
Using Virtualized Operating Systems
as a Ubiquitous Computing Infrastructure

Shuichi Oikawa, Midori Sugaya, Masatoshi Iwasaki and Tatsuo Nakajima
Graduate School of Science and Engineering, Waseda University

3-4-1 #61-505, Okubo, Shinjuku, Tokyo 169-8555, Japan
Email: �shui,tatsuo,pingoo,doly�@dcl.info.waseda.ac.jp

Abstract

The Personalization of computing environments is one of
the key aspects of ubiquitous computing, and such personal-
ization requires isolated computing environments for better
security and stability. This paper describes our ubiquitous
computing infrastructure architecture that is based on vir-
tualized operating systems in order to enable ubiquitous de-
vices and servers to be shared securely and reliably. Our ar-
chitecture also includes CPU resource management mech-
anisms to support time sensitive applications and to make
the execution of applications stable on shared devices.

1. Introduction

Ubiquitous computing is an emerging technology for the
retrieval and processing of information from the real world
that were not previously available and for the control of ev-
eryday interactions with various people and things. Ubiqui-
tous computing environments employ a number of ubiqui-
tous computing devices that are embedded in many things
at many places. Examples of such devices include informa-
tion and networked appliances, video cameras and mon-
itors, controllers, sensors, and actuators. Using those de-
vices, a new form of intelligent living environments can be
created by making information access and processing eas-
ily available for everyone from everywhere at any time [11].

Personalization is one of the key aspects of ubiquitous
computing. For example, context-awareness is one of the
most important issues in ubiquitous computing. It enables
the integration of physical and cyber spaces in order to per-
sonalize our living environments and to reduce the com-
plexities in our daily living. Such environments are appar-
ently not general ones, but are very specific to each user.
A personalized environment takes into account a user’s per-
sonal information, preferences, past activities and decisions,
and the current contexts in order to augment intelligence
and to ease one’s personal life.

The personalization of ubiquitous computing environ-
ments requires the functionality of security, stability, and
isolation. While malicious attacks should be prevented from
intruding into a computing environment, they should not af-
fect the other environments. A secure infrastructure should
be able to contain security breaches in an infected environ-
ment. Time sensitive applications requires their stable exe-
cution to meet their timing requirements and to keep their
QoS. Such provision of stability can make an computing
environment not affected by the activities in the other en-
vironments. As described above, a computing environment
for each user should be isolated from the others in terms of
security and stability.

This paper presents our ubiquitous computing infrastruc-
ture architecture that is based on virtualized OSes (operat-
ing systems) [1, 4, 10]. By virtualizing OSes, their multi-
ple instances can run on a single computer system. Each
user can have one’s own OS environment and construct a
computing environment on top of it. Virtualized OSes on
the same computer systems can communicate only through
their network communication channels; thus, a virtualized
OS can stay secure even if there is an intruded virtualized
OS on the same system. Our architecture also include CPU
resource management mechanisms to control the allocation
of CPU times to virtualized OSes and applications running
in them. The CPU resource management enables the sta-
ble execution of applications. Thus, a computing environ-
ment on top of a virtualized OS can be isolated from the
others.

Our goal is to construct a ubiquitous computing infras-
tructure at the OS level focusing on the personalization of
ubiquitous computing environments. There are many re-
searches on application middleware, which creates a com-
mon infrastructure to build applications on top of it and
to ease the application development. Only some of them
have the focuses on the provision of OS level functional-
ity. 2K [7] and Gaia [9] are the researches of which goal is
the provision of distributed service infrastructures. 2K is a
distributed OS, which aims at the management of dynamic

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Waseda University Repository

https://core.ac.uk/display/286945318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

heterogeneous computing environment. Gaia is a meta OS,
which provides services for the spontaneous networking
and communication of devices. Those OSes are built on top
of the existing OSes to provide the common services. In
contrast to those researches, we enable the existing OSes to
be used as our common service basis using OS virtualiza-
tion technologies. By using the existing OSes, we can take
advantage of a huge number of the existing software pack-
ages. By using virtualized OSes along with CPU resource
management, we can provide better security, stability, and
isolation.

