
Object-Oriented Middleware Infrastructure
for Distributed Augmented Reality

Eiji TOKUNAGA Andrej van der Zee
Makoto KURAHASHI Masahiro NEMOTO

Tatsuo NAKAJIMA

Department of Information and Computer Science, Waseda University
3-4-1 Okubo Shinjuku Tokyo 169-8555, JAPAN

{eitoku,andrej,mik,nemoto,tatsuo}@dcl.info.waseda.ac.jp

Abstract

The paper describes design and implementation of soft-
ware infrastructure for building augmented reality applica-
tions for ubiquitous computing environments. Augmented
reality is one of the most important techniques to achieve the
vision of ubiquitous computing. Traditional toolkits for aug-
mented reality provide the high level abstraction that makes
it easy to build augmented reality applications. However,
the applications programmers need to contemplate distri-
bution and context-awareness that make the development of
applications very hard, but they are necessary to build ubiq-
uitous computing environments. Our infrastructure pro-
vides the high level abstraction and hides distribution and
context-awareness from programmers. Therefore, the cost
to develop augmented reality applications will be reduced
dramatically by using our middleware infrastructure.

1. Introduction

Our daily life will be dramatically changed due to a vari-
ety of objects embedding computers. These objects behave
intelligently to extend our bodies and memories[10]. A lot
of research projects are working on attacking various prob-
lems to realize these computing environments. These com-
puting environments are called ubiquitous computing[1,
19, 23, 24]. Also, other researchers have proposed
similar concepts called pervasive computing[4], sentient
computing[12], or things that think[10]. In ubiquitous com-
puting environments, a variety of objects are augmented by
containing computers. Since any programs can be executed
on the computers, there are infinite possibilities to extend
these objects by replacing the programs. Also, these objects
have networks to communicate with other objects, thus re-

spective objects will behave more actively by replacing pro-
grams at each other according to surrounding situations. For
example, our environments may memorize what is going on
in the world, or each object tells us where it currently exists.

This paper describes design and implementation of soft-
ware infrastructure for building augmented reality applica-
tions in ubiquitous computing environments. Augmented
reality[3] is one of the most important techniques to achieve
the vision of ubiquitous computing. Traditional toolkits for
augmented reality provide the high level abstraction that
makes it easy to build augmented reality applications, but
the applications programmers still need to take into ac-
count distribution and context-awareness that make the de-
velopment of applications very hard, where distribution and
context-awareness are inherent in ubiquitous computing,
and programmers cannot avoid to take into account them.
Our software infrastructure provides the high level abstrac-
tion. Also it hides distribution and context-awareness from
applications programmers. Therefore, the cost to develop
augmented reality applications will be reduced dramatically
by using our software infrastructure.

The remainder of this paper is structured as follows. In
Section 2, we show design issues of our infrastructure. Sec-
tion 3 presents design and implementation of our middle-
ware for distributed augmented reality. In Section 4, we
describe the current status of our system. Section 5 presents
several discussions about our current prototype system. Fi-
nally, we conclude in Section 6.

2. Design Issues

In this section, we describe the design issues involved for
building our middleware. First, we present a brief overview
of ubiquitous computing and augmented reality. Then, we
show the requirements for building augmented-reality ap-

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286945315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

plications in ubiquitous computing.

2.1. Ubiquitous Computing and Augmented Reality

Augmented reality is a technology offering an aug-
mented real-world to the user. More concretely, an
augmented-reality application presents a view composed of
the real-world and digital information managed by comput-
ers. Besides an augmented view of the real-world, it may
provide a seamless human-computer interface as well.

Developing augmented-reality applications is not easy.
Among other concerns, programmers must implement com-
plex algorithms to detect visual markers. Some toolkits, like
the ARToolKit [2], have been developed to equip the pro-
grammers with implementations of typical augmented real-
ity problems.

