
Concerto :
An Input Widget Framework

for Multi-modal and Multi-device
Environments

Nobuyuki Kobayashi
Student ID: 3603U060-8

Waseda University
Department of Computer Science

School of Science and Engineering
Supervisor: Prof. Tatsuo Nakajima

February 2, 2005

Abstract

In future ubiquitous computing environments, our daily lives will be influenced
by a lot of computer supported services all over the place. To interact with those
services intuitively, heterogeneous interaction techniques such as gestures, audi-
tory recognition and tangible user interfaces will be appear. Besides, several kinds
of services will support multiple input devices, not just one set of them. In such
multi-modal environments, application programmers must take into account how
to adapt heterogeneous input events to multi-modal services.
We propose an input-event framework that provides high-level abstraction for het-
erogeneous input devices, that we callMetaInputs, for distributed multi-modal
applications. Our framework provides semantic and standard interfaces between
input devices and services. It enables developers to deploy input devices and ser-
vices independently. And also, our framework supports context-aware runtime
adaptation that can switch input devices to handle services dynamically.

Contents

1 Introduction 3
1.1 Ubiquitous Computing . 3
1.2 Multimodal Interaction for Ubiquitous Environments 4
1.3 Input Widgets and Input Forms in Multi-modal Environments . . . 4

1.3.1 Basic Widgets . 5
1.3.2 Recognition-based Widgets 5
1.3.3 Tungible Widgets . 5

1.4 An Application Framework in Ubicomp Environments 6
1.5 Domain of Our Framework . 6
1.6 Goal of This Paper . 6
1.7 Structure . 7

2 Related Work 8
2.1 Buxton et al. and Card et al. 8
2.2 iStuff . 9
2.3 Gaia . 10
2.4 ICON . 11

3 Design Space of Input Widgets 13
3.1 Input Capabilities . 13

3.1.1 Modality . 14
3.1.2 Expression . 15
3.1.3 Roles . 15
3.1.4 Bounded or Infinite . 15
3.1.5 Relative or Absolute . 15

3.2 Taxonomy of input modalities 15
3.2.1 Mouse . 15
3.2.2 Keyboards . 16
3.2.3 Tangible Widgets . 17
3.2.4 Auditory Recognition 17
3.2.5 Vision Recognition . 17

1

4 Architecture 18
4.1 MetaInputs . 18
4.2 Architecture Overview . 20

4.2.1 Input Widgets . 20
4.2.2 Service Component . 21
4.2.3 Binding Conductor . 21

5 Implementation 22
5.1 Language and Platform Transparency 22
5.2 Interaction Components . 22
5.3 Communication Modules . 23
5.4 Ice Interfaces . 24
5.5 Object Interaction . 24
5.6 Building Input Widgets . 24
5.7 Building Services . 25
5.8 Applications . 25

5.8.1 Remote Desktop Service 26
5.8.2 Script-based Service . 26
5.8.3 Light Control Service . 27

6 Discussion 28
6.1 Case studies . 28
6.2 High-level events . 28
6.3 Semantics between controller and services 29
6.4 Synchronization of input widgets 29

7 Conclusion 30

2

Chapter 1

Introduction

Multi-modal interaction is an inportant issue for ubiquitous computing environ-
ments. Until now, mouse and keyboard have emerged as usual input devices for
desktop computers. But a desktop environments is aimed at one user, one set of
hardware. In post-desktop , environments need to support heterogeneous inter-
action modalities for multiple devices, multiple users and multiple applications.
The DCL research department proposes an application framework to tackle these
difficulties in order to facilitate developing these environments.
In Section 1.1, we introduce the characteristics and issues of ubiquitous comput-
ing environments. Section1.2 describes the term of multi-modal interaction and
the relation between multi-modal interaction and ubiquitous computing environ-
ments. In Section 1.3, we defined input widgets to explain modalities that generate
input events in ubiquitous computing environments. The topic of Section 1.4 is
the reason that we need application framworks in ubiquitous computing environ-
ments. To develop application frameworks, it is important to define the domain
of framework. It is written in Section 1.5. The goal of this paper is described in
Section 1.6 and the structure of this paper is introduced in Section 1.7.

