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Abstract

In this paper, we explore bidding behavior for a repeatedly played keyword auction. In a key-
word auction in practice, a bidder does not know the current bids submitted by the others, and thus,
he cannot follow the greedy bidding strategy where he changes the bid to the one that produces the
most favorable outcome for the bidder, taking other bidders’ bids in the previous period as given.
We propose a secure greedy bidding that can be executed under such sealed bid environment. We
define a stable bid profile as the fixed point of the secure greedy bidding and show that even in the
sealed bid situation, the stable bid profile exists and satisfies several good properties. Moreover, we
also examine other versions of bidding behavior that needs neither the current bids of others nor the
values of other bidders. We show that the bidding behavior that involves with the trial increase of
the bid leads to the unique fixed point of the secure greedy bidding.
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1 Introduction

Internet advertisements that are shown along with search results for a keyword or a combination of key-
words are sold through keyword auctions. Each time a user enters a search term into a search engine, an
auction mechanism allocates the advertising slots within that user’s search results. A keyword auction
is done more than1 million times in a day all over the world and the Internet advertisement revenue via
the keyword auctions is a principal source of revenue of search engines.

The generalized second price auction (GSP) and the auction mechanisms based on it, are the most
widely used for selling advertisements on Internet search engines. Based on the bids that advertisers
submit for a keyword, the ad-slots are allocated according to the descending order of the bids, i.e., the
top position is allocated to the bidder with the highest bid, the second position is allocated to the bidder
with the second highest bid, and so on. Every time a search engine user clicks the advertisement, the
advertiser pays the next highest bid. Thus, the advertiser in the highest position pays the bid of the
advertiser in the second highest position, the advertiser in the second highest position pays the bid of
the advertiser in the third highest position, and so on.

Since the payment of each advertiser does not depend on his bid but on the bid submitted by the
advertiser in one lower position from him, the GSP auction has a similarity to the Vickrey auction for
selling one object (Vickrey (1961)). In fact, when there is only one ad-slot, the GSP is equivalent to
the Vickrey auction and thus, it has a nice property: for each advertiser, submitting his true expected
revenue from the sponsored link is a dominant strategy and thus, advertisers do not need to distress
themselves from determining their bids. However, when there are multiple ad-slots, the GSP does not
have the truth-telling property (Edelman, Ostrovsky and Schwarz (2007)). This indicates that the actual
bidding behavior in the GSP should exhibit the complicated figure. Edelman and Ostrovsky (2007)
reported that bids observed in the GSP are largely fluctuated and this can be caused by the bidders’
strategic behaviors.

In this paper, we explore bidding behavior for a keyword auction theoretically. As explained in the
previous paragraph, the bids submitted by advertisers varies over period. This suggests that we should
pay attention to the dynamic aspect of the bidding behavior. After describing the bidding behavior of
the advertises in a keyword auction, we argue whether the stable bid profile against the bidding behavior
exists or not, what property the stable bid profile possesses, and how long it takes until the stable bid
profile is realized.

Our analysis considers a simplified model of keyword auctions. We assume that the values (expected
revenue) per click of advertisers and the click through-rates (CTRs) of ad-slots are common knowledge.
In each period, an advertiser can change his bid according to the result of the keyword auction played in
a previous period. All the information that is available for the advertiser is his revenue, his payment to
a search engine and how the ad-slots are assigned to advertisers, in the previous period. The advertiser
does not know the actual bid profile of the other advertisers. This means that the advertisers cannot
follow the greedy bidding strategy where in each period, the advertisers update their bids according to
the best response dynamics. Since a keyword auction in practice adopt asealed bidgeneralized second
price auction, advertisers update their bids according to the limited information.

We first propose a greedy bidding strategy in a sealed bid keyword auction. The secure greedy
bidding (SGB) is defined and the idea of SGB is partly from the balanced bidding proposed by Cary,
Das, Edelman, Giotis, Heimerl, Karlin, Mathieu and Schwarz (2007) for the open bid environment. We
show that the stable bid profile against the SGB (or the fixed point of their bidding behavior) exists, and
in the bid profile, the ad-slots are assigned to advertisers in the same way as the one if all advertisers
honestly announce their values, and the revenue of a search engine is the same as the one in the truth-
telling equilibrium in the Vickrey-Clarke-Groves (VCG) mechanism (Vickrey (1961); Clarke (1971);
Groves (1973)).
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Next, we examine whether their bids converge to the stable bid profile if they update their bids
repeatedly according to the SGB. In a synchronous model where in each period, every bidder changes
his bid according to the SGB strategy, we provide a counter example for the convergence. In this
example of three ad-slots and three bidders, the bid cycle over periods arises. On the other hand, if we
consider an asynchronous model where in each period, one bidder is randomly selected and this bidder
changes his bid according to the SGB strategy, the convergence of the bidding behavior is guaranteed
in the sealed bid repeated keyword auction. These are the same observation in a open bid environment
reported by Cary et al. (2007). Non-convergence in a synchronous model and the convergence in an
asynchronous model are found in a open bid environment.

A limitation of the results for the SGB is that it requires the information on the values of other
advertisers instead of the current bid profile. Since the balanced bidding does not need such information,
there is the trade-off between the SGB and the balanced bidding for the required information. Thus, we
explore other two types of bidding behavior that need neither the current bids of others nor the values
of other bidders.

The paper is organized as follows. In Section 2, we explain the model of a keyword auction. In
Section 3, we introduce the secure greedy bidding for a sealed bid environment and show the basic
properties of this bidding behavior. The convergence results are shown in Section 4. In Section 5, we
discuss other versions of the bidding behavior for a sealed bid keyword auction.

2 Model

An auction on a keyword, simply a keyword-auction, is defined by the following components. There are
N advertisers (bidders) participating in a keyword auction, each advertiseri having a value or expected
revenuevi for a click of the ad. We assume thatv1 > v2 > ... > vN . There areK ad-slots with click-
through rates (CTRs)α1 > α2 > ... > αK , whereαk is the estimated probability of being clicked or
the estimated number of clicks per given period, for an advertiser in thek-th ad-slot. We also setαk = 0
for all k > K and assumeN = K. Each advertiser submits a bid to the auction. The bid submitted by
i is denoted bybi. We denote the bid profile ofN advertisers byb = (b1, . . . , bN ).

In the generalized second price auction (GSP), advertisers are allocated with the ad-slots in the
descending order of the bidsb1, b2, ..., bN . Let d(k) denote the name of bidder who submitsk-th
highest bid amongb. Thus, bidderd(k) acquires the ad-slotk. (Note that fork > K, bidderd(k) does
not acquire any ad-slot.) For each ad-slotk, advertiserd(k) paysbd(k+1) for a click of its ad. Hence,
the paymentpk is αkbd(k+1). (Note that fork > K, bidderd(k) paysαkbd(k+1) = 0 by the definition
of αks.) Thus, the advertiser obtaining the ad-slotk pays the bid of the advertiser obtaining one lower
ad-slot for each click. The payoff of the advertiser obtaining slotk isαkvd(k)−pk = αk(vd(k)−bd(k+1)).

3 Secure greedy bidding

In a keyword auction in use, each advertiser does not observe the actual bids submitted by the other
advertisers. Each advertiser only observes the positions of the others and the current payment for each
click, from which he can deduce the bid of the advertiser that is in the position immediately below from
him.