The rest of this paper is organized as follows. Section
2 presents our ubiquitous computing infrastructure archi-
tecture that supports isolated personalization. Section 3 de-
scribes some application scenarios, and Section 5 concludes
this paper.

2. Ubiquitous Computing Infrastructure

This section first describes the requirements for a ubiqui-
tous computing infrastructure, and then proposes the use of
virtualized OSes as such an infrastructure. It also describes
the resource management to create stable computing envi-
ronments, and the instantiation and configuration system to
ease the use of virtualized OSes.

2.1. Requirements

We consider a practical ubiquitous computing environ-
ment where multiple users share the same environment. An
environment constructed in a home is shared by its fam-
ily members, and one in an office space is shared by its
corporate employees. Users of a ubiquitous computing en-
vironment use ubiquitous computing devices embedded in
it. Since the same environment is shared by multiple users,
those devices are also shared by them. We call those shared
computing devices servers. In such an environment where
sharing servers can happen everywhere, security and stabil-
ity are two major requirements to the infrastructure of com-
puting environments.

A secure environment should be able to prevent mali-
cious attacks from intruding into the environment. There,
however, can be a hidden software bug that creates a secu-
rity hole. Even if such a security hole was attacked and al-
lowed an intrusion into the environment, it is required for
a secure infrastructure to contain the security breach in the
infected environment and not to affect the other environ-
ments. In personalized ubiquitous computing environments,
it should also be possible to implement different levels of
security for different users since they have different prefer-
ences and attitudes towards security.

The provision of stability is needed to support time sensi-
tive applications. Time sensitive applications have their tim-

ing requirements and require certain amounts of CPU times
in certain time frames to be allocated to them. The stable ex-
ecution of other non-time sensitive applications, however,
should not be disturbed by time sensitive applications.

PDAs are not shared, but the same requirements can be
applied since they are also used in the same shared environ-
ments.

2.2. Virtualized Operating Systems

In order to meet the above requirements, we use virtual-
ized OSes with the CPU resource management functional-
ity. Virtualized OSes are OSes of which multiple instances
can run on a single computer system. There are mainly two
models to realize virtualized OSes. One is to use a VMM
(Virtual Machine Monitor) that creates a VM (Virtual Ma-
chine), in which an OS runs [4]. The other is to use an OS
personality server running on top of the host kernel, which
can be a microkernel [5] or a monolithic kernel [1]. Those
two models differ only in a way for the underlying layers to
provide the abstractions of computing resources. From here
on, we use the host kernel to describe the underlying lay-
ers that provides the abstractions of computing resources.
In contrast to the host kernel, the OS kernel in a virtual-
ized OS environment is called a guest kernel.

The virtualization of OSes can isolate one user’s execu-
tion environment from the others that share the same ubiq-
uitous server since users can own and use their personal in-
stallations of OSes. By doing so, the execution of an un-
trusted application can be contained in a separate virtual-
ized OS. Moreover, virtualized OSes can add advanced se-
curity features by employing virtual machine based intru-
sion detection technologies [2, 3].

The other advantage of using virtualized OSes for per-
sonalized ubiquitous computing environments is that differ-
ent virtualized OSes can run simultaneously on the same
ubiquitous server. Such a feature makes it possible to lever-
age the existing applications and to support legacy appli-
cations; thus, it protects the past investments and enables
phased transitions to new application platforms [6].