In ubiquitous environments, computers and networks are
accessed implicitly rather then directly. Most of the time,
users are not even aware that they are connected to a net-
work and accessing multiple computers at the same time. In
the end, users want to deal with the real-world rather then
with cyber-space. This requires a high level of transparency
and makes ubiquitous environments even more complex.

2.2. Requirements

When developing ubiquitous augmented-reality applica-
tions, the developer is faced with the complexities inherent
to ubiquitous environments. Existing AR toolkits are not
designed for such environments and consequently do not
address these complexities. We found it is necessary to meet
the following three requirements when building augmented
reality applications in ubiquitous computing environments.

High-Level Abstraction: Ubiquitous computing en-
vironments consist of various types of computers and
networks. Networks may contain a mix of resource-
constrained and specialized computers. Also, the existing
augmented reality toolkits are platform-dependent. Con-
sequently, application programmers must develop different
software for each platform. A middleware to provide high-
level abstraction to hide such differences from application
programmers is nec2 essary[18, 20] in order to reduce the
development costs.

Distribution: In ubiquitous computing environments,
applications must be distributed over many processors.
Since the environment usually consists of various types of
computers, some may not be appropriate for heavy process-
ing like video-data analysis. For example, cellular phones
and PDAs are usually to weak for heavy processing, but
they might want to utilize augmented-reality features. How-
ever, an application running on low CPU-resource could

be distributed such that heavy processing is performed on
strong computers. In ubiquitous computing, we think that
such distribution needs to be hidden from the developer in
order to keep development time and cost as low as possible.

Context-Awareness: In ubiquitous computing environ-
ments, applications must support context-awareness since
users need to access computers and networks without know-
ing. It is required for an application to adapt itself to
the users situation dynamically. However, implementing
context-awareness in an application directly is very diffi-
cult. An application programmer does not want to be con-
cerned with such complexities and we think that it is desir-
able to embed context-awareness in our framework and hide
it from the developer.

3. Middleware supporting Augmented Reality

We have designed the middleware, which involves the
design issues described in section 2, for supporting aug-
mented reality in ubiquitous computing. The name of the
middleware is TEAR: Toolkit for Easy Augmented Reality.
In this section, we describe the design and implementation
of TEAR.

3.1. Overview of Architecture

TEAR consists of two layers, as shown in Figure 1.
The upper layer is the multimedia framework (see section
3.3) and the lower layer is a communication infrastructure
based on CORBA (Common Object Request Broker Archi-
tecture). The support of context-awareness is handled by
the communication infrastructure.

An augmented reality application using TEAR consists
of an application composer and several multimedia compo-
nents. An application composer is a user-side program that
coordinates an entire application. It maintains references to
objects contained by multimedia components, and config-
ures them to build distributed context-aware applications.
For example, as shown in Figure 1, a multimedia source
component (a camera) and a multimedia sink component (a
display) are connected. The setup is achieved by the ap-
plication composer through the interface provided by the
continuous media framework.

In TEAR, a proxy object in an application may hold sev-
eral references to objects that provide identical functional-
ity. In the example, there are two camera components and
three display components. A proxy camera object in the ap-
plication composer holds two object references to camera
components, and a proxy display object holds three object
references to display components. Which reference is used
in an application is decided upon the context policies, spec-
ified in the application.

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

Figure 1. Overview of TEAR Architecture

TEAR meets the requirements outlined in the previous
section in the following way.

High-Level Abstraction: TEAR provides a multimedia
framework for constructing augmented reality components
in an easy way. Complex programs like detecting visual
markers and drawing 3D objects are encapsulated in re-
spective multimedia components. All the components of-
fer AN IDENTIcal CORBA interface for standardized inter-
component access. In our framework, a complex distributed
and context-aware AR application can be developed with
the application composer that configures existing multime-
dia components. We describe details about the multimedia
framework in Section 3.3.

Distribution: For composing multimedia components
in a distributed environment, we have adopted a CORBA-
based communication infrastructure. Each multimedia
component is designed as a CORBA object. Since CORBA
hides differences among OS platforms and languages, the
continuous media components run on any OS platforms,
and can be implemented in various languages.