In this section, we propose bidding behavior of an advertiser in a sealed bid environment. The part
of the idea of the bidding behavior considered here is from the balanced bidding strategy by Cary et al.
(2007), which is some type of the greedy bidding strategy in the open bid environment. Since the actual
auction is in the sealed bid environment, the perfect greedy bidding strategy, where each bidder chooses
the bid in the next period that is the best response to the current bids of the other bidders, cannot be
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achieved by the advertisers. They can only execute the incomplete version of greedy strategy. A greedy
strategy in the sealed bid environment is that each bidder increases his bid so as to obtain the position
immediately above as long as this increment in the bid does not lead to the decrease in the payoff even
in the worst situation in the next period. This motivates the following definition of the greedy strategy
in the sealed bid environment.

Definition 3.1. Let i be in thek-th slot. Thei’s secure greedy bidding for the slot immediately above
is to choose the maximized bidbi satisfying the following condition:

αkvi − pk ≤ αk−1vi − αk−1bi. (1)

Thesecure greedy bidding for the slot immediately above (SGB for A)is

bA
i (k, pk) = (1− αk

αk−1
)vi +

pk

αk−1

= (1− rk)vi + rkbd(k+1)

for eachk 5 K, whererk = αk
αk−1

and to deal with the all slot uniformly, we defineα0 = 2α1. For

k > K, we setrk = 0. Thus,bA
i (k, pk) = vi for k > K.

If bi satisfies condition (1), the payoff ofi does not decrease afteri obtaining slotk − 1 even if
his payment is in the worst case. The greedy strategy in this setting is that among the bids satisfying
(1), each bidder maximizes the possibility of obtaining the one higher slot. This is the definition of the
secure greedy bidding for the slot immediately above. One remark on the definition ofbA

i (k, pk) is that
it depends only on the identity of the bidder, his current position, and his current payment. The other
information like the bids of the other advertisers is needless for each bidder to execute the secure greedy
bidding for the slot immediately above.

Another interpretation ofbA
i (k, pk) is that it is in a sense a weakly dominant strategy of bidderi.

Consider a situation that bidderi = d(k) changes his bid so as to acquire one higher slotk − 1 and
ignore, for a moment, the bidders other thani andd(k−1) and slots other thank andk−1. Let bd(k−1)

be the current bid of bidderd(k−1). Then, ifbd(k−1) 5 bA
i (k, pk), any new bid̂bi of bidderi satisfying

b̂i > bd(k−1) is his best response tobd(k−1). And if bd(k−1) = bA
i (k, pk), any new bid̂bi satisfying

b̂i < bd(k−1) becomes his best response tobd(k−1). Combining these two observations,bA
i (k, pk) is

always best response to the bid of bidder in slotk − 1. Thus, choosingbA
i (k, pk) is interpreted as a

weakly dominant strategy of bidderi, conditional that he tries to acquire one higher slotk − 1.
The next is the secure greedy bidding that aims to obtain the one-lower slot. The idea is that in

order to compare the payoffs in slotk and the payoff after obtaining slotk + 1, advertiseri deduces the
current payoffs of the bidderd(k + 1), who currently occupies the slotk + 1. He deduces it from the
information on his current paymentspk, from which he can know the bid of bidderd(k + 1) is pk/αk.
Moreover, he assumes that other advertisers also follow the secure greedy bidding strategy and thus
the current bid submitted by bidderd(k + 1) is bA

d(k+1)(k + 1, pk+1). Thus, he can deduce the current
payments of bidderd(k + 1) from the following equation:

pk

αk
= bA

d(k+1)(k + 1, p̃k+1),

wherep̃k+1 is the payments of bidderd(k + 1) guessed by bidderi. From this, we have

p̃k+1 = pk − (αk − αk+1)vd(k+1).
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Note thatp̃k+1 can be negative.
The secure greedy bidding for the position immediately below is defined as follows:

Definition 3.2. Let i be in thek-th slot. Thei’s secure greedy bidding for the slot immediately below
(SGB for B) is as follows. If

αkvi − pk < αk+1vi − p̃k+1, (2)

then, choosebB
i (k, pk) defined by

bB
i (k, pk) = max{(1− αk+1

αk
)vi +

p̃k+1

αk
, 0}

= max{bd(k+1) + (1− rk+1)(vi − vd(k+1)), 0}

Our concern is what happens in the repeatedly played auction when each bidder follows the secure
greedy bidding (for the position immediately above and below). To obtain the consequence from the
dynamics generated by the secure greedy bidding, we first examine the stable state from the bidding
behavior. The bid profile is stable under the secure greedy bidding if in the bid profile, no bidder
changes the bid according to the secure greedy bidding. This motivates the following definition:

Definition 3.3. The bid profileb is secure greedy bidding proof (SGBP)if b is stable under the SGB
of every bidder. Thus, at the secure greedy bidding proof profileb, each advertiseri with d(k) submits
the bidbi = bA

i (k, pk), and for eachk, Inequality (2) does not hold, wherepk andp̃k+1 are calculated
from b.

The VCG mechanism has a more merit in the sealed bid environment than it in the open bid en-
vironment because truly submitting advertiser’s own value is the best strategy irrespective of the other
bidders’ choices. The allocation of the ad-slots in the keyword auction istruthful-outputif the alloca-
tion coincides with the one in the VCG. Since the VCG allocated with the ad-slots in the descending
order of the bids and each advertiser submits his own value in the VCG, the resulting allocation of the
ad-slots becomes an assortative allocation, i.e., the advertiser withk-th highest value acquires ad-slotk.
In this context, it is known that an assortative allocation is efficient (i.e., maximizing the social surplus).

Theorem 3.1. A SGBP allocation is truthful-output.

Proof. Suppose that a SGBP allocationb is not truthful-output. Then, there must exist somek such
thatvd(k) < vd(k+1). In this case, Inequality (2) holds for thisk because

αkvd(k) − pk −
(
αk+1vd(k) − p̃k+1

)

= αkvd(k) − pk − αk+1vd(k)

+
(
pk − (αk − αk+1)vd(k+1)

)

= (αk − αk+1)(vd(k) − vd(k+1))

< 0.

This contradicts thatb is SGBP.

An important observation from the proof of this theorem is that Inequality (2) holds if and only if
vi < vd(k+1).

The theorem mentioned in the above indicates that the dynamics of the secure greedy bidding should
stop at the efficient allocation.

The next result assures the existence of the the bid profile that can be a convergent point of the
dynamics generated by the secure greedy bidding.
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Theorem 3.2. There exists a bidding profileb in a keyword auction that is a SGBP bid profile.

Proof. Consider the bid profileb∗ defined by the following manner:

b∗k =
K+1∑

h=k

αh−1 − αh

αk−1
vh (3)

for eachk with 1 5 k 5 K. Fork > K, b∗k = vk.
We will show thatb∗ is SGBP bid profile. Note that the allocation of the ad-slots atb∗ is assortative

since by the definition ofb∗k andb∗k+1, 1 5 k 5 K,

b∗k − b∗k+1 =
αk−1 − αk

αk−1
vk + (

1
αk−1

− 1
αk

)
K∑

h=k+1

(αh−1 − αh)vh

=
αk−1 − αk

αk−1αk

(
αkvk −

K∑

h=k+1

(αh−1 − αh)vh

)

>
αk−1 − αk

αk−1αk

(
αkvk −

K∑

h=k+1

(αh−1 − αh)vk

)

=
αk−1 − αk

αk−1αk
αKvK > 0.