1.1 Ubiquitous Computing

Our daily lives will be dramatically changed by embedded devices which are
highly networked in our environments. These devices will provide a lot of human-
oriented services all over the place. The environments are calledpervasive com-
putingor ubiquitous computing[16]. In the vision of these environments, physi-
cal spaces and virtual resources are highly integrated with a variety of devices and
sensors. And interaction techniques in these environments become more seam-
less and intuitive. In these environments, one of the most important problems
is how to interact with a variety of computer embedded devices. Recently, a lot

3

of researchers have developed intuitive interaction methods with ubiquitous ser-
vices and heterogeneous interaction modalities such as sensor embedded physical
devices, recognition-based technologies, or their combination.
And one of the important characteristics of ubiquitous computing environments
is context-awareness. Various sensors that are attached to daily objects or users
capture contextual information of environments. For examples, location sensors
attached to objects or persons identify and trace the location of them. Camera
devices may detect eye direction and analyze an attention of users. Such dynamic
environmental information is used by ubiquitous software to give the users the
right services at the right situation. The behavior of applications in ubiquitous
computing environments should be changed according to the current situation.

1.2 Multimodal Interaction for Ubiquitous Environ-
ments

Nigay and Coutaz [11] mentioned that a multimodal system supports communica-
tion with the user through different modalities such as voice, gesture and typing.
Literally,“multi” refers to “more than one” and the term “modal” may cover the
notion of “modality” as well as that of “mode”.

• Modality refers to the type of communication channel used to convey or ac-
quire information. It also covers the way an idea is expressed or perceived,
or the manner an action is performed.

• Mode refers to a state that determines the way information is interpreted to
extract or convey meaning.

One of the purposes of ubiquitous computing is the development of intuitive and
flexible human-computer interaction environments. In existing desktop environ-
ments, we can use a set of mouse and keyboard for interaction with computers.
But mouse is not useful for large-sized displays or multiple displays. And mouse
and keyboard is not useful without a desk or a table such as a situation of walking,
standing in front of large displays and so on. In ubiquitous computing environ-
ments, we need to consider various situations for using computers and services.

1.3 Input Widgets and Input Forms in Multi-modal
Environments

In ubiquitous computing environments we have to focus on handling input events
with heterogeneous modalities. In this paper, to clarify the target of input devices

4

and modalities, we definedinput widgetsas input forms and devices that provide
explicit interaction to services. For examples, mouse, keyboards, speech recog-
nition and sound recognition, gesture or posture captured by cameras are all con-
sidered as input widgets. Although uncontrollable variables such as temperatures,
heartbeat, weather and so on are not input widgets(often they are categorized as
contexts), if application programmer designs them as explicit to services, they will
be assumed as input modalities.
Input widgets contain several input expressions. For examples, standard mouse
has two buttons and two-axis motion sensor. And these expression has each se-
mantics in input widgets. We defined the available operations of input widgets as
input forms. It is said that input widgets consist of a variety of input forms.
In multi-modal environments, heterogeneous input widgets and forms are researched
for the realization of intutive human-computer interaction based on five senses
such as touch, taste, visual, audito and smell. Because it is diffucult to interact
virtual objects by taste and smell, researchers often have focused on the vision-
based interaction and audio-based interaction, and physical interaction. We have
classified broadly these input widgets to figure out the characteristics of them.

1.3.1 Basic Widgets

In current desktop systems, we always use mouse and keyboards to interact with
GUI screens. We consider them as basic widgets. In current window systems,
the workstation is supported to have one single mouse and keyboard. They may
be the best practice for single user and one set of hardware in desktop systems.
But in ubiquitous computing environments, there are more various complexities
such as multi-user, multi-devices and so on. We should consider multiple event
handling systems for ubiqiutous computing environments.