Context-Awareness: In the TEAR framework, the com-
munication infrastructure is designed as a CORBA compati-
ble system that supports context-awareness. The infrastruc-
ture supports user mobility by automatically reconfiguring
media streams. Also, the infrastructure allows us to select a
suitable component to process media streams according to
the condition of each computer and the situation of a user
by specifying policies. We describe details about the com-
munication infrastructure in Section 3.2.

3.2. CORBA-based Communication Infrastructure

As described in Section 2, context-awareness is one of
the most important features for implementing augmented
reality applications in ubiquitous computing. Therefore,

a middleware supporting augmented reality must support
context abstraction which allows us to specify application
preferences about context information such as user location.
We have designed a context-aware communication infras-
tructure based on CORBA which provides dynamic adapta-
tion according to the current context.

3.2.1 Dynamic Proxy Object

In our system, application programmers use a dynamic
proxy object to access target objects, contained by multi-
media components described in Section 3.3. The dynamic
proxy object contains several object references to actual tar-
get objects, context information, and an adaptation policy
for specifying how to adapt the invocation to a target ob-
ject. A dynamic proxy object is a CORBA object like a
multimedia component, and provides the same interface as
actual objects. When a method in a dynamic proxy object
is invoked, the request is forwarded to the most appropriate
object according to the specified adaptation policy as shown
in Figure 2.

Figure 2. Dynamic Proxy Object

In the current design, an adaptation policy is specified
as a set of location and performance policies. Examples
of location policies are ”nearest object to me”, ”exact ob-
ject connected to the camera” or ”any object”. Performance
policies might be ”light loaded host” or ”any object”.

3.2.2 Context Trader Service

To create a dynamic proxy object described in the previous
section, we we have developed a CORBA service called
the context trader service. An application program can
acquire a reference to the context trader by invoking the
resolve_initial_reference-method provided by
CORBA.

Figure 3 explains how a client program creates and uses a
proxy object. (1) By invoking the resolve method on the
context trader service a developer can acquire a reference
to a proxy object. The method requires three parameters;

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

a type specifying the proxy object, an adaption policy and
the scope for selecting the target objects. (2) The context
trader service creates a proxy object of the specified type
and registers a target object within the specified scope. (3)
A reference to the proxy object is returned to the client pro-
gram. (4) Callback handlers may be registered through the
reference. (5) Context changes are reported to the context
manager. (6) The context manager notifies the proxy object
upon context change and (7) the client program is notified
by invoking the registered callback handlers.

Figure 3. Resolving Dynamic Proxy Object

3.3. Multimedia Framework

The main building blocks in our multimedia framework
are software entities that externally and internally stream
multimedia data in order to accomplish a certain task. We
call them components. In the following subsections we de-
scribe components in more detail and provide source code
to illustrate how a developer can configure a component.

3.3.1 Components

CORBA
Interface

Multi−media
Objects

Figure 4. General Component

A continuous media component consists of a CORBA
interface and a theoretically unlimited number of subcom-
ponents or objects as shown in Figure 4. Video or audio data

is streamed between objects, possibly contained by differ-
ent components, running on remote machines. Through the
CORBA interface virtual connections can be created in or-
der to control the streaming direction of data items between
objects. Components register themselves at the CORBA
Naming Service under a user-specified name. Next, we
will discuss the CORBA interface subcomponents, thread
scheduling and virtual connections.

CORBA Interface

A component can be remotely accessed through one of
three CORBA interfaces: Component, Connector and
Services.

The Component interface is added to the component to
provide a single object reference through which references
can be obtained to other CORBA interfaces. The benefits
of adding such an interface is to give clients access to all
functionality through a single reference. Such a reference
can be published in the Naming or Trading Service [11].
In addition, the Component interface provides functions
to query individual objects and the component as a whole.
The Component interface is identical to all components.

The Connector interface provides methods to estab-
lish virtual connections between objects, possibly contained
by different components, running on remote sites. More
specific, the interface provides functions to access and up-
date routing information of individual source objects. The
Connector interface is identical to all components.