We first show that for eachk = 1, b∗k = bA
k (k, p∗k), wherep∗k is a payment of bidderk who acquires

slotk at bid profileb∗. By the definition ofbA
k (k, p∗k),

bA
k (k, p∗k) = (1− αk

αk−1
)vk +

p∗k
αk−1

= (1− αk

αk−1
)vk +

αkb
∗
k+1

αk−1

=
αk−1 − αk

αk−1
vk +

αk

αk−1

K∑

h=k+1

αh−1 − αh

αk
vh

=
K∑

h=k

αh−1 − αh

αk−1
vh = b∗k

We next show that Inequality (2) does not hold for anyk at b∗. Since atb∗, the allocation is
assortative, we have, for anyk,

αkvk − pk − (αk+1vk − p̃k+1)
= αkvk − pk − αk+1vk + (pk − (αk − αk+1)vk+1)
= 0.

The basic equilibrium concept adopted by Lahaie, Pennock, Saberi and Vohra (2007), Edelman et
al. (2007), Varian (2007) and other researchers in this field to analyze the keyword auction is a locally
envy-free equilibrium. A bid profileb = (b1, . . . , bN ) is alocally envy-free equilibriumif the following
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two conditions hold for anyk ≥ 1:

αkvd(k) − αkbd(k+1)︸ ︷︷ ︸
d(k)’s current profit

≥ αk−1vd(k) − αk−1bd(k)︸ ︷︷ ︸
d(k)’s profit if he acquires ad-slotk − 1

with the current payment ofd(k − 1)

and
αkvd(k) − αkbd(k+1)︸ ︷︷ ︸

d(k)’s current profit

≥ αk+1vd(k) − αk+1bd(k+2)︸ ︷︷ ︸
d(k)’s profit if he acquires ad-slotk − 1

with the current payment ofd(k + 1)

Thus, a bid profile is locally envy-free if each bidder is not better off by the exchange of his position
with the position of the bidder immediately above or below. This means that an equilibrium concept
when each bidder cares only about the neighboring bidders. This is very different from the Nash equi-
librium where each bidder cares all of the other bidders. However, it is known that a locally envy-free
equilibrium bid profileb is a Nash equilibrium of the normal form game with complete information
(e.g., see Fukuda, Kamijo, Takeuchi, Masui and Funaki (2009)).

Next theorem states some of the pretty properties of SGBP bid profile.

Theorem 3.3. Letb be a SGBP bid profile. Then,

(i) the revenue of the one shot complete information game of the GSP atb is the same as the revenue
of the VCG at the dominant strategy equilibrium,

(ii) b is a locally envy-free equilibrium,

(iii) b is a Nash equilibrium of the one shot complete information game of the GSP, and

(iv) b is consistent in the sense that for eachk, pk = p̃k holds. In other words, the actual payment of
the bidder in slotk equals the payment estimated by the bidder in slotk − 1.

Proof. (i). Supposeb is SGBP. Then, by Theorem 1,b is a truthful-output, and thus,b1 > b2 > · · · >
bN . By the definition of the SGB,bk = vk for eachk > K. Since the payments of bidderK is vK+1,
it must hold that

bK = bA
K(K, αKvK+1) = (1− rK)vK + rKvK+1.

From this, the payments of the bidderk and his bid is determined as the following recursive manner:
from k = K − 1 to k = 2

pk = αkbk+1

and
bk = bA

k (k, pk) = (1− rk)vk + rkbk+1.

It is easily checked that for eachk = 1, bk = b∗k defined in (3). Varian (2007) shows thatb∗ is a bid
profile that achieves the lower bound of the auctioneer’s revenue among the set of all locally envy-free
equilibrium. It is also known that this lower bound is the revenue of the dominant strategy equilibrium
in VCG (Edelman et al. (2007)).
(ii) and (iii). From the proof of (i),b must be a locally envy-free equilibrium. It is a known result that a
locally envy-free equilibrium is a Nash equilibrium (see, Varian (2007) and Fukuda et al. (2009)).



WIAS Discussion Paper No.2010-008 7

(iv). Becauseb = b∗ (except for bidder1), we have, by definition of̃pk, for eachk > 1,

p̃k = pk−1 − (αk−1 − αk)vk

= αk−1b
∗
k − (αk−1 − αk)vk

= αk−1

K∑

h=k

αh−1 − αh

αk−1
vh − (αk−1 − αk)vk

=
K∑

h=k

(αh−1 − αh)vh − (αk−1 − αk)vk

=
K∑

h=k+1

(αh−1 − αh)vh

= αkb
∗
k+1 = pk.

In the definition of the secure greedy bidding, the choice of the bid of each advertiser is based on
the prediction on the payment of the one in the position immediately below from his. This means that in
some situation, their behavior is caused by the wrong prediction on the others, and even in the SGBP bid
profiles, such kinds of inconsistency of the prediction with the actual behavior may happen. However,
Theorem 3.3 (iv) says that SGBP bid profile is consistent in the sense that at the SGBP bid profile, the
prediction on the payment coincides with the actual payment.

One important remark is that the bid profile defined in Eq. (3) is a fixed point of the balanced bidding
by Cary et al. (2007) for the open bid environment. Therefore, combining our results and the results
of Cary et al. (2007), it is indicated that the stable bid profile in an open bid environment should be a
unique stable bid profile in a sealed bid environment.

4 Convergence of the secure greedy bidding

In this section, we explore whether the convergence is attained in the repeatedly played keyword auc-
tion. We consider both a synchronous model and an asynchronous model.

The secure greedy bedding strategy in the repeatedly played GSP auction is as follows.

Definition 4.1. Given the current position of the slot and the current payment, the secure greedy bidding
(SGB) strategy of bidderi with d(k) = i andk 5 K is as follows.

• If the current profit ofi is negative,i changes the bid tovi in the next period,

• If the current profit ofi is non-negative and Inequality (2) holds,i changes the bid tobB
i (k, pk) in the

next period, and

• if the current profit ofi is non-negative and Inequality (2) does not hold,i changes the bid tobA
i (k, pk)

in the next period.

And if i does not have any slot (i.e.,k > K), he changes the bid tobA
i (k, pk) = bA

i (k, 0) = vi.

We first consider a situation that in each period, every bidder changes his bid according to the SGB
strategy (synchronous model). Similar to Cary et al. (2007), we show that there may be a cycle of bids
in a keyword auction.
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Example 4.1. Consider a repeated keyword auction where all bidders follow the SGB strategy and
change their bids in each period. Then, for some initial bid profile, there exists a bid cycle in a repeated
keyword auction.

Consider a situation where there are three bidders with valuesv1 = 100, v2 = 80, v3 = 60 and
three ad slots withα1 = 25, α2 = 20, α3 = 4. Thusr1 = 0.5, r2 = 0.8, r3 = 0.2. Suppose their initial
bid profile isb1 = (74, 64, 0). Then, the next bid profile isb2 = (82, 16, 48). Moreover, the third bid
profile isb3 = (74, 64, 0) = b1. Thus, the bid cycle occurs.

