
Citron: A Context Information Acquisition Framework
for Personal Devices

Tetsuo Yamabe∗, Ayako Takagi, Tatsuo Nakajima
Department of Computer Science, Waseda University

{yamabe, ayako, tatsuo}@dcl.info.waseda.ac.jp

ABSTRACT
This paper describes a context information acquisition frame-
work for a personal device that equips a variety of sensors.
The framework captures context information about a user
and his/her surrounding environment; and the information
is used to adapt the behavior of applications running on
the personal device. Our framework adopts the blackboard
architecture to execute multiple analysis modules that an-
alyze signals from respective sensors. Respective modules
implement different algorithms to complement each other’s
results to retrieve more accurate and higher abstract context
information.

1. INTRODUCTION
The rapid progress of computing and communication tech-

nologies enables devices to be smaller and distributed in our
daily life. Today, we find these devices to be embedded in
the variety of daily objects(e.g. chair[17], desk[12]) in an
invisible way. As described in [11], context-awareness is one
of the significant abilities for such devices to work sponta-
neously in a dynamic changing environment. One of the
efficient methods to realize context-awareness is to perceive
the real world by sensors. By analyzing raw data acquired
from sensors; devices and services can recognize the context
of a user, surrounding environment and itself.

Personal devices, such as PDAs and mobile phones have
been developing with a perceptual ability[6, 4]. These de-
vices are so close to a user that it is expected to work as a
smart assistant of him. However, it has not been discussed
sufficiently that what type of sensors are useful to acquire a
user’s context information and what is required in the pro-
cess of context acquisition on a personal device.

In this paper, we have discussed about Muffin that is a
prototype of a sensory personal device and its context infor-
mation acquisition framework. Muffin has fifteen kinds of
sensors and can sense several types of contextual quantity,
such as acceleration, orientation, air temperature, a user’s
heart rate and so on. We have performed some experiments
about these sensors to investigate the characteristics of each
sensor for acquiring context information.

These experiments show that the validity of the sensor
value and analysis algorithm changes frequently. Because
a personal device is used in several styles. For example,
we should monitor the state of the device, such as “Which
side is top?” or “Is the person holding the device or not?”.
Then, we can reflect the state to select an appropriate set

∗Currently belong to Nokia Research Center, Nokia Japan
Co., Ltd

of sensors and change the behavior of an analysis algorithm.
Furthermore, time delay is caused by each analysis algo-
rithm in some cases and it prevents the applications from
context acquisition in real time. Therefore, we should se-
lect another responsive way according to the state of the
device. It can be said that multiple sensors enable appli-
cations to acquire context information flexibly by analyzing
the information from multiple aspects of view. These facts
make it difficult to develop context-aware applications on
these devices and we feel that a middleware support should
be offered to application programmers.

We have developed a framework named Citron to utilize
the advantage of multiple sensory personal device like Muf-
fin and to implement context analysis modules on it. Cit-
ron supports a parallel context analysis and a coordination
among them by employing the blackboard architecture[16].
By running context-aware applications on top of Citron, we
present the usefulness and future possibilities of such per-
sonal devices fabricated with multiple sensors.

This paper is organized as follows. In Section 2, we have
described the characteristics and requirements for realizing
context-awareness on personal devices. In Section 3, we have
introduced Muffin that is a prototype of a sensory personal
device. Based on our experiences with Muffin, we show
some difficulties that are inherent in context acquisition on
personal devices. In Section 4, Citron framework has been
introduced. Citron offers a framework for developing con-
text analysis modules and for coordinating them on a shared
space. It enables context analysis modules to adapt them-
selves according to the state of Muffin. In Section 5, we
have shown a sample application running on Citron and we
have evaluated our system in Section 6. In the final sec-
tion, we have summarized the effectiveness of our approach
and we have presented the future work obtained from the
evaluation.

2. PERCEPTUAL ABILITY IN PERSONAL
DEVICES

As seen in the vision of a ubiquitous computing environ-
ment proposed by Mark Weiser[14], the recent progress of
computing and communication technologies has made com-
puters pervasive. They have been distributed and disap-
peared into the background of our daily life in the last twenty
years. It has also been said that context-awareness is a sig-
nificant ability to make services and applications more useful
and comfortable for a user. Context information varies ac-
cording to the subject and purpose of the usage. Therefore,
many physical objects are augmented to enable applications
to retrieve context information by embedding computers and
sensors.