The Services interface provides methods for control-
ling specific objects within a component. Clients may find
it useful to query and/or change the state of a multimedia
object. For example, a client may want to query a display
object for the resolutions it supports. The Services in-
terface varies from component to component, depending on
the internal objects it contains.

The interfaces are part of the module IFACE and are
written in CORBA IDL [11, 15]. Here follows a snapshot
of the Connector and Component interface1:

interface MConnIface
{

void
addRoutingSeq(in ObjectId id,

in RoutingSeq seq)
raises(InvalidObjectId);

boolean
removeRoutingSeq(in ObjectId id,

in RoutingSeq seq)
raises(InvalidObjectId);

};

interface MCompIface
{

MConnIface
getConnIface();

1The Services interface is not included since it varies for different com-
ponent configurations.

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

MServIface
getServIface();

boolean
isInput(in ObjectId id)
raises(InvalidObjectId);

boolean
isOutput(in ObjectId id)
raises(InvalidObjectId);

};

Subcomponents or Objects

Typically, within a component, several objects run in sepa-
rate threads and stream data in one direction. For example,
a camera object may capture images from a video device,
and stream the video data to a display object through a red-
blue swapper that swaps the red and blue values of a video
frame as shown in Figure 5.

Camera DisplayRBSwapper

Interface
CORBA

Figure 5. Example Component

In our approach, the central focus is the stream of data
from data producers to data consumers through zero or more
data manipulators [14]. Data producers typically are inter-
faces to video or audio capture hardware or media storage
hardware. In our framework we call them sources. Data
manipulators perform operations on the media-data that
runs through them. Data manipulators get their data from
sources or other data manipulators and stream the modified
data to a consumer or another manipulator. In our frame-
work we call them filters. Data consumers are objects that
eventually process the data. Data consumers typically in-
terface to media storage devices. In our framework we call
them sinks. In our example from Figure 5, data is streamed
from our camera source object, through the red-blue swap-
per filter object, into the display sink object.

Objects are categorized as input and/or output objects.
For example, a filter object is both an input and an output
object, meaning it is capable of respectively receiving and
sending data. Clearly, a source object is of type output and
a sink object of type input.

More concrete, our framework provides the abstract
classes MSource, MFilter and MSink2 written in C++.
Developers extend the classes and override the appropriate
hook-methods [9] to implement functionality. Multimedia

2The M preceeding the class names indicate that they are part of the
framework and stands for multimedia.

objects need only to be developed once and can be reused
in any component.

Components know two specialized objects for handling
inter-component data streaming, namely rtp-in and rtp-out.
An rtp-in object is a source object, consequently of type in-
put, that receives data from remote components over a RTP
connections. Semantically this is not strange at all, since
from the components point of view, data is produced by
means of receiving it from another component. Similarly,
rtp-out is a sink object that is responsible for sending data
to other components.

3.3.2 Stream Reconfiguration

Supporting context-awareness by multimedia applications
requires not only dynamic adaptation of object references,
but also dynamic re-direction of continuous media streams.
When the current object reference of a dynamic proxy ob-
ject is changed, continuous media streams must be recon-
nected dynamically to change the current configuration of
continuous media components according to the current con-
text information. To achieve this, a callback handler de-
scribed in Section 3.2.2 is used. It is registered to a dynamic
proxy object by an application, and the handler is invoked
when the current context is changed. Next, we discuss how
our system reconfigures the connections among continuous
media components by using the example described in the
previous section.

Suppose a context change is reported to the context man-
ager and a notification is triggered to the proxy object hold-
ing a reference to the red-blue swapper. In response, the
proxy object might want to change its internal reference to
the red-blue swapper in order to adapt to the new context.
If so, its registered callback handlers are invoked. Typi-
cally, one of the callback handlers is concerned with up-
dating routing information of affected source objects. Such
handlers expect a parameter holding a reference to the new
target object. In the example, the reference to the red-blue
swapper is used to construct a new routing list, and the rout-
ing information of the camera source object is updated to
reflect the new configuration.