1.3.2 Recognition-based Widgets

The techniques of the speech-recognition and gesture-recognition are put to prac-
tical use. We can capture the audio data with the microphone device, and the
motion data with the camera devices. We assume that it is effective to use these
techniques asrecognition-based widgetsin ubiquitous computing environments.

1.3.3 Tungible Widgets

There have been a lot of user interface researches trying to integrate real world
and information systems using perception of real objects. Tangible user inter-
faces(TUIs) [10] is an effective approach providing intuitive physical user inter-
faces for information access and management. Phidgets [8] are a set of building

5

blocks of the physical devices to make it easy for application programmers to
develop physical controllers, sensors, and physical presentations. We consider
components based on these ideas astungible widgets.

1.4 An Application Framework in Ubicomp Envi-
ronments

In ubiquitous computing environments, we need a framework to support us to
develop applications. An Application framework offers benefits to application
developer in three aspects. At first, it provides common functions in these appli-
cations as class libraries. Application programmers need not to repeat the similar
codes in applications. Seconds, it provides high level abstractions that help pro-
grammers to develop applications according to the pre-established forms and the
easy-to-understand APIs. It gives application programmers to the common se-
mantics while building applications. Third, it hides complexities such as network
communication, dynamic configuration and context-awareness. We believe that
these aspects are very important to reduce the development cost of ubiquitous
applications.

1.5 Domain of Our Framework

In ubiqutous computing environments, there will be a variety of services that helps
us in dalily lives by heterogeneous networked sensors and devices. But to design
the application framework practically, we have focused on current available ser-
vices around us. Our application framework has been designed for three types
of services: a remote desktop service, a RPC-based service including controlling
information appliances and a script-based services that controls application on
existing operating systems.

1.6 Goal of This Paper

In this paper, we describe the application framework that provides the standard and
semantic interfaces, and ensure connectivity between these heterogeneous input
modalities and services. Existing middleware infrastructures such as BEACH [14]
and Gaia [13] distinguish user interfaces and application logics in ubiquitous en-
vironments so they increase reusability of software components, but they does
not take into account defining standard and semantic interfaces between them.
The main goal behind our framework is to enable programmers to develop input

6

modalities and services components independently with little or no knowledge of
one another.

1.7 Structure

This master’s thesis discussed the input event framework that is part of a mid-
dleware that aims for fast and easy development of multi-modal and multi-device
applications in ubiquitous computing environments. This chapter shows the need
for such a software infrastructure, and the goal of this paper. This framework de-
scribed in the introduction imposes certain requirements on the interaction frame-
work. Additionally, this framework makes us easy to develop multi-modal appli-
cations in ubiquitous computing environments. Chapter 2 describes the related
work of this framework. In Chapter 3, we discuss about the classification of input
modalities by their characteristics to design the standard and semantic interface
between input modalities and services. In Chapter 4, We describe the architecture
design of this interaction framework and discuss the decisions and tradeoffs in-
volved. In Chapter 5. We show the concrete implementations of this framework
and interaction components on it. How this framework is used to build interac-
tion components is the topic of Chapter 6. Chapter 7 describes the evaluation
of this framework in qualitative and quantitative aspects. The discussion of this
framework is covered in Chapter 8 and the paper is concluded in Chapter 8.

7

Chapter 2

Related Work

To develop our application framework, it is important to classify input modali-
ties, that is input forms and devices that provide explicit interaction to services.
And we need to inquire into the application frameworks in ubiquitous computing
environments and examine how they fulfill our requirements of multi-modal and
multi-device environments.
In this chapter, we examine the related works and reveal the differences between
our framework and these works. These researches have focused on taxonomy of
input modalities, distributed application frameworks, and toolkit for interaction
environments.

