
Design and Implementation of a Software Infrastructure for Integrating

Sentient Artefact

Fahim Kawsar, Kaori Fujinami, Tatsuo Nakajima

Department of Information and Computer Science, Waseda University, Japan
{fahim,fujinami,tatsuo}@dcl.info.waseda.ac.jp

Abstract

This paper presents a framework prototype for sentient

environments. The framework provides a generic interface

to the applications for interacting with sentient artefacts in

a unified way regardless of their type and properties. As a

result, application development is fairly simple, rapid and

independent from the context-aware environments.

1. Introduction

Ubiquitous computing envisioned a future environment

that will be aware of its operating context and will be

adaptive to ease our interaction. Our approach towards such

environment is the environment itself. That means taking

the building blocks of the environment and making them

smart and context-aware by capturing people’s implicit

interaction. We have been developing such building blocks,

namely everyday life objects by augmenting various kinds

of sensors. We call them sentient artefacts. Our vision is to

utilize these objects for value added services in addition to

their primary services.

Based on our experiences of developing applications

that integrate these artefacts for contextual behavior, we

have figured out the necessity of a software abstraction that

hides the low level details. At the same time such

applications have several others requirements like

preference management, reliability etc. To satisfy these

requirements we are working on a software infrastructure

“Prottoy” that attempts to provide a unified view of the

underlying physical spaces to the applications. This paper

discusses about the design and implementation of the initial

version of “Prottoy”.

The rest of the paper is organized as follows: Section 2

and 3 point out our design issues and implementation of

Prottoy. In section 4 we have presented two sample

applications. In Section 5 we have discussed on several

issues of Prottoy. Finally section 6 concludes the paper.

2. Design Issues

From our experiences of application development with

sentient artefacts we have identified the following

requirements that must be satisfied for context-aware

applications:

1. Due to the ultra heterogonous nature of such artefacts,

the application developers need a generic interface that

unifies all access issues.

2. End user preference should be reflected in the

applications.

3. A security policy in the physical spaces is necessary to

identify malicious applications.

4. Applications need to be robust and reliable.

5. The development cost, time and complexity should be

minimal.

Considering these issues we have spawn Prottoy with

the following design goals:

1. Providing a generalized interface for the developers to

interact with the artefacts removing all access issues.

2. Providing storage and proxy service support with in

the architecture. Such proxy service can be utilized

when the artefacts are not available for reliability and

robustness.

3. Providing an authentication policy to access the

physical space.

4. Making context-aware application development fairly

simple, rapid and easy.

5. Finally providing a personalization/preference

reflection feature.

With these views and design considerations we have

deployed the initial version of ”Prottoy”. In the next

section the implementation of Prottoy is discussed.

3. Implementation

“Prottoy” is composed of few core components and few

pluggable components as shown in the figure 1.

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’05)
0-7695-2375-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: WASEDA UNIVERSITY. Downloaded on April 13,2010 at 01:27:41 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286945305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Framework Architecture

3.1. Core Framework Components

1. Artefact Wrapper (AW): It encapsulates the

sentient artefacts, sensors, actuators or virtual

sensors like weather services, scheduler etc. We

have provided a template for the developers to

wrap their device drivers or software into this

component. AW has its own resource manager

that can advertise its service when the global

resource manager is absent. In addition it has a

simple security measure using IP filtering, that

allows an artefact to control access to its service

and information from the malicious applications,

which approaches to meet our third design goal.

2. Resource Manager (RM): As the name implies,

it simply registers the properties, services and

context information of the artefacts. When

application query comes via virtual artefacts it

responses accordingly

3. Virtual Artefact (VA): It abstracts the smart

environments and provides a unified view.

Application constructs virtual artefact instances.

VA communicates with the resource manager and

if an artefact is found VA communicates with that

artefact. If everything goes fine VA represents the

artefact in the application. From then on, to

application this VA instance is the actual artefact.

Application can subscribe to this artefact or can

poll. Application can also execute services of the

physical artefact. Thus this virtual artefact

conforms to our first design goal of a generic

interface. If storage is enabled, VA creates storage

in the application layer. If proxy is enabled then

the proxy service of VA activates when the

physical artefact is absent. The proxy provides the

application a calculated context value with a low

accuracy using the storage. These storage and

proxy functionalities approach to meet our second

design goal.

3.2. Components Pluggable to Application

1. Interpreter: It maps the context value to the

interpreted value. We argue that context

interpretation is highly application dependent as

the same context can be interpreted in different

ways based on the application requirements. So

we put this component in the application layer.

2. Preference Manager: This component is

designed for the end users of the applications

developed using Prottoy. It provides the facility to

enable or disable the participation of any artefact

of the environment on the application based on

their preference. We argue that this component

meets our final design goal to some extent.