By updating the routing information of source objects
virtual connections are added and deleted. Subcomponents
that do not appear in routing information of any source ob-
ject are not presented any data and consequently reside in
an idle state. By using virtual connections, no notification
messages have to be sent to any filter or sink object to hold
them from processing any data. Solely updating the routing
information of source objects is sufficient.

3.3.3 Components for Augmented Reality

Among others, TEAR provides augmented reality compo-
nents for the detection of visual markers in video frames

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

and superimposing 3D objects at a specified location within
a frame. Such components are implemented as objects con-
tained by multimedia components as described in subsec-
tion 3.3. They use the ARToolkit to implement functional-
ity.

A detection filter object expects a video frame as in-
put and looks for visual markers. Information about visual
markers, if any, is added to the original video frame and
send as output. Since different types of visual markers will
be available, the format of the marker information must be
defined in a uniform way. Consequently, filter components
detecting different types of visual markers can be used in-
terchangeably .

A super-imposer object expects video frames with
marker information as input, superimposes additional
graphics at the specified location, and outputs the aug-
mented video frame.

Figure 6 shows how the two components can be used in
sequence to enhance a video stream with augmented real-
ity. In this configuration, video frames are captured by an
input device and sent to the output device through the de-
tection filter and super-imposer. As a result, visual markers
are replaced by digital images.

Figure 6. Components for Augmented Reality

4 Current Status

In our current prototype of TEAR, we use omniORB [15]
for our CORBA-based communication infrastructure. Om-
niORB is open source and considered very efficient. Above
that, in our design of continuous media components, the
contained objects run in separate threads. Therefor, a fully
multi-threaded OMG CORBA compliant ORB is needed.
Obviously, omniORB supports all multi-threaded features.

We have currently developed some C++ classes for
building continuous media components described in Sec-
tion 3, and We have implemented several subcomponents

for supporting augmented reality features. The implemen-
tation uses ARToolkit[2] and TRIP[16]. We have currently
implemented two detection filter objects. One is adopted
in ARToolkit, and another is based on TRIP. The superim-
poser object have adopted the OpenGL technology similar
to ARToolkit.

The picture shown in Figure 7 shows a demonstration of
our prototype system. The laptop computer in the right side
is IBM ThinkPadX23 which has Pentium III 866MHz and
SDRAM 256MBytes. In the left side, a DV camera is con-
nected to a high-end desktop computer which has Pentium4
1.9GHz and RDRAM 512MBytes. The desktop computer
captures visual images, which include visual tags from the
DV camera, and transmits superimposed images to the lap-
top computer(Figure 8). On the desktop computer, a con-
tinuous media component using our framework is running.
This component consists of our two detection filter objects
described above to detect visual tags, the superimposer ob-
ject for constructing 3D virtual images, the capturing ob-
ject for capturing video images from the DV camera and
the RTP-out object for transmitting video images using the
RTP protocol. On the other hand, on the laptop computer,
another component which consists of the RTP-in object for
receiving video images via the RTP protocol, and the gtk-
display object for displaying received video images is run-
ning. Most of heavy processing like visual tag detection and
superimposing 3D images is executed on the high-end desk-
top computer. Thus, the component running on the laptop
computer requires less resources to run it.

Figure 7. Prototype Demonstration

The TRIP tag detection requires more resources than for
the ARToolKit’s tag detection. Therefore, it is hard that
the laptop detects and superimposes by using the TRIP’s
tag. This means that the TRIP’s tag detection is not suitable
for PDAs and cellular phones. However, the TRIP tag is
useful for augmented reality in ubiquitous computing envi-
ronments because it is easy to encode some inforation like
the bar code and it allows us to calculate the tag’s location

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

Figure 8. Superimposed Image

and angle accurately. Also, we may want to use more ad-
vanced visual tag technologies which require more resource
than the current detection filters in the future. Our system
enables us to adopt these new technologies very easily by
replacing objects by using the component based framework
in our approach.