2.1 Buxton et al. and Card et al.

The taxonomies of input modalities have been proposed earlier by Buxton [15] et
al. and Card et al. [5]. They have classified input devices by their design space
to clearify the characteristics of input devices. Baecker and Buxton consider all
input modalities are combinations of physical properties such as linear and rotary,
absolute and relative, position and force. They have such a observation that:

Basically, an input device is transducer from the physical proper-
ties of the world into logical values of an application.

Based on their research, Card et al. [6] mensioned that there are two key ideas
in modeling the language of input device interacton: a primitive movement vo-
cabulary and a set of composition operators. They represents the input modalities
as a six-tuple of primitive movement vocabulary: manipulation operator, input
domain, current state, resolution of function, output domain and works. Manipu-
lation operators represent the idea of Buxton’s physical properties. Input domain
means the range of values of input manipulation. Current state is a state of input

8

Figure 2.1: The design spaces of input devices by Card et al.

modalities and resolution of function shows how they can be controlled minutely.
Output domain shows the range of output values and works are additional device
properties.Their design space for input modalities is basically the set of possible
combinations of the operators with primitive vocabulary. Their classification of
input modalities are seen in Figure 2.1.
To be sure, they clearfy the detail of input modalities and classified them. But
they focused attention on the low-level functionality of interaction modalities and
they have not considered he semantics and roles adequately in interaction environ-
ments. Also, they have not describe about recognition-based interactions such as
an auditory recognition and a gesture recognition. Moreover, their design spaces
of input modalities did not contain varying modalities and social properties.

2.2 iStuff

iStuff [3] is a part of the researches on the interactive workspace project in Stan-
ford University. It is designed as the physical user interface toolkit for ubiquitous
computing environments. They developed the interaction toolkit in the following
requirements:

• Flexible, lightweight devices.

• Platform independence and cross-platform capabilities

• Wireless protocol independence

9

Figure 2.2: iStuff: Architecture and their design space

• Ease of integration with existing applications

• Support for multiple simultaneous users.

They create the toolkit based on iROS Event Heap, that is the blackboard archi-
tecture in interactive workspaces, and the PatchPanel [4] that re-map events to
applications dynamically. These architecture is shown in Figure 2.2(left).
They developed the iStuff component that consist of wireless physical devices
paired with a machine connected to the Event Heap [2] that has a transceiver and
related software. To classify them into several categories,they propose a five-
part design spaces: direction, modality, dimensions, resolution, dimensions and
relative or absolute in Figure 2.2(right). Direction indecates whether a device is
used to provide input, output, or both. Modality describes the modalities used
to operate devices. Resolution shows the range of the values of input modalities
such as binary, bounded value, and an infinite range. Dimension shows the value
dimensions of input modailties such as 0, 1, 2, and 3D. And the relative or absolute
describes the value of input modalities means relative or absolute.
However, their architecture have not ensured which components and services can
connect each others. In addtion, because they have not provided the standard in-
terfaces between input modalities and services, the application programmers have
to be aware of the event types between components and services. And because
of the event heap mechanism, it is difficult to process the event streams in their
toolkit.

2.3 Gaia

The Gaia project at the University of Illinois is developing a middleware for ubiq-
uitous computing environments that is called “active spaces”. They have extended

10

Figure 2.3: Gaia: Model-Presentation-Adapter-Controller-Coordinator

the Model-View-Controller model to theModel-Presentation-Adapter-Controller-
Coordinator(MPACC) [12] and they have separated inputs and outputs from ap-
plication logics in ubicomp environments(Figure 2.3). The termModel imple-
ments a application logic and document. And it offers an interface to operate the
state of applications.Presentationcomponent transforms the application’s state
into a representation such as a graphical or audible, a temperature or lighting vari-
ation ro any external representation that affects the user environment and can be
perceived by any of human senses. AController is a component (hardware and
software) capable of altering application’s state through the Model’s interface. An
Adapteracts as a mediator between the controller and the model. And aCoordi-
nator collects these components and construct active space applications.
Although we can build several distributed applications on this framework, but they
have not mentioned about the connectivity of these components. They have pro-
vided the abstraction of distributed application components in ubiquitous comput-
ing. But their framework have not provided the abstraction of data flow between
controllers and models. Because it has not offered high-level semantic interfaces
between these components, it is difficult for application programmers to develop
them without knowing each other. Because it is difficult to ensure the connec-
tivity of these components, it is not sure that we could switch input modalities
dynamically.