The previous example means that the convergence of the bidding behavior under the sealed bid
repeated keyword auction is not assured in a synchronous model. However, as discussed by Cary et al.
(2007), an asynchronous model is more appropriate than a synchronous model as a approximation of a
real keyword auction. In a asynchronous model, the convergence of the bidding behavior is guaranteed
even in the sealed bid repeated keyword auction.

Theorem 4.1. Consider a repeated keyword auction where all bidders follow the SGB strategy and in
each period, one bidder is randomly chosen and change his bid according to the SGB strategy. Then,
from any initial bid profile, the bid profile converges to the SGBP bid profileb∗ defined in Equation (3).

Proof. The proof is in the appendix.

5 Discussion

In the previous sections, we propose and examine new bidding behavior for a keyword auction under a
sealed bid environment. Our results (Theorems 3.1, 3.2, 3.3 and 4.1) indicate that even in the situation
where each bidder cannot know the current bids of others, a market outcome is the same as the one
suggested by Cary et al. (2007) for a keyword auction under the open bid environment. Because the
auction in practice is played under the sealed bid environment, our results support the researches in this
filed that use a locally envy free equilibrium outcome as their basic analysis. However, it should be
noticed that instead of the information of the current bids of others, the SGB strategy requires another
information, the values of other bidders, that it may be difficult for the bidders in practice to acquire. On
the other hand, the balanced bidding proposed in Cary et al. (2007) needs only the information of the
bids of others. Thus, there is a trade-off in the required information between the SGB and the balanced
bidding.

In this section, we explore other versions of bidding behavior that can be executed by bidders in a
real keyword auction where they know neither the current bids of others nor the values of other bidders.

5.1 Equilibrium bidding behavior

Let b be a locally envy-free equilibrium andpk be the payments per click of slotk. Then, from the first
inequality in the definition of a locally envy-free equilibrium, we have

αk(vd(k) − pk) = αk−1(vd(k) − pk−1) ⇐⇒ vd(k) 5 pk−1αk−1 − pkαk

αk−1 − αk

and from the second, we have

αk(vd(k) − pk) = αk+1(vd(k) − pk+1) ⇐⇒ vd(k) = pkαk − pk+1αk+1

αk − αk+1.
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Combining these two inequalities, we obtain

pkαk − pk+1αk+1

αk − αk+1
5 vd(k) 5 pk−1αk−1 − pkαk

αk−1 − αk
. (4)

Since the above inequality holds for anyk = K, we have

pKαK

αK
5 pK−1αK−1 − pKαK

αK−1 − αK
5 ... 5 pkαk − pk+1αk+1

αk − αk+1
5 ... 5 p1α1 − p2α2

α1 − α2
. (5)

From this, we can observe that at a locally envy-free equilibrium,vd(k) = vk should hold for any
k = K, and thus, the allocation of the ad-slots at a locally envy-free equilibrium is efficient.

From these observations, we have the interesting properties of the equilibrium bid profiles. First, if
we seeαk as the expected number of the clicks per given period,pk−1αk−1 − pkαk andαk−1 − αk are
the increase of the cost and the number of the clicks, respectively, whend(k) obtains one higher ad-slot
k − 1, and thus,(pk−1αk−1 − pkαk)/(αk−1 − αk) can be seen as the marginal cost of clicks ford(k).
Second, from (5), the marginal cost of clicks is increasing. Third, from (4), the slots assigned to bidders
are consistent with their profit maximization because they obtain their highest ad-slots among the ones
where the marginal revenue (value) is greater than or equal to the marginal cost. (For more detail, see
Varian (2007))

Based on this equilibrium predictions, Varian (2007) implicitly introduced the idea of the bidding
behavior for keyword auctions. The idea is that if the marginal payments for obtaining the one higher ad-
slot calculated from the current bid profile is less than the marginal revenue (the value of the advertiser),
then the advertiser, sayd(k), should increase the bid to the one that he should choose if he is in slot
k − 1. This with the idea of the SGB motivates the following definition of new bidding behavior.

Definition 5.1. Given the current position of the slot and the current payment, the equilibrium bidding
(EB) strategy of bidderi with d(k) = i andk 5 K is as follows.

• If the current profit ofi is negative,i changes the bid tovi in the next period,

• If the current profit ofi is non-negative and

vi >
pk−1αk−1 − pkαk

αk−1 − αk
(6)

holds,i changes the bid tobA
i (k − 1, pk−1) in the next period, and

• if the current profit ofi is non-negative and Inequality (6) does not hold,i changes the bid tobA
i (k, pk)

in the next period.

And if i does not have any slot (i.e.,k > K), he changes the bid tobA
i (k, pk) = bA

i (k, 0) = vi.

It should be emphasized that all the information that are needed for an advertiser to execute the EG
strategy is his value, CTRs of ad-slots, his bid, and his payment. He needs neither the bids of others
advertisers nor the values of others.

As is the SGBP, we define the stable bid according to the EB strategy.

Definition 5.2. The bid profileb is equilibrium bidding proof (EBP) if b is stable under the EB
strategy of every bidder. Thus, at the EBP bid profileb, each advertiseri with d(k) submits the bid
bi = bA

i (k, pk), and for eachk, Inequality (6) does not hold.

The existence of the EBP bid profiles is easily proved.
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Theorem 5.1. There exists a bidding profileb in a keyword auction that is a EBP bid profile.

Proof. From (ii) of Theorem 3.3, the bid profileb defined in Eq. (3) is a locally envy-free equilibrium.
In addition, from the proof of Theorem 3.2, in this bid profile,bd(k) = bA

d(k)(k, pk) holds for anyk. Since
Inequality (6) does not hold for anyk when the current bid profile is a locally envy-free equilibrium,b
is a EBP bid profile.

In contrast to the SGBP bid profiles, as the following example will show, the EBP bid profile is not
always a locally envy-free equilibrium. Moreover, it does not assure the truthful output (note that for
any locally envy-free equilibrium bid profile, the allocation is truthful output, see Varian (2007)).

Example 5.1.Consider a situation where there exist three bidders with their values beingv1 = 20, v2 =
25 andv3 = 10 and two ad slots with CTRs beingα1 = 10 andα2 = 5. Thus,r1 = r2 = 1/2. Consider
a bid profile defined by

b3 = 10,

b2 = bA
2 (2, α2b3) =

1
2
× 25 + (1− 1

2
)× 10 = 17.5,

and

b1 = bA
1 (1, α1b2) =

1
2
× 20 + (1− 1

2
)× 17.5 = 18.75.

For bidder2,

v2 = 25 5 17.5× 10− 10× 5
10− 5

=
p1α1 − p2α2

α1 − α2
.

Thus, Inequality (6) does not hold and therefore, this bid profile is EBP. This bid profile is not truthful
output and thus, is not a locally envy-free equilibrium.

5.2 Trial-and-error bidding behavior

In the actual bidding behavior in a real world, an advertiser often raises the bid as a trial and this may be
a reason that the actual bidding behavior shows the complicated figure. To describe such a trial increase
of a bid, we assume that in the beginning of each period, there is a very short period, called trial period,
such that a bidder can change the bid and observe the resulting ad-slot assignment but this does not
affect the profit of the advertisers unless the advertiser keeps this trial bid as his bid of this period. The
combination of the trial-and-error and the equilibrium bidding mentioned in the previous subsection
motivates the following bidding behavior.

Definition 5.3. Given the current position of the slot and the current payment, the trial-and error bidding
(TEB) strategy of bidderi with d(k) = i andk 5 K is as follows.

