

The second experience is that there is no standard way
to communicate between programs running on different
software platforms. For example, there is no standard
API to communicate between a Java program and a C
program running on Linux. We believe that it is desir-
able to develop a component framework that provides a
mechanism to communicate among programs running on
different software platforms. If the component framework
is developed, a programmer does not take into account
which platform needs to be adopted to develop his com-
ponent since the framework can hide its implementation.

Our current approach that supports multi-layered soft-
ware platform is ad-hoc. We also have an experience to
design the Linux on the ITRON operating system!. In
the system, one part of a program, which requires a fast
response time or to use existing ITRON based software,
is executed on ITRON, but another part, which requires
to be developed rapidly or to use existing Linux based
software, runs on Linux. The approach enables us to bal-
ance between development cost and fast response time,
but implementing Linux on I'TRON requires many ad-hoc
engineering efforts.

!ITRON is a small operating system, that is widely used for
various embedded systems in Japan. Japan Embedded Linux Con-
sortium is working to define the Linux on ITRON specification. It
makes us to reuse existing software on both ITRON and Linux, and
to build advanced embedded systems rapidly.

COMPUTER
SOCIETY

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)
0-7695-2087-1/04 $20.00 © 2004 IEEE

4.8 Porting Issues in Embedded Systems

In embedded systems, underlying platforms provide a
variety of advanced features. The features are different on
respective platforms, and it is impossible to standardize
these features since the standardization may hide some
useful details of respective platforms. Also, it is impor-
tant to support Quality of Service(QOS) parameters to
accommodate a variety of resource constraints. However,
a general QOS specification is not suitable for embedded
systems since the specification will be too complex and
big. Therefore, it is desirable to provide a specialized
QOS specification for each platform. The QOS specifica-
tion should take into account the predictability of under-
lying software such as scheduling behavior and worst case
execution time.

However, the approach makes the portability of soft-
ware bad since it is necessary to rewrite programs when
they are ported on other platforms. We need to develop a
new methodology to develop a portable program that can
be adapted to respective platforms.

In the future, our platform should be enhanced by us-
ing “System on Chip” solutions. The special hardware
requires us to be accessed via special purpose interface
to exploit the maximum power of the hardware. How-
ever, future systems will be structured in a layered fash-
ion, and every layer should provide special interface for
special hardwares. Also, context-awareness and resource-
awareness need to provide API that should be customized
for respective platforms. For example, Java virtual ma-
chines need to provide API for control their garbage collec-
tion algorithms, but the API should be different according
to the algorithms. The above discussion introduces the
importance to provide ad-hoc API extension for respec-
tive implementation of a platform. We need to investi-
gate a methodology that does not degrade the portability
of software even when the ad-hoc extension is added for
exploiting underlying hardware and system platforms.

We believe that we need a new modularization tech-
nique to add non functional properties such as predictabil-
ity, reliability, and security or to extend functional prop-
erties in a systematic way to existing software. There are
many new proposals to increase the modularity of soft-
ware. We like to investigate these modularization tech-
niques for increasing the portability of middleware for
home computing.

4.9 Portability and Middleware Implemen-
tation

A standard middleware component provides a com-
mon application programming interface that enables us to
build portable applications. There are many open specifi-
cations for implementing commodity software. Although
each product has a different implementation, an applica-
tion using a common interface runs on any implementa-
tions. However, we have seen several problems in our ex-
periences. Since Java virtual machines that have different
implementation behave in different ways, the application’s
behavior is also changed. For example, the implementa-
tion of scheduling and synchronization has a great impact
on the behavior of applications.

The issue is important to develop future environments
based on commodity software. For example, if each imple-
mentation raises a different exception for the same internal
fault, it is difficult to implement a portable application.
In another example, if a location system returns a differ-
ent granularity(precision and accuracy) of locations infor-
mation, it is hard to implement portable location-aware
applications. Also, if respective implementations provide
different levels of security, reliability, and predictability it
is impossible to build portable software. The observation
shows the importance to specify the assumption of each
implementation explicitly, and the specification of the be-
havior in an abstract way.

5 Conclusion

In this paper, we have presented several experiences
with building two middleware infrastructures for home
computing, that are developed in our projects. We believe
that the experiences are important to build future univer-
sal software substrate for home/ubiquitous computing[5].

References

[1] D.R.Engler, M.F. Kaashoek, J.O'Toole Jr., “Exokernel: An Oper-
ating System Architecture for Application-Level Resource Manage-
ment”, In Proceedings of the 15th Symposium on Operating System
Principles, 1995.

[2] J.Liedtke, “u-Kernel Construction”, In Proceedings of 15th Sympo-
sium on Operating System Principles, 1995.

{3] T Nakajima, T Kitayama, H.Tokuda, “Experiments with Real-Time
Servers in Real-Time Mach”, USENIX 3rd Mach Symposium, 1993.

[4] T.Nakajima, H.Tezuka, A Continuous Media Application support-
ing Dynamic QOS$ Control on Real-Time Mach, ACM Multime-
dia’04, 1994.

[5] T. Nakajima, “Towards Universal Software Substrate for Dis-
tributed Embedded Systems”, In Proceedings of the International
Workshop on Real-Time Dependable Systems, 2001.

[6] T.Nakajima, D.Ueno, I.Satoh, H.Aizu, “A Virtual Overlay Network
for Integrating Home Appliances”, In the Proceedings of the 2nd
International Symposium on Applications and the Internet, 2002.

[7} T. Nakajima, S. Ochiai, and K. Iwasaki, “Making Linux Pre-
dictable”, In Proceedings of the International Workshop on Internet
Appliances on Linux, 2002.

[8] D.A.Peterson, et. al., “Recovery Oriented Computing(ROC): Mo-
tivation, Techniques, and Case Studies”, UC Berkeley, Technical
Report UCB/CSD-02-1175, 2002.

[9] Timesys, ”Linux/RT”, http://www.timesys.com.

[10] K Soejima, M.Matsuda, T.lino, T.Hayashi, and T.Nakajima,
“Building Audio and Visual Home Applications on Commodity Soft-
ware”, JEEE Transactions on Consumer Electronics, Vol.47, No.3,
2001.

[11] D.Ueno, T Nakajima, I.Satoh, “Web-Based Middleware for Home
Entertainments”, Asian 2002. 2002.

[12] J.Waldo, G.Wyant, A.Wollrath and S.Kendall, “A Note on Dis-
tributed Computing”, Technical Report, Sun Microsystems Labola-
tories, Inc., 1994.

COMPUTER
SOCIETY

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)
0-7695-2087-1/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