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Waseda University Repository

https://core.ac.uk/display/286945316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Personal devices have two special characteristics in ubiq-
uitous computing environments. One is a partnership with
a user. Because they are carried by the user most of the day
and they are used very frequently. Considering from a sens-
ing aspect, they could monitor the user and could recognize
everything he/she does. Second one is a connectivity to a
user and the augmented environment by context-aware ser-
vices. The user can access to the several context-aware ser-
vices running in the background through the device, because
they have connectivity to the access point in the surrounding
environment. On the other hand, services can access to the
user through his/her personal device. Services can display
information and make interactive actuation(e.g. vibration,
make sound and light) through the device, because of this
connectivity. Therefore, personal devices also provide a per-
ceptual ability and play an important role in the ubiquitous
computing environments.

At the early stage of context acquisition from personal
devices; location and time are the main resource of its con-
text[1]. To identify its location, GPS is used in outdoor envi-
ronments and the other location systems are used indoor en-
vironments[10]. Device activities(e.g. network connection)
and static personal information(e.g. id, name, schedule) are
also processed as context. To acquire more rich and various
context, however, additional sensors are required. Personal
devices also have two characteristics from the view point
of context sensing. One is the capability for attaching sen-
sors, another one is its capability to cope with the rapidly
changing context. Context information that devices can de-
tect heavily depends on the sensors that they are equipped
with[2]. In the case of mobile devices, it is limited that
how many and what type of sensors can be attached and
arranged because of its portable small size. Furthermore,
context that they detect(e.g. a user’s activity, location, net-
work connection) is changing rapidly and unstable. Thus,
some limited sensors have been attached for specific context
acquisition in traditional mobile and personal devices.

The most frequently used sensor on mobile context acqui-
sition is an accelerometer. An accelerometer is cost efficient
and sufficiently small to be incorporated into personal de-
vices. Furthermore, the acceleration of the device could be
effective to recognize the activities(e.g. walking, running,
walk up/down stairs) and motion(e.g. shaking, rotating,
knocking on) of a user[8, 13]. Second one is a microphone.
Ambient noise is measured to detect the place where a user
is(e.g. meeting room, restaurant, on the street)[6, 9]. To rec-
ognize speaking or talking, a microphone is also useful[13].
Environmental sensors like microphone is frequently used on
a personal device. Light and temperature sensors are also
used to acquire environmental situation and a user’s con-
text[5].

However, it has not been discussed that what types of
sensors are useful and what kind of context is acquired effi-
ciently by the personal devices because of its limitation. In
the next section, we introduce Muffin that is an unique per-
sonal device in terms of the sensors that it has. Based on our
experiences with the application development on Muffin, we
have figured out the requirements and possibilities in such
a multi sensory personal devices and context acquisition.

3. MUFFIN AND SOME REQUIREMENTS
IN CONTEXT ACQUISITION

3.1 Overview of Muffin

Muffin is a prototype of a future personal device for study-
ing on context acquisition in the ubiquitous computing envi-
ronments. It has been developed by the collaboration work
of Nokia Japan Corporation and our laboratory. The signif-
icant characteristics of Muffin are its sensing capability for
context-awareness and its interactive motion(e.g. gesture)
detection. Muffin has thirteen kinds of sensors in the PDA
box and two kinds of externally attached sensors. Figure 1
shows Muffin and sensors with arrows pointing the places
they are incorporated into.

Front camera

RFID reader

Pulse sensor

Skin temperature sensor

3D Linear accelerometer

Grip sensor

GPS

Skin resistance sensor

Barometer

Compass / Tilt sensor

Rear cameraAir temperature sensor

Relative humidity sensor

Alcohol gas sensor

Ultrasonic range finder

Microphone

Figure 1: Sensors on Muffin terminal

Sensors on Muffin are roughly divided into four groups.
First group is the environmental sensors, which include an
air temperature sensor, a relative humidity sensor and a
barometer. Second group is the physiological sensors, which
include an alcohol gas sensor, a pulse sensor, a skin tem-
perature sensor and a skin resistance sensor. Third group is
the motion/location sensors, which include a compass/tilt
sensor, a 3D linear accelerometer, a grip sensor, a ultrasonic
range finder and a GPS. The ultrasonic range finder and
the GPS are externally attached as optional sensors. Last
group is the other sensors, which include an RFID reader,
front/rear cameras and a microphone. Linux is running on
Muffin, so each sensor is enabled to be accessed as a device
file. To acquire the sensor value, applications should open
and read the value from the device file(e.g. /dev/AccelX).