• If the current profit ofi is negative,i changes the bid tovi in the next period,

• If the current profit ofi is non-negative,i changes the bid tobA
i (k − 1, pk−1) in the trial period. If

this change in his bid lead to the change in the allocation of the ad-slots, he keeps this bid as the
bid of the next period. Otherwise,i changes the bid tobA

i (k, pk) as the bid of the next period. Ifi
has the top position, the trial bidding is removed and he choosesbA

i (k, pk) as the bid of the next
period.

And if i does not have any slot (i.e.,k > K), he changes the bid tobA
i (k, pk) = bA

i (k, 0) = vi.

As are the SGBP and EBP, we define the stable bid according to the TEB strategy.
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Definition 5.4. The bid profileb is trial-and-error bidding proof (TEBP) if b is stable under the TEB
strategy of every bidder. Thus, at the TEBP bid profileb, each advertiseri with d(k) submits the bid
bi = bA

i (k, pk), and for eachk > 1, bA
d(k)(k − 1, pk−1) < bd(k−1).

The TEBP bid profile has the same good properties as the one the SGBP bid profiles satisfies.

Theorem 5.2. The bid profile defined in Eq. (3) is the unique TEBP bid profile.

Proof. From the definition of TEB strategy, ifb is a TEBP bid profile, it must satisfy the following two
conditions:

bd(k) = vd(k)

for anyk > K, and
bd(k) = bA

d(k)(k, αkbd(k+1))

for anyk 5 K. Thus, from the proof of Theorem 3.2, it suffices to show thatb is assortative.
Assume thatb is not assortative. Them, there existk 5 K such thatvd(k) > vd(k−1). For bidder

d(k), his trial bid is greater than the bid ofd(k − 1) because

bA
d(k)(k − 1, αkbd(k)) = (1− rk−1)vd(k) + rk−1bd(k)

> (1− rk−1)vd(k+1) + rk−1bd(k)

= bA
d(k−1)(k − 1, αkbd(k))

= bd(k−1).

This is a contradiction.

Next theorem shows that the convergence result also holds for the TEB strategy.

Theorem 5.3. Consider a repeated keyword auction where all bidders follow the TEB strategy and in
each period, one bidder is randomly chosen and change his bid according to the TEB strategy. Then,
from any initial bid profile, the bid profile converges to the TEBP bid profileb∗ defined in Equation (3).

Proof. The proof is in the appendix.
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Appendix

6 Proof of Theorem 4.2

We first introduce the following notation. For two bid profileb andb’ , we say thatb’ can be realized

from b by SGB and writeb
sgb−−→ b’ if b’ is realized fromb by some one player’s changing in his bid

according to the SGB.

Lemma 6.1. For any initial bid b0, there exists a finite sequence of the bid profiles,b1, b2, ..., bt such
that

1. for anys with 0 5 s < t, bs sgb−−→ bs+1, and

2. bt satisfies the following two conditions:

(a) for any bidderi with i > K, bt
i = vi, and

(b) for any bidderi, he does not do overbid, i.e.,bt
i 5 vi.

Moreover,t does not exceed2N + K2 −K.

Proof. To construct the sequence of bids in this lemma, we consider the several steps.

Step 1. There exists a sequence of bid profiles fromb0 to bt1 such thatb0 sgb−−→ b1 sgb−−→ ...
sgb−−→ bt1 ,

every bidder who does not obtain any slot submits his true value atbt1 , andt1 is less than or equal to
N .

To show Step 1, we consider the following procedure.

• Procedure (1).

• Initial conditions are bid profileb0, S1
0 = {i : bidderi does not obtan an slot atb0 } andS2

0 =
{1, ..., N}.

• Repeat the following process fromt = 0 until S1
t ∩ S2

t becomes an empty set:

– choose anyit from S1
t ∩ S2

t andit changes his bid tovit .

– bt+1 is the bid profile afterit’s change in his bid,S1
t+1 is the set of bidders that do not obtain

slots atbt+1, andS2
t+1 = S2

t \ {it}.
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Note that this procedure must be stopped in at mostt = N because in each time one element inS2
t

is deleted and the cardinality of the initialS2
0 is N . Let t1 be the period where this procedure is stopped.

It should be emphasized that for eacht, bidderit follow the SGB strategy becauseit is chosen from the
set of the bidders that do not obtain any slot at the current bid profile. This means that the sequence of
bids fromb0 to bt1 is caused by the SGB. It is obvious from the definition of Procedure (1) atbt1 , every
bidder who does not obtain any slot submits his true value.

Step 2. There exists a sequence of bid profiles frombt1 to bt1+t2 such thatbt1 sgb−−→ bt1+1 sgb−−→ ...
sgb−−→

bt1+t2 , biddersK + 1, K + 2, ..., N do not obtain ad-slots and submit their true values atbt1+t2 , and
t2 is less than or equal toN −K.

Let S3
0 be defined by{K +1,K +2, ..., N}∩{i : bidderi obtans an ad-slot atbt1 }. If S3 is empty,

skip this step and go to Step 3. IfS3 is not empty, putt2 = |S3
0 | and apply the following procedure (2).

• Procedure (2).

• Initial conditions areS3
0 andbt1 .

• Repeat the following fromt = 0 to t2.

– choose anyit from S3
t andit changes his bid tovit .

– bt1+t+1 is the bid profile afterit’s change in his bid andS3
t+1 = S3

t \ {it}.

Note that for anyi ∈ S3
0 , the profit of bidderi at bid profilebt1 is negative because bid ofd(K + 1)

at bt1 is vd(K+1) andvd(K+1) must be greater thanvi. The same situation holds for anyit because the
changes of bids ofi1, i2, ..., it−1 to their true values only makeit’s position to a upper slot andit keeps
the slot with paying more than his true value atbt1+t. This means that the sequence of bids frombt1 to
bt1+t2 is caused by the SGB of bidders. It is easily checked thatt2 5 N −K. It is obvious from the
definition of Procedure (2) that atbt1+t2 , biddersK +1, K +2, ..., N do not obtain ad-slots and submit
their true values and other bidders submit a bid more thanvK+1.

Step 3. There exists a sequence of bids frombt1+t2 to bt1+t2+t3 such thatbt1+t2 sgb−−→ bt1+t2+1 sgb−−→
...

sgb−−→ bt1+t2+t3 , bid profilebt1+t2+t3 satisfies conditions (a) and (b) mentioned in this lemma, andt3

is less than or equal toK2.

Let S4
0 be defined by{1, 2, ..., K} ∩ {i : bidderi does overbid atbt1+t2 }. We putr = |S4

0 | and
S4

0 = {i1, ..., ir} where fork < k′ 5 r, ik obtains the lower ad-slot thanik′ at bt1+t2 . Apply the
following procedure sequentially fromi1 to ir.

• Procedure (3) for ik.

• ik changes his bid according to the SGB until his bid is less than or equal tovik . If ik does not
obtain any slot after this repetition of the SGB,ik follows SGB one more time and submits his
valuevi.