3.3. Application Development using Prottoy

The application development using “Prottoy” is fairly

simple. In fact developers only need to generate the virtual

artefact instance for using the actual artefact. Then

developers provide the context to action mapping. A very

simple application code snippet with two virtual artefacts

looks as follows:

/*Specify the artefact properties */
PropertyList props = new PropertyList();

props.add(“location”,”lambdax”);
/*Create VA instance, with context,service requirements,properties
and storage and proxy flag*/

VirtualArtefact thermometer = new
VirtualArtefact(“temperature”,null,props,false,false);

VirtualArtefact cooler = new

VirtualArtefact(null,”cooler service”,prop,false,false);
/* Poll for value and subscribe */
If(thermometer.status){

System.out.println(thermometer.poll());
thermometer.subscribe(this,” thermometerListener”);

}

If(cooler.status){
Hashtable property=cooler.getProperty() /*Query property*/;
cooler.execute(“turn_on”); /*Execute service*/

}
public void thermometerListener(Hashtable data) /*call back */
{

/*Hash table contains context information */
}

As we see, applications do not need to deal with any

network or message management of the architecture; even

applications do not have to look for the resource manager

4. Sample Applications

We have developed several applications on top of

Prottoy; here we are presenting two of them that capture

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’05)
0-7695-2375-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: WASEDA UNIVERSITY. Downloaded on April 13,2010 at 01:27:41 UTC from IEEE Xplore. Restrictions apply.

two scenarios at two distinct places namely dining space

and washroom.

Figure 2: Sample Applications

4.1. Byte N Dine:

This application shown in figure 2(a), runs in a

public/private dining space where the dining table acts as

an ambient display. The table displays information/news

about topics based on user’s preference. We have assumed

that the user will carry a RFID tag that reflects his/her

preferred topic. This application uses chairs to identify

users’ presence by chairs’ state of use, RFID Tag reader,

proximity sensors and the table, which is embedded with a

touch screen display. All of these are wrapped in AW.

4.2. AwareMirror:

AwareMirror shown in figure 2(b), is a smart mirror

installed in the washroom. In addition to its primary task of

reflecting some ones image it can also show some

information related to the user like schedule, weather

forecasting, transportation information etc. The mirror is

constructed using acrylic magic mirror board through

which only bright color can penetrate. A toothbrush, which

is rarely shared with others, is used as an authenticator and

also as an indicator of the users’ presence. Also proximity

sensors embedded in the mirror is used to measure the

users’ proximity from the mirror. All of these are wrapped

in AW.

5. Discussion

Prottoy’s contributions and distinct features from other

works [1,2,3,4] can be summarized as:

1. Generic Interface for all sorts of sensor units and

actuators.

2. Complete independence of the application from the

underlying architecture.

3. Transparent storage at the application layer and

introduction of the proxy service

4. Introduction of the security measure and end user

preference management

From our experiences, we have found that application

development on top of Prottoy is fairly simple. To be

specific, developers only provide the context to action

mapping rules. None of the applications that we have

developed exceed more than a couple of hundred lines of

code

The Virtual Artefact and Artefact Wrapper in conjunction

provide the generic interface for everything from a sentient

artefact to a single sensor to a web service to an actuator.

The artefact wrapper provides the generalization that

allows the actual artefact to be replaced anytime with

another one. The proxy service is a unique feature of

Prottoy. Some of the existing systems provide storage

functionality at the artefact layer, our argument is that if the

artefact itself is absent in that case the storage is also

absent. We think the best use of the context storage or

history is the prediction of the context, so it should be

somewhere that can be accessible when the artefact is

absent. Virtual artefact perfectly solves the problem by

hosting the storage and providing proxy service. There is

no context interpreter in Prottoy core, as we think context

interpretation is completely application dependent. For

example consider a chair that provides it’s state of use. We

can use this information to infer its user is sitting/not sitting

(activity) or it’s users location (at chair’s location) based on

the applications requirement. Our argument is we cannot

broadly confine the interpretation of context information.

So we have separated it form the core and provide it as a

pluggable component at the application layer. However

there are few issues that we are further investigating like

security measure, preference component, proxy service etc.

We are working on these issues with great interest and hope

to come up with some interesting results soon.

6. Conclusion

In this paper we have tried to provide the ins and outs

of Prottoy and it’s approach in a summarized way. We

believe our proposition and ongoing work will be able to

resolve all the issues to the utmost level and will provide a

seamless development platform for context-aware

application developer.

7. References

[1] A. K. Dey. et al. “A Conceptual Framework and a toolkit for

supporting the rapid prototyping of context-aware applications”.

Human-Computer Interaction, Vol-16 2001

[2] B. L. Brumittet et al. “Easy Living: technologies for

Intelligent Environments” In the proceedings of the 2
nd

International Symposium on Handheld and Ubiquitous Computing

‘2000

[3] Caswell at el. Creating Web representations for Places

Proceedings of the 2nd International Symposium on Handheld and
Ubiquitous Computing

[4] C. Philip R. et al, “An Open Agent Architecture”. In the

proceedings of the AAAI Spring Symposium Series on Software

Agents,’94

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’05)
0-7695-2375-7/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: WASEDA UNIVERSITY. Downloaded on April 13,2010 at 01:27:41 UTC from IEEE Xplore. Restrictions apply.