5. Discussions

We believe that our design is very effective. Especially,
the automatic reconfiguration of an application to reflect
context change seams very promising. However, in our ap-
proach, a number of issues still need to be addressed. In
this section, we will discuss strengths and weaknesses of
our current design.

In our framework, we assume that continuous media
components do not have state. Consequently, if multime-
dia components are switches as a result of context change,
restoring state information of new target components is not
necessary. However, we found that components controlling
devices might hold some state information to configure de-
vice parameters. In our approach, the application composer
restores such parameters after receiving a change-of-context
notification.

Regarding context change, application behavior is han-
dled in the communication infrastructure rather than put the
responsibility with the programmer. In our approach, an
application programmer needs to specify context policies to
reflect application behavior to his or her desire. Most infras-
tructure software for ubiquitous computing adopt a differ-
ent approach. For example, the Context Toolkit [8] offers a
mechanism to deliver events upon context change, making
the development of context-aware applications more diffi-
cult. In our approach, we choose to hide as much detail as
possible from the programmer in order to reduce the devel-
opment costs of ubiquitous computing applications. In our
future design, we want to adopt QoS parameters in order
to provide the application programmer more flexibility in
specifying the adaption policy of an application in response
to context change.

Specific to our multimedia framework, we designed

components as self-describing software entities. Conse-
quently, a client can retrieve a description of all components
registered at the Naming or Trading Service at run-time.
In this way, a client can query and/or change component
configuration dynamically. Also, information about virtual
connections between components can be retrieved and up-
dated. Visual tools can be developed to provide easy means
to (re)configure a set of available components.

Objects contained by multimedia components can be de-
veloped fast and easy. Once an object is developed it can be
reused in other components. In addition, components can
be composed by utilizing services provided by other com-
ponents in order to provide more complex services. By such
composition, components can be reused as a whole and the
development of new components becomes even less time-
consuming.

In our framework, a programmer specifies a policy to
control the behavior of an application according to current
context. Some policies are very difficult to implement. For
example, assume a location policy that always chooses a
nearest service to user location. The presence of a wall be-
tween a user and a server inflicts complications regarding
to implementation. Clearly, the nearest server might not be
the most suitable one. In the future, we need to investigate
a way to specify a policy that does not depend on sensor
technologies to monitor context information.

Currently, virtual connections between components need
to be updated to reflect a context change. Suppose a target
object in a proxy is changed, then the routing information
in source objects containing the old object reference need
to be updated in a callback handler registered for the proxy
object. Note that only the routing information of source
objects initialized by the respective application needs to be
updated, since other applications might still use the old ref-
erence and therefor are not affected by the context change.
Though, it might be desirable to put the responsibility of
reconfiguring routing information in our middleware and
completely hide the burden of context change from the pro-
grammer. Consequently, information about virtual connec-
tions need to be managed by the communication infrastruc-
ture. This approach requires more complex middleware and
we might need support of a more complex CORBA imple-
mentation like OpenORB2 [6]. The above described issue
will likely be studied in the near future.

6. Conclusion

In this paper, we have described our middleware frame-
work to support augmented reality for ubiquitous comput-
ing. We have described the design and the implementation
of our system, and shown some experiences with our current
prototype system. Our experiences show that our system is
very useful to develop several augmented reality applica-

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

tions for ubiquitous computing.

References

[1] G.D. Abowd, E.D. Mynatt, “Charting Past, Present,
and Future Research in Ubiquitous Computing”, ACM
Transaction on Computer-Human Interaction, 2000.

[2] ARToolkit, http://www.hitl.washington.edu/people/
grof/SharedSpace/Download/ARToolKitPC.htm.

[3] R.T. Azuma, “A Survey of Augmented Reality”, Pres-
ence: Teleoperators and Virtual Environments Vol.6,
No.4, 1997.