Muffin has been developed as an ordinary PDA. There-
fore, it has common user interfaces and connection inter-
faces. To be operated by a user, Muffin provides a touch
screen, a micro joy stick and a microphone. To actuate to
the user, Muffin is fabricated with a speaker, an LED light
and a vibration motor. Muffin also provides IrDA, Blue-
tooth and wireless LAN as remote connection interfaces.
The other equipments are a PCMCIA card slot, a USB port
and a serial connection port.

3.2 Sensors and Context-Awareness on Muffin
Muffin has so many kinds of sensors that it can acquire

several kinds of physical phenomena. We listed up and clas-
sified context expected to be acquired by Muffin. Table 1
shows the relationship between expected context and sensors
on Muffin. Context is divided into three categories based on
its subject(Muffin, a user and an environment). Based on
this classification, we performed some experiments about
these context acquisition. As the result of that, we have
found some important points and issues to consider when
we acquire context information from Muffin.

Muffin : The context states of Muffin can be acquired
accurately because of the sensors that they depend on are
very reliable and responsive in real time. Furthermore, the

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Class Description Sensor

Context of Muffin

State Moving Accelerometer,

Top side Ultrasonic range finder

Direction Compass,

Accelerometer

Held by a user Skin resistance sensor,

Grip sensor

Context of a environment

Air Air temperature Air temperature sensor

Air humidity Relative humidity sensor

Air pressure Barometer

Sound Ambient noise Microphone

Talking voice

Class Description Sensor

Context of a user

Activity Standing or sitting Accelerometer,

Walking or running Ultrasonic range finder,

Going up/down stairs Compass

Geographical Location GPS

information Orientation Compass

Physical Level of stress Skin resistance sensor,

condition Skin temperature sensor,

Pulse sensor, Grip sensor

Alcoholic breath Alcohol sensor

Emotion Exciting Skin resistance sensor, Grip sensor

Surprising Skin temperature sensor,

Fearing Pulse sensor, Accelerometer

Table 1: Relationship between expected context and sensors on Muffin

states of Muffin can be classified clearly into exclusive classes.
For example, Muffin could be observed just as “held” or
“free” from the view point of “Is Muffin held by a user?”.
Consequently, they could be analyzed by a simple algorithm,
such as a threshold analysis.

User : There are three significant issues in a user’s con-
text acquisition. First issue is an immediate change of avail-
able sensors and the context analysis method. To acquire a
user’s activity, the user has to take Muffin with him/her in
some ways. However, most of the context analysis and avail-
able sensors change according to the position or situation in
which Muffin is used. For example, the analysis method
to detect standing or sitting by the acceleration; changes
whether Muffin is held or waist-mounted. Furthermore, if it
uses a ultra range finder to correct analysis results by mea-
suring the distance from the floor, the validity of the sensors
also changes.

Second issue is the time consuming process in context ac-
quisition, and it is important to the characteristic of sensors
and a context analysis method. In the previous example,
detecting “sitting” state is easy at five minutes after the
“sitting” event occurs. To detect the moment when the
user sat, we need to analyze a special wave patten of sensor
values in a few hundred millisecond. This issue should be
also discussed about physical conditions and emotion sens-
ing. When retrieving the raw value from physiological sen-
sors, Muffin has to be gripped. However, the validity of data
from these sensors in short term is not sufficient to recognize
context information. Because the value from a skin temper-
ature sensor changes very slowly, and one from a pulse sensor
changes too rapidly. To generate context, it is necessary to
log the average of acquired data and compare them in the
span of time.

Last issue is the complexity and ambiguity of context in-
formation. The definition of complex context, such as an-
griness or feeling of hunger, heavily depends on its situation
and applications that they are used by. For example, the
meaning of loud voice is different in respective situations(e.g.
between meeting room and talking with friends). To analyze
and classify the sensor value, not only main resources(e.g.
microphone) but also other resources(e.g. location, activity)
are required.