Consider Procedure(3) for ik and suppose that currentlyik still does overbid and obtains slot`. We
separately consider the two cases: (1)bd(`+1) 5 vik and (2)bd(`+1) > vik . In case (1), by the definition
of SGB, the bid in the next period ofik is less than or equal tovik in both SGB for A and SGB for B. On
the other hand, in case (2),ik changes the bid according to SGB for B becausevd(`+1) = bd(`+1) > vi.
(The first inequality follows from the fact thatd(` + 1) does not do overbid. This fact is because we



WIAS Discussion Paper No.2010-008 14

apply Procedure(3) from bidders in lower position to ones in higher position.) As the result of SGB for
B, bidderik must obtain the lower slot than the current slot` at the next bid profile. Thus, Procedure
(3) for ik should be stopped unless case (2) occurs in an infinite time. The infinite repetition of case
(2) is impossible because in each time, bidderik obtains the lower slot than the current one and this has
the limit of slotK (if ik does not obtain any slot at some period, his bid must be less than or equal to
vK+1). Thus, Procedure(3) for ik is stopped at mostK times repetition of changes ofik’s bid.

From the discussion in the previous paragraph, the number of the repetition of the change in the
bids from Procedure(3) for i1 to Procedure(3) for ir is not exceedrK 5 K2.

The final bid profile obtained after Step 3 satisfies all the properties mentioned in this lemma. This
bid profile is realized by modifications of bids according to SGB less than or equal toN+N−K+K2 =
2N + K2 −K. Thus, the proof of this lemma is completed.

Next, we will show lemmas regarding on the properties of the SGB strategy.

Lemma 6.2. Given some bid profileb, consider the SGB for B ofi with i = d(k), k < K.

(i) if p̃k+1 = pk+1 andbd(k+2) = vK+1 hold, thenbB
i (k, p̃k+1) > vK+1, and

(ii) if p̃k+1 = pk+1 andvi = bd(k+2) hold,bB
i (k, p̃k+1) > bd(k+2).

Proof. (i). By the definition of SGB for B and the assumptions,

bB
i (k, p̃k+1) = (1− αk+1

αk
)vd(k+1) +

pk+1

αk

= (1− rk+1)vi + rk+1bd(k+2).

Sincevi > vK+1 andbd(k+2) = vK+1, bB
i (k, p̃k+1) > vK+1.

(ii). From the calculation in the proof of (i),vi = bd(k+2) impliesbB
i (k, p̃k+1) > bd(k+2).

Lemma 6.3. Given some bid profileb, consider the SGB for A ofi with i = d(k), k < K. If bd(k+1) =
vK+1, bA

i (k, pk) > vK+1.

Proof. SincebA
i (k, pk) = (1 − rk)vi + rkbd(k+1), bd(k+1) = vK+1 together withvi > vK+1 implies

bA
i (k, pk) > vK+1.

Lemma 6.4. Given some bid profileb, take biddersi andj with i < j(vi > vj). For anyk with k 5 K,

1. for anypk = 0, bA
i (k, pk) > bA

j (k, pk)

2. for anypk andp′k such thatpk > p′k > 0，bA
i (k, pk) > bA

j (k, p′k).

Proof. The proof of this lemma is obvious from the definition of SGB for A.

Before moving to the next lemma, we prepare additional definitions. For anyk with 1 5 k 5 K,
bid profileb is k-consistent if for anyh with h > K, d(h) = h, the values of biddersd(K), d(K −
1), ..., d(k) are increasing (i.e.,vd(K) < vd(K−1) < ... < vd(k)) and they submit the following bids:

bd(h) = vd(h) for anyh > K,

bd(K) = bA
d(K)(K, αKbd(K+1))
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...

bd(k) = bA
d(k)(k, αkbd(k+1)).

Note that bid profilebt described in Lemma 6.1 isK +1-consistent. One important remark is that if bid
profileb is 1-consistent, this must beb∗ defined in Equation (3). In other words, if we find the sequence
of bid profiles that ends up with1-consistent bid profile, we end the proof of Theorem 4.2.

Lemma 6.5. Supposeb is k + 1-consistent and there is no bidder who does overbid at this bid profile.
Let bidderi currently occupy slotk with k 5 K andd(.) denote the assignment of slots atb.

(i) The guess ofi to the payment of the bidder in slotk + 1, p̃k+1, is correct. In other words,
p̃k+1 = pk+1, wherepk is the actual payment of the bidderd(k + 1) at b,

(ii) If bidder i changes his bid according to the SGB for B, then the following conditions must hold:

bd(k+2) < bB
i (k, pk) < bd(k+1).

Thus,i obtains slotk + 1 in the next period.

(iii) If bidder i changes his bid according to the SGB strategy, the new bid profile afteri’s change in
his bid is stillk + 1-consistent.

Proof. (i). This holds becausẽpk+1 is defined by solution ofbd(k+1) = bA
d(k+1)(k + 1, p̃k+1) andb is

k + 1-consistent.
(ii). From (i) of this lemma, the SGB for B ofi is

bB
i (k, pk) = (1−rk+1)vi+

p̃k+1

αk
= (1−rk+1)vi+

pk+1

αk
= (1−rk+1)vi+rk+1bd(k+2) = bA

i (k+1, pk+1)

Sincevi = bi > bd(k+2), bB
i (k, pk) is greater thanbd(k+2).

Since i follows the SGB for B, Inequality (2) must hold and thusvi < vd(k+1). Sinceb is
k + 1-consistent,bd(k+1) = bA

d(k+1)(k + 1, pk+1). Then,bB
i (k, pk) < bd(k+1) must hold because of

Lemma 6.4.
(iii). If bidder i changes his bid according to SGB for A, his change of bid does not change the assign-
ment of slots for slotk + 1, k + 2, ...,K. This means that after his changing a bid, the new bid profile
is still k + 1-consistent. On the other hand, we know from the proof of (ii) of this lemma that if bidder
i changes his bid according to SGB for B, the resulting bid profile is stillk + 1-consistent.

Lemma 6.6. Suppose bidb0 is k + 1-consistent, no bidder does overbid at this bid profile, and bidder
d(k) at the bid profileb0 satisfies Inequality (2). Then, there exists a finite sequence of bid profiles,b1,
b2, ...,bt such that

1. for anys with 0 5 s < t, bs sgb−−→ bs+1, and

2. bt satisfies the following two conditions:

(a) bt is k + 1-consistent

(b) any bidder does not do overbid,

(c) for bidderd(k) at bt, Inequality (2) does not hold (that is, if he is chosen as an active player,
he changes his bid according to SGB for A).
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Moreover,t is less than or equal to2(K − k)− 1.

Proof. For h > k, let ih be bidder who occupies sloth at bid profileb0. Since Inequality (2) hold for
bidderi in slotk at b0 andb0 is k + 1-consistent, there must exist` > k such that

viK < viK−1 < ... < vi`+1
< vi < vi` < ... < vik+1

holds.

Step 1. There exists a sequence of bid profiles fromb0 to b`−k such thatb0 sgb−−→ b1 sgb−−→ ...
sgb−−→ b`−k,

for anyh with 0 5 h 5 `− k − 1, bh sgb−−→ bh+1 is realized by bidderi’s SGB for B, and bidderi is in
slotk + h atbh.

Givenh with 0 5 h 5 ` − k − 1, suppose thatbh is the bid profile afteri’s h times change in his
bid according to SGB for B. Moreover, we suppose that this bid profile isk + h + 1-consistent andi
occupies the slotk + h at this bid profile. If bidderi follows the SGB strategy atbh, he must follow
the SGB for B becausevi < vi` 5 vik+h+1

. By Lemma 6.5, bidderi obtains slotk + h + 1 after his
change in a bid and the resulting bid profile,bh+1, is k + h + 1-consistent, and thus, this must be also
k + h + 2-consistent. Applying this argument fromh = 0 to h = ` − k − 1, we obtain the desired
sequence of bid profiles.