[4] G.Banavar, J.Beck, E.Gluzberg, J.Munson, J.Sussman,
D.Zukowski, “Challenges: An Application Model for
Pervasive Computing”, In Proceedings of the Six An-
nual International Conference on Mobile Computing
and Networking, 2000.

[5] Martin Bauer, Bernd Bruegge, et al.: Design of
a Component-Based Augmented Reality Framework,
The Second IEEE and ACM International Symposium
on Augmented Reality, 2001.

[6] G.S.Blair, et. al., “The Design and Implementation
of Open ORB 2”, IEEE Distributed Systems Online,
Vol.2, No.6, 2001.

[7] Andrew T. Campbell, Herman G. De Meer, Michael
E. Kounavis, Kazuho Miki, John B. Vicente, Daniel
Villela, “A Survey of Programmable Networks”,
ACM SIGCOMM Computer Communications Re-
view, Vol.29, No.2, 1999.

[8] A.K.Dey, G.D.Abowd, D.Salber, “A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications”, Human-
Computer Interaction, Vol.16, No.2-4, 2001.

[9] Erich Gamma, Richard Helm, Ralph Johnson, John
Flissides: Design Patterns, Elements of Reusable
Object-Orientated Software, Addison-Wesley Publish-
ing Company (1995), ISBN 0-201-63361-2.

[10] N. Gershenfeld, “When Things Start to Think”, Owl
Books, 2000.

[11] Michi Henning, Steve Vinoski: Advanced CORBA
Programming with C++, Addison-Wesley Publishing
Company (1999), ISBN 0-201-37927-9.

[12] Andy Hopper, “Sentient Computing”, In the Clifford
Paterson Lecture, volume 358, pages 2349-2358, Phil.
Trans. R. Soc. Lond., September 1999

[13] R.Koster, A.P. Black, J.Huang, J.Walpole, and C.Pu,
“Thread Transparency in Information Flow Middle-
ware”, In Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms, 2001.

[14] Christopher J. Lindblad, David L. Tennenhouse: The
VuSystem: A Programming System for Compute-
Intensive Multimedia, In Proceedings of ACM Inter-
national Conference on Multimedia 1994.

[15] S Lo, S Pope, “The Implementation of a High Per-
formance ORB over Multiple Network Transports”, In
Proceedings of Middleware 98, 1998.

[16] D.Lopez de Ipina, “Visual Sensing and Middleware
Support for Sentient Computing”, PhD thesis, Cam-
bridge University Engineering Department, January
2002

[17] Diego Lopez de Ipina and Sai-Lai Lo, “LocALE:
a Location-Aware Lifecycle Environment for Ubiqui-
tous Computing”, In Proceedings of the 15th IEEE
International Conference on Information Networking
(ICOIN-15), 2001.

[18] T.Nakajima, “System Software for Audio and Visual
Networked Home Appliances on Commodity Operat-
ing Systems”, In Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms,
2001.

[19] T.Nakajima, H.Ishikawa, E.Tokunaga, F. Stajano,
“Technology Challenges for Building Internet-Scale
Ubiquitous Computing”, In Proceedings of the Sev-
enth IEEE International Workshop on Object-oriented
Real-time Dependable Systems, 2002.

[20] T.Nakajima, “Experiences with Building Middleware
for Audio and Visual Netwoked Home Appliances on
Commodity Software”, ACM Multimedia 2002.

[21] OMG, “Final Adopted Specification for Fault Tol-
erant CORBA”, OMG Technical Committee Docu-
ment ptc/00-04-04, Object Management Group (March
2000).

[22] C.Pinhanez, “The Everywhere Display Projector: A
Device to Create Ubiquitous Graphical Interfaces”, In
Proceedings of Ubicomp’01, 2001.

[23] K.Raatikainen, H.B.Christensen, T.Nakajima, “Appli-
cations Requirements for Middleware for Mobile and
Pervasive Systems”, Mobile Computing and Commu-
nications Review, Octorber, 2002.

[24] M. Weiser, “The Computer for the 21st Century”, Sci-
entific American, Vol. 265, No.3, 1991.

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