Figure 1 depicts the model that realizes virtualized OSes
on top of the host kernel. The figure shows an example con-
figuration on a ubiquitous server that is shared by User A
and B. They use their own virtualized OSes. User A uses
two virtualized OSes, VOS 1 and 2. User B uses one virtu-
alized OS, VOS 3. There is another virtualized OS, VOS 4,
which provides core system services. Applications in VOS
1 and 3 are communicating with a server in VOS 4 through
internal connections provided by the host kernel. A sepa-
rate virtualized OS, VOS 4, is used to run the core system
services in order to be isolated from any faults and secu-
rity breaches that can happen in user’s virtualized OSes.
Users can also employ a separate virtualized OS to run an

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

Computer System Hardware

User A User B

VOS 2 VOS 3 VOS 4VOS 1

System

Host Kernel

Figure 1. Virtualized Operating Systems

untrusted application. For example, User A uses VOS 2 to
run an untrusted application. The host kernel provides CPU
resource management to guarantee and to limit the alloca-
tion of CPU times to each virtualized OS. A virtualized OS
that runs time sensitive applications can always receive cer-
tain CPU times needed for their stable execution. A virtual-
ized OS that runs untrusted applications can be configured
to receive limited CPU times, so that their effect to the other
virtualized OSes can be restricted even if they fall into an in-
finite loop.

More details of resource management is described in the
next section, and more application scenarios using virtual-
ized OSes are presented in Section 3.

2.3. Resource Management

In order to have an execution environment completely
isolated from the others, the functionality of CPU resource
reservation is required to protect CPU resources allocated
for the environment. One computing environment created
by a virtualized OS is completely isolated if the execution
of programs in that environment is not affected by activities
in the other virtualized OSes that share the same computer
system. It means that programs in that environment can run
as if its OS occupies a single computer system. Since per-
sonalized ubiquitous computing environments require guar-
anteed allocation of CPU times for their time sensitive ap-
plications as described above, those CPU times have to be
allocated to their virtualized OSes that host those environ-
ments. Thus, the CPU resource reservation mechanisms are
needed in the host kernel. Such reservations of CPU times
also work as CPU resource protection especially if actual
utilization of CPU times can be enforced to cap the maxi-
mum CPU time allocation. The enforcement of CPU time
utilization prevents applications, and thus virtualized OSes,
from overusing CPU times. It can limit the negative effects
on CPU resource allocation to the other virtualized OSes.

Figure 2 depicts the overview of the architecture and its
components. There are the resource management subsys-
tems in both the host and guest kernels. The resource man-

Guest OS Kernel
Resource

Management
Subsystem

Guest OS Kernel
Resource

Management
Subsystem

VMM / Host OS Kernel
Resource

Management
Subsystem

User Process of
Guest OS

User Process of
Guest OS

User Process of
Guest OS

User Process of
Guest OS

VOS 1 VOS 2

Figure 2. Architecture of Virtualized OS with
Resource Management Mechanisms

agement mechanisms in the host and guest kernel control
the allocation of CPU times to virtualized OSes and the
guest kernel’s user processes, respectively. An appropriate
CPU time reservation is made for a virtualized OS in or-
der to enable CPU time reservations in the virtualized OS.

2.4. Instantiation and Configuration

In order to be able to use virtualized OSes as our ubiq-
uitous computing infrastructure, we also need a system
that eases the instantiation and configuration of virtual-
ized OSes. Our instantiation and configuration system helps
users to create new virtualized OSes and to configure them
for specific uses. For example, when a user would like to
create a new virtualized OS to run an untrusted applica-
tion that accesses Internet sites and sends back retrieved in-
formation, the virtualized OS needs an Internet connection
and an internal connection to the originating virtualized OS.
The user can use the instantiation and configuration system
to automate the process of the creation and configuration of
such a virtualized OS and the execution of the specified ap-
plication in it.

3. Application Scenarios

This section describes two application scenarios of using
virtualized OSes on a sever and a PDA.

A user can use multiple instances of virtualized OSes
to configure environments to isolate untrusted applications
and to contain them in separate virtualized OSes. Such sep-
arate virtualized OSes can be associated with limited CPU
resources by using our resource management mechanisms,
so that their overuse of CPU times does not affect the other
applications. Virtualized OSes that run untrusted applica-
tions are exposed to risks of being intruded by viruses. In-
fected virtualized OSes can simply be removed without los-
ing any important information. In contrast to untrusted ap-

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

User A User B

Pervasive Server

VOS 1 VOS 2 VOS 3 VOS 4

PDA PDA

Pervasive DevicesInsecure Clouds
of Servers

F

C

M

C

Figure 3. Application Scenario on a Server

plications, trusted time sensitive applications can consume
reserved CPU times to maintain the desired QoS specified
by their users. Our resource management mechanisms guar-
antee the allocation of reserved CPU times to those applica-
tions.