Environment : Context of the surrounding environ-
ment relates directly to raw sensor data, so it is not difficult
to acquire them. However, Muffin gets hot internally as
time goes on and environmental sensors are affected by the
heat. As the result of that, sometimes the measurement is
invalid. This problem arises from the design defection, so

we should redesign the placement of sensors in Muffin and
protect them from the internal heat.

3.3 Requirements in Context Acquisition on
Muffin

We have found that there are practical difficulties in rec-
ognizing even standing or sitting. In the physical condi-
tion or emotion sensing, such difficulties become increasingly
prominent because the complexity of these context increases.
Therefore, we should go back to consider simple context ac-
quisition and discuss what is significant requirements for
effective and robust context acquisition on Muffin.

At first, the representation of context should be decom-
posed into the combination of other context processing. If
complex context could be decomposed into simple one like
the activity of Muffin, it becomes easy to reconstruct and
represent higher abstract context with a combination of them.

Next, we should observe physical phenomena from multi-
ple aspects of view. Additional sensor data or context are
required to increase the quality of information for making
a decision. Furthermore, it is considerable that an analysis
method is changed to alternative one when required sensors
became disabled as described in Section 3.2. This approach
is also effective for avoiding a time consuming process. Ac-
cording to the situation, an additional sensor or another
analysis method is very effective to recognize such time con-
suming context. For example, an ultra range finder is effec-
tive to detect “He sat just now.”, if he is holding Muffin and
the sensor measures the distance from the floor. Consider-
ing from the standpoint of sensors, it is also said that one
sensor offers multiple meanings and context.

At last, it is required to specify the relationship and de-
pendency among decomposed context information. Our ex-
periments show that there are dependency relations among
context information. For example, available analysis meth-
ods or sensors are changed according to the situation, be-
cause there are several styles to use Muffin. We summarize
and classify these relationships of three cases shown in Fig-
ure 2. These relationships are classified based on a hierar-
chical context abstraction. Resources in the figure include
context or raw sensor data, and they are inputs for the anal-
ysis module. The analysis module works on predetermined
context acquisition and has an analysis method in it.

Case a) is a basic hierarchical context abstraction with a
combination of Resource A and Resource B. Case b) and
case c) are its variations. In case b), context is mainly rep-
resented as the result of processing of Resource A. Resource
B enables an analysis module to adapt its behavior accord-

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Context analysis module Context Context which is analyzed

Resource Context or sensors as input of analysis

a) b) c)

Resource A Resource BResource A Resource B

Context

Resource A Resource B

Context Context

Resource A Resource B

Figure 2: Relationship and dependencies among
context

ing to the availability of resources. In case c), context is
represented as the result of processing of Resource A or Re-
source B. When the availability of an analysis module is not
sufficient, the current module is alternated by another.

As a result of the discussion, significant requirements for
context acquisition on Muffin are pointed. They are not
separated issues, but related to each other. Figure 3 shows
the complication diagram of context processing with these
requirements in Muffin.

Complexity

Held or not

Top side

Under observation or not

Activity(0 - 100)

Walking or running or not

Moving or stop

Accel

Skin resistance

Context observation and sensor analysis

from multiple aspect of view

Simple context representation

and

reconstruction of complexity context

Adaptive and alternative analysis

depending on

availablity of sensors and context

Sensor

Analysis Module

Ultra range finder

Activity(0 - 100)

Figure 3: Context processing diagram with require-
ments in Muffin

There are four basic contexts of Muffin activities in the
figure, “Held or not”, “Top side”, “Moving or stop” and
“Activity”. Each subject takes an exclusive state and the
state of Muffin can be classified into them clearly. How-
ever, the relationship among them is non-exclusive, so more
complex context information can be represented with the
relationship as described above. For example, if the display
of Muffin turns up(“Top side”) and a user holds it(“Held
or not”), then Muffin may be under observation(“Under ob-
servation or not”). This is one of the relationship among
context represented as case a). To acquire a wide variety
of context, one sensor is analyzed from multiple aspects of
view. For example, acceleration data are analyzed by three
analysis modules and processed into different context and
meanings. Furthermore, context is also observed from mul-
tiple view points. In this figure, “Activity” is recognized in
two ways. They are changed according to the availability of
sensors. This relationship is case c) that changes its analy-
sis module and required resources dynamically. We can also

find case b) in this case. The analysis module of “Walking
or running or not” changes its threshold according to the
style of Muffin taken by.