If ` = k + 1, bidderik+1 is in slotk at the bid profileb`−k andvik+1
> vi. This means thatb`−k is

the desired bid profile of this lemma. Thus, we assume` > k + 1. Let t1 = `− k.

Step 2. There exists a sequence of bids frombt1 obtained from Step 1 tobt1+(`−k−1) such thatbt1 sgb−−→
bt1+1 sgb−−→ ...

sgb−−→ bt1+(`−k−1), for anyh with 0 5 h 5 ` − k − 2, bt1+h sgb−−→ bt1+h+1 is realized by
bidderi`−h’s SGB for A, and bidderih′ is in sloth′ − 1 at bt1+h for anyh′ with ` = h′ = k + 1, and
bt1+h is `− h-consistent.

Note that in the case ofh = 0, b`−k is `-consistent by Step 1. Consider that bidderi`, i`−1, ..., ik+2

sequentially change their bids according to the SGB. Letbt1 sgb−−→ bt1+1 sgb−−→ ...
sgb−−→ bt1+(`−k−1) be

the resulting sequence of bid profiles. We first show thatbt1+1
i`

< bt1
i`−1

. By the construction ofbt1 ,

bt1
i`−1

= bA
i`−1

(` − 1, α`−1b
t
i`
). On the other hand, becausevi` > vi, i` follows the SGB for A and thus

bt1+1
i`

= bA
i`
(`− 1, α`−1b

t
i). Sincevi`−1

> vi` andbt
i`

> bt
i, we have, by Lemma 6.5,

bt1+1
i`

= bA
i`
(`− 1, α`−1b

t
i) < bA

i`−1
(`− 1, α`−1b

t
i`
) = bt1

i`−1
.

This implies thati`’s SGB for A does not change the allocation of slots.
Next, we show that givenh with 1 5 h 5 ` − k − 2, if bt1+h

i`−h+1
< bt1

`−h, thenbt1+h+1
i`−h

< bt1
i`−h−1

.

By the construction ofbt1 , bt1
i`−h−1

= bA
i`−h−1

(` − h − 1, α`−h−1b
t1
i`−h

). On the other hand, because

vi`−h
> vi`−h+1

, i`−h follows the SGB for A and thusbt1+h+1
i`−h

= bA
iz`−h(` − h − 1, α`−h−1b

t1+h
i`−h+1

).

Sincevi`−1
> vi` andbt1+h

i`−h+1
< bt1

`−h, we have, by Lemma 6.5,

bt1+h+1
i`−h

= bA
i`−h

(`− h− 1, α`−h−1b
t1+h
i`−h+1

) < bA
i`−h−1

(`− h− 1, α`−h−1b
t1

i`−h
) = bt1

i`−h−1
.

Applying the argument in the previous paragraph fromh = 1 to h = ` − k − 2, we know that
for anyh, bidderi`−h follows the SGB for A and the change of his bid does not affect the allocation
of the ad-slots. Moreover, bid profilebt1+h is ` − h-consistent. Therefore, at the final bid profile
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bt1+`−k−1, bidderik+2 occupies the slotk + 1, and thus bidderik+1 occupies the slotk. This means
that at this bid profile, Inequality (2) does not hold for the bidder in slotk. Moreover, this bid profile is
`− (`− k − 1) = k + 1-consistent.

It is obvious that at the bid profilebt1+`−k−1, no bidder does overbid. Finally,t1 + ` − k − 1 =
2(`− k)− 1 5 2(K − k)− 1.

Lemma 6.7. Suppose bidb0 is k + 1-consistent, no bidder does overbid at this bid profile, and bidder
d(k) at the bid profileb0 does not satisfy Inequality (2). Then, there exists a finite sequence of bid
profiles,b1, b2, ...,bt such that

1. for anys with 0 5 s < t, bs sgb−−→ bs+1, and

2. bt satisfies the following two conditions:

(a) bt is k-consistent

(b) any bidder does not do overbid,

Moreover,t is less than or equal to2(K − k)(k − 1).

Proof. Consider the SGB strategy of bidderd(k) from b1 and let the new bid profile beb1. By as-
sumption of this lemma,d(k) must follow the SGB for A. If the change in his bid does not change the
allocation of the slots,b1 is k-consistent and no bidder does not do overbid in this bid profile. Thus, we
assume that the allocation of slots atb1 is not the same as one atb0. Let ik, ik−1, ..., i1 be the bidders
that occupy the slotsk, k− 1, ..., 1 at the bid profileb0, respectively. Then, there must exist` < k such
that at bid profileb1, bidderik obtains slot̀ , bidderih with k−1 5 h 5 ` obtain sloth+1, and bidder
h with 1 5 h 5 `− 1 keeps sloth.

Let b(1) = b1. Then, note that at the bid profileb(1), the value of the bidder in slotk∗ is greater than
all the values of the bidders in slotk +1, k +2, ..., K. Consider the SGB strategy of bidderik−1 atb(1)

who occupies the slotk at this bid profile. We separately consider the two cases: (1)ik−1 follows the
SGB for A, and (2)ik−1 follow the SGB for B. In case (1), if the SGB for A ofik−1 does not change the
allocation ofb(1), and thus this new bid profile is desired one. On the other hand, if the SGB for A of
ik−1 changes the allocation ofb1 andik−1 obtains slot̀ 1 < k, let this new bid profile beb(2). In case
(2), by applying Lemma 6.6, after less than2(K − k) times repetition of the changes in the bid by SGB
strategy, there appears bid profileb(1′) such that this isk + 1-consistent, any bidder do not overbid, and
bidderj1 in slot k at this bid profile does not satisfy Inequality (2). Then, we apply the argument in
case (1) to bidderj1 and bid profileb(1′) instead ofik−1 andb(1). As the result, the new bid after the
SGB for A of j1 is the desired bid profile, orb(2) are defined.

Next, we apply the same argument mentioned in the previous paragraph for bid profileb(2) and
bidderik−2 who occupies slotk at this bid profile. The result is that either we obtain the desired bid
profile orb(3). Applying this argument sequentially unless the desired bid profile is obtained, there must
exist bid profileb(t) such that bidder in slotk at this bid profile had already changed his bid according
to SGB for A in this procedure. Let the name of this bidder bei∗ and consider the SGB ofi∗ at b(t).
Then, by construction of this process and the fact that this bidder previously change his bid according to
SGB for A, at this time he must follow the SGB for A at this bid profile. Moreover, because payments
of each sloth with h = k + 1 is non-increasing fromb(1) to b(t), the SGB ofi∗ atb(t) does not exceed

b
(t)
i∗ that is the SGB for A at the past bid profile. Thus, the resulting bid profile is the desired one.

Therefore, we obtain the desired bid profile less than or equal to(2(K − k) − 1 + 1) ∗ (k − `) 5
2(K − k)(k − 1).
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Lemma 6.8. Suppose bidb0 is K +1-consistent, no bidder does overbid at this bid profile. Then, there
exists a finite sequence of the bids,b1, b2, ...,bt such that

1. for anys with 0 5 s < t, bs sgb−−→ bs+1, and

2. bt is 1-consistent.