Figure 3 depicts our application scenario on a server.
User A uses three virtualized OSes, VOS 1, 2, and 3. User A
runs untrusted applications, which were downloaded from
the Internet, in VOS 2 and 3. The allocation of CPU times
to VOS 2 and 3 is capped to limit their CPU resource usage.
By using such a configuration, VOS 1 can be protected from
the untrusted applications in VOS 2 and 3. Even if they have
software bugs and fall into a busy infinite loop trying to use
CPU times as much as possible, our CPU resource manage-
ment mechanisms limit their CPU resource usage by cer-
tain amounts. If they were viruses and intruded VOS 2 and
3, the intrusion does not affect VOS 1 and those contam-
inated virtualized OSes can be simply abandoned. User B
also uses the same server at the same time. User B uses only
one virtualized OS, VOS 4, in which time sensitive applica-
tions, which control devices, are running. Our software ar-
chitecture enables those time sensitive applications running
in VOS4 to reserve CPU times and to guarantee their timely
execution. Any activities of User A do not affect the execu-
tion of User B’s applications. Therefore, User A and B can
securely share the same server.

A PDA is a personal device that is not shared with other
users; thus, there is no need to consider its sharing. Virtual-
ized OSes, however, can be used to configure a PDA to in-
ternally realize protected domains by running applications
and core services in different virtualized OSes. A firewall
running in a separate virtualized OS can also be used to re-
inforce the security of the PDA.

Figure 4 depicts our application scenario on a PDA. Core
services, such as a storage service and a window system, are
running in VOS 1. User applications are running in VOS 2.

VOS 2 VOS 3

PDA

Pervasive Servers

DVD

VOS 1

Insecure Clouds
of Servers

Figure 4. Application Scenario on a PDA

Connections to the Internet are provided through the fire-
wall running in VOS 3. By employing the firewall and hav-
ing it run in the separate virtualized OS, VOS 1 and VOS
2 can be protected from malicious attacks through Internet
connections. By running user applications in VOS 2, core
services running in VOS 1 can be isolated from software
faults due to bugs in user applications running in VOS 2.

4. Results from the Current Prototype

We developed a prototype virtualized OS environment
on Linux/RK [8] and by adapting its resource management
mechanisms to UML (User-Mode Linux) [1]. We call UML
with the resource management mechanisms UML/RK. This
section evaluates our current prototype and shows a virtu-
alized OS environment can isolate resource management
from each other.

First, we show the share of the CPU resource used by
a whole virtualized OS environment can be reserved and
also limited in order to create an isolated execution envi-
ronment. Figure 5 (a) shows the CPU times consumed by
all processes that creates a virtualized OS environment of
UML/RK in each period of CPU time replenishment. The
virtualized OS environment created by UML/RK consisted
of the total of 10 processes that includes the kernel, its sup-
porting programs, and its user processes of UML/RK. The
consumed times were calculated from the CPU cycles ac-
tually executed within each period. UML/RK was booted
with the reservation parameter of 20 millisecond CPU time
within 50 millisecond period. Figure 5 (a) shows the result
of the execution of UML/RK in which a program that exe-
cuted an infinite busy loop was running. We created 8 dis-
turbing processes also being executed on Linux/RK aside
of UML/RK. The disturbing processes executed an infinite
busy loop trying to consume CPU cycles as much as pos-
sible. The results show that UML/RK received the reserved

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

co
ns

um
ed

 C
P

U
 ti

m
e

(m
se

c)

time (sec)

Used CPU time with CPU reservation of 20 msec

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

co
ns

um
ed

 C
P

U
 ti

m
e

(m
se

c)

time (sec)

Used CPU time with 100HZ configuration

(a) (b)

Figure 5. CPU Time Reservation and Enforcement for a Virtualized Operating System Environment

CPU times even with disturbing processes running aside of
it, and the received CPU times were also limited as speci-
fied; thus, the execution of UML/RK was correctly isolated.