We have refined this context processing diagram into the
framework of context acquisition on Muffin. Therefore, we
have implemented it as a framework named Citron(Context
Information acquisiTion fRamework fOr muffiN), which of-
fers a framework for context analysis modules and coordi-
nating them on a shared space. In Section 4, we have intro-
duced Citron and its implementation.

4. CITRON: ARCHITECTURE AND IMPLE-
MENTATION

4.1 System Architecture
To implement the requirements discussed in Section 3.3,

two functional capabilities are necessary. First one is a con-
text analysis module framework that enables to specify the
relationship to the other. Second one is a common space to
share the acquired context among context analysis modules
for a coordination.

We have employed the blackboard architecture for the co-
ordination among context analysis modules. Furthermore,
we have defined each context analysis module as a worker for
exclusive context acquisition. The blackboard architecture
is the data centric processing architecture that has been de-
veloped for speech understanding and artificial intelligence.
There are one common shared message board and multiple
worker modules for data analysis. Each module reads infor-
mation from the board as a resource and writes the result of
processing to it. Therefore, the coordination among modules
is established without the knowledge about other modules.
Furthermore, acquired data are analyzed and complimented
in the process of the coordination. To implement the black-
board architecture, we adopt the tuple space based program-
ming model[3]. The tuple space is one of the implemen-
tation for interprocess communication among independent
processes. The tuple space refines a common shared space
with a very flexible data type called tuple and enables appli-
cations to search tuples with a template based query. The
significant characteristics of the tuple space model in the
ubiquitous computing environments are 1) loose coupling of
worker modules, 2) information sharing among worker mod-
ules and 3) flexible data representation.

It is efficient for devices and services to enable them to
work without specific knowledge(i.e. IP, port) about others
in a dynamic changing environment. The shared space en-
ables worker modules to coordinate with each other. Lastly,
context information for several applications could be rep-
resented as tuples because of its flexible data type. Wino-
grad [16] discussed the characteristics and trade off between
the blackboard architecture and other frameworks for co-
ordinating multiple processes. We have also employed the
blackboard architecture for designing Citron architecture,
because it is an adequate architecture to implement the re-
quirements in context acquisition on Muffin. Figure 4 shows
an overview of the Citron system architecture. Citron is con-
sist of two software components, Citron Worker and Citron
Space. We explain respective components as follows.

Citron Worker is the sensor data analysis module.
Each worker retrieves sensor data from Muffin and context
information analyzed by other workers from Citron Space.
Each worker handles the acquisition of specified context,
which could be represented exclusively. For example, a
worker for recognizing “held or not” observes the value of a

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Citron Worker

Citron Space

Citron Daemon

Citron API

Context Aware Application

put

read

Sensor Abstraction Function

Sensor

Context Citron Space Function

������

� ����	
���������

���������������

������������

�����

� ����������

� �������

����	��������������

Figure 4: Citron architecture overview

skin resistance sensor and analyzes “held” or “free” by the
threshold analysis. This design enables workers to adapt its
analysis according to the state of Muffin.

Citron Space is the tuple space for storing tuples includ-
ing context information by Citron Workers. Citron Space
handles the requests for data management from Citron Worker
and applications running on Citron. Context information is
represented as the combination of meta information, such as
subject, state and time.

There are two internal functions and one function for ex-
ternal applications in the system. Internal functions are the
sensor abstraction function and the Citron Space function.
The sensor abstraction function is just a simple wrapper
function for accessing device files of sensors. Citron Worker
acquires the sensor value by using this function. The Citron
Space function provides the basic function to access the com-
mon tuple space, which are put, read and get. Put function
inserts context into Citron Space. Read and get function
read context from Citron Space with template matching. A
difference between them is that get function remove con-
text, but read function does not. Last function is Citron
API for being used by applications. This API is offered
for retrieving context information from context-aware ap-
plications running on Citron. More details are described in
Section 4.3.2.

4.2 Context Representation
As shown in the previous section, context in Citron is

not just the representation of context information, but the
medium for the communication among Citron Workers. Fur-
thermore, context information is treated as a tuple. Thus, it
is required to consider the available context representation
format for searching in the read/get method. In the cur-
rent implementation, context information in Citron is rep-
resented as follows.