Moreover,t is less than or equal toK(K2+3K−4)
6 .

Proof. Apply Lemma 6.7 fromk = K to k = 1, and we obtain the desired bid profile no more than

K∑

k=1

2(K − k)(k − 1) =
K(K2 + 3K − 4)

6

Finally, we prove Theorem 4.2. From Lemma 6.1 and 6.8, we know that from any initial bid profile,

there exist a sequence of bid profiles less than or equal to2N + K2 −K + K(K2+3K−4)
6 that realize

b∗ defined in (3). This means that for any bid profile, there exists a small probability greater thanη > 0
thatb∗ is realized. This with the knowledge on the Markov process with infinite states guarantees that
the convergence tob∗ occurs almost surely from any initial bid profile.

7 Proof of Theorem 5.3

For two bid profileb andb’ , we say thatb’ can be realized fromb by SGB and writeb teb−−→ b’ if b’ is
realized fromb by some one plater’s changing in his bid according to the TEB.

For the proof of this theorem, it suffices to show the following lemmas. Letb∗ be defined in Eq. (3).

Lemma 7.1. For any initial bidb0, there exists a finite sequence of bid profiles,b1, b2, ...,bt such that

1. for anys with 0 5 s < t, bs teb−−→ bs+1, and

2. no bidder does overbid atbt

Moreover,t is less than or equal to2N .

Proof. Let S be the set of bidders that do overbid at initial bid profileb0. Take anyi ∈ S and let
i = d(k). Consider TEB strategy of bidderi. We separately consider the two cases: (1)i’s profit
at b0 is negative, and (2) it is non-negative. In case (1), bidderi changes his bid tovi and thus,
he does not do overbid after the change in his bid. In case (2), depending on the allocation after
the change ofi’s bid according to the TEB strategy, we separately consider the two sub-cases: (2a)
i obtains new ad-slot̀ that is higher position thank, and (2b)i keeps the ad-slotk. In (2a), the
profit of i becomes negative becausei does overbid atb0 and now he obtain slot̀ < k. Thus, if he
changes his bid according to the TEB strategy again, his new bid becomesvi. In (2b), his bid is now
bA(k, αkbd(k+1)) = (1 − rk)vi + rkbd(k+1). His bid is less thanvi becausebd(k+1) < vi. Therefore,
for any bidderi ∈ S, he stops the overbid after at most two times of change in his bid according to the
TEB strategy.

We have the desired result because|S| 5 N .

Lemma 7.2. For any bid profileb0 satisfying the following two conditions: for somek 5 N
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(a) no bidder does overbid,

(b) for any bidderi > k, b0
i = b∗i , and

(c) for any bidderi > k, d(i) = i at the bid profileb0,

there exists a finite sequence of bid profiles

b0 teb−−→ b1 teb−−→ ...
teb−−→ bm

wherebm satisfying the following two conditions:

(a’) no bidder does overbid,

(b’) for any bidderi ≥ k, bm
i = b∗i , and

(c’) for any bidderi ≥ k, d(i) = i at the bid profilebm,

andm is less than or equal to4k + 1.

Proof. To construct the sequence of bids in this lemma, we consider the two steps.

Step 1. We construct a sequence of bids fromb0 to bm1
by the following procedure:

• Bidderk changes his bid according to TEB strategy repeatedly until the change of his bid does
not change the bid profile.

Since the number of the bidder is finite, this procedure will stop at a finite time. Moreover, the
number of the change in his bid is less than or equal tok and thusm1 5 k.

Step 2. We construct a sequence of bids frombm1
to bm1+m2

by the following procedure:

• Repeat the following three stages until the termination condition is satisfied at Stage 1. Let the
current bid profile bebm1+3t and bidderk be in slot` at this bid profile.

• Stage 1. The bidder in slot` + 1, say bidderj, changes his bid according to TEB. Letbm1+3t+1

be the resulting bid profile. Ifbm1+3t+1 = bm1+3t, stop this procedure andbm1+3t+1 is the final
bid profilebm1+m2

. Otherwise go to Stage 2.

• Stage 2. Bidderj changes his bid according to TEB at bid profilebm1+3t+1. Let bm1+3t+2 be
the resulting bid profile.

• Stage 3. Stage 3. Bidderk changes his bid according to TEB at bid profilebm1+3t+2. Let
bm1+3t+3 be the resulting bid profile.

For the sequence of bid profiles constructed in Step 2, we will show the following claim.

Claim. Let d(.) be defined and fixed at the bid profilebm1+3t. Let bidderk be in slot̀ at this bid profile
and letj = d(` + 1). Assume thatbm1+3t satisfies the following conditions

1. bm1+3t
k = bA

k (`, α`b
m1+3t
j ), and

2. for i ∈ S := {d(1), ..., d(`− 1)},

bm1+3t
i > bA

k (`− 1, α`−1b
m1+3t
k ).
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If vj > vk, bm1+3t+3 satisfies the following conditions:

1’. k is in slot` + 1,

2’. bm1+3t+3
k = bA

k (` + 1, α`+1b
m1+3t+3
j′ ) wherej′ = d(` + 2),

3’. for i ∈ S ∪ {j},
bm1+3t+3
i > bA

k (`, α`b
m1+3t+3
k ).

For the simplicity, we use notationsb instead ofbm1+3t andbi instead ofbm1+3t;i, i = 1, 2, 3.
We first consider Stage 1. The trial bid of bidderj is bA

j (`, α`bj) and it satisfiesbA
j (`, α`bj) >

bA
k (`, α`bj) = bk sincevj > vk. Thus, in the new bid profileb1, b1

j = bA
j (`, α`bj), andj is in slot` and

k is in slot` + 1.
In Stage 2, bidderj changes his bid again. His new bidb2

j must satisfy the following

b2
j = bA

j (`, α`bk),

where note thatbk = b1
k.

In Stage 3, bidderk change his bid according to the TEB strategy. His trial bid isbA
k (`, α`bk) and it

satisfies the following two conditions: for anyi ∈ S,

bA
k (`, α`bk) < bA

k (`, α`−1bk) < bi = b2
i

where the third inequality is from the assumption of this claim, and

bA
k (`, α`bk) < bA

j (`, α`bk) 5 b2
j .

Therefore,j’s trial bid does not change the allocation. Thus,b3
k = bA

k (` + 1, α`+1bd(`+2)) andk is in
slot ` + 1 atb3. Moreover, sinceb3

k = bA
k (` + 1, α`+1bd(`+2)) < bA

k (`, α`bd(`+1)) = bk, we have

bA
k (`, α`b

3
k) 5 bA

k (`, α`bk) < b3
i

for anyi ∈ S ∪ {j}. The proof of the clam is finished.

We can apply this claim untilvk < vj is violated. Thus, this process is repeated less than or equal
to k times. It is easily confirmed that the resulting bid profilebm1+m2

satisfying conditions (a’) and (b)
andm2 is less than or equal to3k + 1. Thus,m1 + m2 5 4k + 1.

Applying this lemma fromk = N to k = 1, we obtain the finite sequence from any initial bid
profile tob∗ where each change in the bid is realized by TEB strategy of some bidder and the number
of change in the bid is less than or equal to

N∑

k=1

(4k + 1) = 2N(N + 1) + N.

Final argument is the same as the last paragraph in the proof of Theorem 4.2.