Next, we show that CPU resource management is pos-
sible in a virtualized OS environment. In order to evaluate
that CPU times can be effectively reserved and also be en-
forced by our CPU resource management mechanisms in
UML/RK, a benchmark program ran with a reservation of
the CPU resource in a UML/RK virtualized OS environ-
ment. Figure 5 (b) shows consumed CPU times calculated
from the CPU cycles actually executed within each period.
UML/RK was booted with the initial reservation parame-
ter of 20 millisecond CPU time within 50 millisecond pe-
riod. Figure 5 (b) shows the result of the execution started
with the reservation of 50 millisecond every 1 second. Af-
ter 10 seconds, the reservation parameter was changed to
100 millisecond every 1 second. 10 seconds later, the reser-
vation parameter was changed again to 50 millisecond ev-
ery 1 second. It repeatedly changed the reservation param-
eter every 10 seconds. The results show that UML/RK can
rigidly enforce their CPU times and the CPU times obtained
by processes change promptly when the reservation param-
eters are changed.

5. Conclusion

This paper described our ubiquitous computing infras-
tructure architecture that is based on virtualized OSes in
order to realize secure, stable, and isolated computing en-
vironments. Our architecture enables ubiquitous devices
and ubiquitous servers to be shared securely. Our CPU re-
source management mechanisms support time sensitive ap-
plications and make the execution of applications stable on
shared devices.

We are actively working on enabling virtualized OSes
to be our ubiquitous computing infrastructure. We imple-

mented the resource management mechanisms in UML as
our prototype. We are currently working on constructing a
virtualized OS environment that can scale from small em-
bedded systems to larger systems.

References

[1] J. Dike. A User-Mode Port of the Linux Kernel. In Proceedings of
the 2000 Linux Showcase and Conference, October 2000.

[2] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, P. M. Chen. ReVirt:
Enabling Intrusion Analysis through Virtual-Machine Logging and
Replay. In Proceedings of the 2002 Symposium on Operating Sys-
tems Design and Implementation, December 2002.

[3] T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proceedings of the
Internet Society’s 2003 Symposium on Network and Distributed Sys-
tem Security, February 2003.

[4] R. P. Goldberg. Survey of Virtual Machine Research. IEEE Com-
puter Magazine, pages 34–45, June 1974.

[5] D. Golub, R. Dean, A. Forin and R. Rashid. Unix as an Applica-
tion Program. In Proceeding of the Usenix Summer Conference,
June 1990.

[6] T. Kindberg and A. Fox. System Software for Ubiquitous Comput-
ing. IEEE Pervasive Computing, vol. 1, no. 1, January 2002.

[7] F. Kon, R. H. Campbell, M. D. Mickunas, K. Nahrstedt, and F. J.
Ballesteros. 2K: A Distributed Operating System for Dynamic Het-
erogeneous Environments. In Proceedings of the 9th IEEE Inter-
national Symposium on High Performance Distributed Computing,
August 2000.

[8] S. Oikawa and R. Rajkumar. Portable RK: A Portable Resource Ker-
nel for Guaranteed and Enforced Timing Behavior. In Proceedings
of IEEE Real Time Technology and Applications Symposium, June
1999.

[9] M. Roman, C. Hess, R. Cerqueira, A. Ranganat, R. H. Campbell, and
K. Nahrstedt. Gaia: A Middleware Infrastructure to Enable Active
Spaces. IEEE Pervasive Computing, pages 74–83, October 2002.

[10] J. Sugerman, G. Venkitachalam, and B. H. Lim. Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual Machine Moni-
tor. In Proceedings of 2001 USENIX Annual Technical Conference,
2001.

[11] M. Weiser. The Computer for the Twenty-First Century. Scientific
American, September 1991.

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