Context := {ID, Subject, State, T ime, Lag, Interval}

The meaning of the context is represented as the com-
bination of a subject, state and time field. For example,
the context information, which is written as “A user is not
walking(just standing).”, is represented as

{“ID walk′′, “walking′′, “at rest′′, 1107005245, 0, 100}

in the tuple format. In this case, the state could be “walk-
ing” or “at rest”. However, a subject is fixed and Citron
Worker only acquires specified context. The lag and in-
terval field are meta information of the context, which are
inherent in its analysis. Some analysis algorithms such as
the FFT analysis require a certain amount of data and time
to store them into a buffer. It means the analysis of context
information requires some time interval. The lag field shows
the time lag and applications can handle it by itself. On
the other hand, the interval field shows the freshness of the
context. The ID field specifies the Citron Worker which ana-
lyzed the context. Context in Citron Space is updated every
its polling interval only by Citron Worker specified in the ID
field. Therefore, applications can examine its freshness by
handling the interval and time field.

4.3 Implementation
Citron is written using the C language and provides inter-

face for C applications. Moreover, a framework for Citron
Worker development is also provided. In this section, we
introduce the framework and API offered for developers.

4.3.1 Citron Worker Framework
This framework offers the high level abstraction for pro-

gramming a context analysis module in Citron. It provides
common functions among context analysis modules, such
as connection management with Citron Space and sensor
data retrieval from Muffin. Therefore, developers who cre-
ate Citron Worker to acquire context have to consider the
analysis logic module implementation only. The specifica-
tion of the analysis, such as the type of the sensor, subject
of the context, time lag in the analysis and polling interval
are declared in the initialization of Citron Worker.

At first, a developer has to set value to these fields and
initialize his/her Citron Worker. After the initialization,
the analysis function is invoked at every specified interval.
This function invokes an analysis logic module with retriev-
ing specified sensor values and context. The result of the
analysis is returned as context and is put into Citron Space.

4.3.2 Citron API
Applications running on Citron access to Citron Space by

invoking this API. Citron Space is implemented based on
LinuxTuples, which is the tuple space implementation run-
ning on Linux [15]. The query processing to search tuples
is wrapped as a simple function, which only use the subject
field as a key to search. Because this design is sufficiently
useful for many applications and it decreases the load of
template matching on Citron Space. Furthermore, Citron
API also provides the callback function management inter-
face. Developers can register/remove callback functions to
handle state change events that occur in Citron Space.

We have developed several Citron Workers and context-
aware applications to evaluate the Citron architecture and
framework. In the next section, one sample application and
Citron Workers required by it are shown.

5. A SAMPLE APPLICATION
We have developed a sample context-aware application

named “StateTracer”, which uses a user’s context acquired
by Muffin. This application displays the track of a walking
route with a user’s state in real time. StateTracer shows
not only the track of the route but also walking speed and

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

how long a user had stayed at the same point. The walking
speed is divided into five levels and distinguished by using
different colors. The point where the user had stopped is
represented as a circle and its radius become larger based
on the stopping interval.

From the view point of the application, three kinds of
context are required. They are “walking state”, “walking
direction” and “walking speed”. To draw the track of the
route, at least “walking direction” and “walking state” are
required. Context representing “walking speed” is optional,
however, it is necessary to speculate the distance and cre-
ate a more accurate map. “Walking speed” is measured by
the level of the activity of Muffin. Based on our examina-
tion, we have found that the activity is correlated with the
walking speed of a user, while he is walking and while watch-
ing Muffin. It follows that context representing “watching”
is required. To acquire these context, six Citron Workers
work in this application. They are “orientation”, “walking”,
“activity”, “watching”, “holding” and “top side”. Figure 5
shows the relationship among context information required
by StateTracer and Citron Worker.

Top_side

Orientation
Walking

Walking direction

“N”, “NW”, “W”, “SW”,

“S”, “SE”, “E”, “WE”

Walking speed

“0”, “1”, “2”, “3”, “4”

Walking state

“walking”, “at_rest”

