Lipopolysaccharide-stimulated inflammatory responses by macrophages are suppressed at the post-transcriptional level in middle-aged mice.

Ken Shirato, Kazuhiko Imaizumi

Laboratory of Physiological Sciences, Faculty of Human Sciences, Waseda University

The intensities of macrophage inflammatory responses to bacterial components gradually decrease with age. Given that a reduced rate of protein synthesis is a common age-related biochemical change, which is partially mediated by increased phosphorylation of eukaryotic initiation factor-2a (eIF-2a), we investigated the mechanism responsible for the deterioration of macrophage inflammato- ry responses, focusing specifically on the age-related biochemical changes in middle- aged mice. Peritoneal macrophages isolated from 2-month-old (young) and 12-month-old (middle-aged) male BALB/c mice were stimulated with lipopolysaccharide (LPS). Although LPS-stimulated secretion of tumor necrosis factor-a (TNF-a) by the macrophages from middle-aged mice was ignifycantly lower than that from young mice, LPS caused marked increases in levels of TNF-a mRNA in macrophages from middle- aged as well as young mice. Moreover, LPS evoked similar levels of phosphorylation of c-Jun N-terminal kinase (JNK) and nuclear factor- κ B (NF- κ B) in young and middle- aged mice. In contrast, the basal level of phosphorylated eIF-2a in macrophages from middle-aged mice was higher than that in macrophages from young mice. Salubrinal, an inhibitor of the phosphatase activity that dephosphorylates eIF-2a, suppressed the LPS-stimulated inflammatory responses in a murine macrophage cell line RAW264.7. These results suggest that post-transcriptional suppression of macrophage inflammatory responses during middle age requires phosphorylation of eIF-2a.