Holding

Watching

Walking speed

Walking state
Walking direction

Citron Woker

Sensor

accel_x, accel_y, accel_zskin resistancecompass

Activity

Figure 5: Required context and Citron Worker in
StateTracer

The “orientation” worker retrieves data derived from a
compass and analyzes which orientation Muffin is looking
forward to. This orientation can be regarded as the direction
of a user walking, when a user is watching at Muffin. The
“watching” worker recognizes whether the user is watching
at Muffin or not by a result of “holding” and “top side”
worker analysis. If the user holds Muffin and displays or the
head of Muffin turns up, the “watching” worker recognizes
the state as “The user is watching Muffin”. The “holding”
worker retrieves and analyzes data derived from a skin re-
sistance sensor. The “top side” worker analyzes the gravity
acceleration. The “activity” worker also retrieves the accel-
eration and analyzes the motion of Muffin by using the FFT
analysis. This worker requires context generated by the “top
side” worker, because the axis, which is mainly measured,
changes according to the top side of Muffin. As described
above, an analyzed activity is divided into five levels and
treated as the walking speed. The “walking” worker decides
whether a user is moving or at rest by analyzing data de-
rived from an accelerometer. This context is as same as the
“walking state” in StateTracer.

It is also possible for the StateTracer to recognize the
walking state only by “walking speed”. However, the per-
formance in the analysis is not good, because the “activity”
worker has to take about 6.4 seconds to recognize the con-
text. It is the time to collect 128 samples into buffer and
analyze at every 50 msec. On the other hand, the “walking”
worker analyzes a user walking or not by simple 0 cross de-
tection in real time. It is expected that the parallel analysis
using these two Citron Workers enables StateTracer to be

more responsive to recognize the walking state. In the next
section, we evaluate Citron by measuring the overhead in in-
voking API and comparing the accuracy of the map drawn
with different workers.

6. EVALUATION

6.1 Performance
We have measured the overhead in accessing Citron Space

by invoking the Citron Space functions described in Section
4.1. The dependency relation between the time and number
of running Citron Workers is also examined. The execu-
tion time is measured as the average of whole workers with
changing a number of Citron Worker. Each worker invokes
each Citron Space function ten times. Figure 6 shows the
result of the examination.

�

��

���

���

���

���

� � � � � � � � 	 �� �� �� ��

���������������

�
�
�
�
�
��
�
�
	�
�

�
	�

�
�
�

���

����

���

Figure 6: Relationship between execution time and
number of running workers

Figure 6 clarifies that the overhead in accessing Citron
Space increases as the number of Citron Worker increases.
Especially, the execution time increases remarkably when
the number of Citron Worker goes over eight. It is assumed
that the limitation of workable Citron Worker heavily de-
pends on the implementation of Citron Space. As described
in Section 4.3.2, Citron Space is implemented as a wrapper
function on LinuxTuples. It can be said that the perfor-
mance will be enhanced if the implementation is optimized
for processing context information. In the current imple-
mentation, Citron Worker only puts the result of its analy-
sis, when the state of context is changed, to reduce the load
of Citron Space.

6.2 Experiences with the Sample Application
In this section, we evaluate Citron by measuring the accu-

racy of context by StateTracer. The accuracy is measured by
comparing drawn maps in three cases. We defined the case
with retrieving only walking state as case 1 and only walking
speed as case 2. Requiring both context for a hybrid anal-
ysis is defined as case 3. Figure 7 shows the walking route
for the examination in the left side. An examinee walks the
route with holding Muffin in his/her hand. However, the ex-
aminee does not pay an attention to the display to eliminate
the effects of the intentional map creation. To examine the
difference of performance among Citron Workers and the ef-
fect to analyze context information, the examinee changes
walking speed intentionally. The maximum walking speed
in this examination is about five kilometers per hour and
normally it is about three kilometers per hour. Moreover,

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Walking route a) case 1 b) case 2 c) case 3

Figure 7: Walking route and drawn maps by StateTracer in each case

there are two stop points on the route. The examinee stops
for ten seconds when he comes to the point.

Figure 7 also shows the result of the examination in each
case. Figure a) is drawn with the time of walking and its
orientation. Turning point and time that a user has stopped
can be confirmed clearly. Because the “walking” worker re-
sponds quickly when it recognizes the state change of a user’s
walking. However, the walking speed is not reflected and the
length of each edge is determined according to only walk-
ing time. As contrasted with Figure a), Figure b) speculates
the walking distance based on the walking speed. The drawn
map is similar to an actual map than Figure a). Figure b)
also shows that the “activity” worker could not detect the
stop point, because ten seconds are not sufficient time for
the FFT analysis to take the state change internally. Fig-
ure c) shows that a more accurate map than Figure a) and
Figure b). This case exploits the advantage of each analysis
and shows the effectiveness of hybrid context acquisition ap-
plying multiple types of analysis. The stop point is detected
clearly and the shape of the map is the most accurate.

7. CONCLUSION AND FUTURE DIRECTION
In this paper, we have discussed about Muffin that has

fifteen kinds of sensors and an effective framework called
Citron for context acquisition on personal devices. We found
two further issues in context acquisition while developing
the prototype of Citron. One is the performance of Citron
based on the blackboard architecture. The parallel context
analysis with multiple sensors heavily burdens the personal
devices. Therefore, we should optimize the performance and
reduce the load by the redesign of Citron.

Another one is the limitation of context acquisition on
Muffin. Many physiological sensors on Muffin requires some
constraints to be used, such as the position of a finger and
the style of holding, to measure valid data. Therefore, the
accuracy of such sensors changes so frequently. It follows
that other devices(e.g. wearable sensor) and sensors are re-
quired as an alternative resource of context analysis. Citron
has a mechanism for the coordination with such remote de-
vices, because the blackboard architecture enables a system
to add/remove other knowledge resources easily.

8. REFERENCES
[1] G.D.Abowd, C.G.Atkeson, J.Hong, S.Long, R.Kooper,

M.Pinkerton, “Cyberguide: A mobile context-aware
tour guide”, In ACM Wireless Networks, pp.421-433,
1997.

[2] M.Beigl, A.Krohn, T.Zimmer, C.Decker, “Typical
sensors needed in ubiquitous and pervasive
computing”, First International Workshop on

Networked Sensing Systems (INSS) 2004, pp.153-158,
2004.

[3] N.Carriero, D.Gelernter, ”Linda in Context”,
Communications of the ACM, 32(4), 1989.

[4] G.Chen, D.Kotz, “A survey of context-aware mobile
computing research”, Tech Report TR2000-381, Dept.
of Computer Science, Dartmouth College, 2000.

[5] P.Fahy, S.Clarke, “Cass – middleware for mobile
context-aware applications”, In Second International
Conference on Mobile Systems, Appli- cations, and
Services, 2004.

[6] H.W.Gellersen, A.Schmidt, M.Beigl. “Multi-sensor
context-awareness in mobile devices and smart
artifacts”, The Journal of MONET, 7(5):341-351,
2002.

[7] K.Hinckley, J.S.Pierce, M.Sinclair, E.Horvitz,
“Sensing techniques for mobile interaction”, In UIST,
pp91-100, 2000.

[8] K.V.Laerhoven, N.Villar, H.W.Gellersen. “Multi-level
sensory interpretation and adaptation in a mobile
cube”, In In Proc. of the third workshop on Artificial
Intelligence in Mobile Systems, 2003.

[9] J.Mantyjarvi, J.Himberg, P.Kangas, U.Tuomela,
P.Huuskonen, “Sensor signal data set for exploring
context recognition of mobile devices”, In Workshop:
Benchmarks and a database for context recognition,
2004.

[10] N.B.Priyantha, A.Chakraborty, H.Balakrishnan, “The
cricket location-support system”, In Mobile
Computing and Networking, pp32-43, 2000.

[11] B.Schilit, N.Adams, R.Want, “Context-aware
computing applications”, In IEEE Workshop on
Mobile Computing Systems and Applications, 1994.

[12] A.Schmidt, M.Strohbach, K.Laerhoven, A.Friday,
H.W Gellersen, “Context acquisition based on load
sensing”, In In Proceedings of Ubicomp 2002, 2002.

[13] D.Siewiorek, A.Smailagic, J.Furukawa, N.Moraveji,
K.Reiger, J.Shaffer, “Sensay: A context-aware mobile
phone”, In Proceedings of 2nd International Semantic
Web Conference, 2003.

[14] M.Weiser, “The computer for the twenty-first
century”, Scientific American, pp.94-104, Sep, 1991.

[15] W.Will, “Linuxtuples”,
http://linuxtuples.sourceforge.net/.

[16] T.Winograd, “Architectures for context”, HCI
Journal, 2001.

[17] T.Yamabe, K.Fujinami, T.Nakajima. “Experiences
with building sentient materials using various sensors”,
In In Proceedings of 24th International Conference on
Distributed Computing Systems Workshops, 2004.

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