2.4 ICON

ICON [7] is the editor designed to configure a set of input devices and connect
them to actions into a graphical interactive application(Figure 2.4). Using ICON,
users can connect additional input devices such as tablets, voice recognition soft-
ware, assistive devices and so on.

11

Figure 2.4: ScreenShot of ICON and its Model

It has three types of modules such as: output modules, processing modules and
input modules. Output modules consist of typed output channels to transfer their
data to other modules. When the editor is launched, input devices are detected and
capabilities of each devices are interpreted as a set of typed channels. Process-
ing modules have both input and output slots. And they are used for controlling
switches, calcurating, operating boolean, comparisons and memorization of pre-
vious values. And input modules have input channels to receive data to process
application specific tasks.
Although their framework supports multimodal interaction and dynamic configu-
ration, they have not discussed the type of input and output channel adequately.
Their channel type shows just the primitive of language and they have not consid-
ered the range of values and semancs of actions.

12

Chapter 3

Design Space of Input Widgets

There are a variety of input widgets in ubiquitous computing environments. Not
only mouse and keyboard for basic desktop computings, but more intutive inter-
action techniques are to expected to be used to interact with services in these en-
vironments. In audio recognition techniques, speech input are used for text input.
Gesture recognition techniques enable to send non-verval messages to services.
And physical widgets such as sensor embeded daily objects help us to integrate
with real world and virtual world.
Although these interaction techniques seems to be intuitive and effective, but in
ubiquitous computing a new type of complexitiy is added:

• When using new input widgets to services, it is difficult to adapt them with-
out adding or modifying programs on the services side.

• It is difficult that existing input widgets be bound to new services without
adding or modifying programs on the controllers side.

To solve these issues, we must define the effective and expressive interfaces be-
tween input widgets and services. In order to define them, we have classified input
widgets into several categories based on design spaces. In this chapter, we have
examined a various aspects of input widgets.

3.1 Input Capabilities

To classify the characteristics of input widgets, we have focused on input capa-
bilities, that is the effectiveness and expressiveness of them. In this paper, we
have defined five categories: modality, expression, roles, bounded or Infinite, and
relative or absolute. We describe the details of these attributes in this section.

13

3.1.1 Modality

This attribute shows a mode of interaction styles. When we access ubiquitous
services, we must represent a command by actions to occur input events. When
we represent such an action, we need to express it by five senses such as touch,
taste, hearing, eyesight, and smell. But taste and smell are not used as interaction
techiniques generally. Therefore we have considered that modalities are based on
three interaction mode, and one basic style.
Modality directly limits the situations of using input modalities. For examples, it
is difficult to use basic modality such as mouse and keyboard when both hands
are busy. Also, it is difficult to use audio interfaces when environments are noisy
or have policies to be quiet.

Basic Basicis standard and traditional interaction forms with GUIs such as stan-
dard mouse and keyboard. This modality needs fixed and stable space such as a
table and chair. This modality is aimed at concentrated work of a single user with
a single display, but it is not aimed at collaboration work with multiple-device
environments.

Tangible Tangibleis an interaction technique with sensored and computed phys-
ical objects such as joystick, knob and a device with various sensors. This modal-
ity includes mobile keypad on handheld devices. These object can be designed
into various shapes and can be used in more various situations than the basic
modality. But if there are a lot of tangible modality objects on a desk, it is difficult
to manage these objects and it may reduce usability. It is important to design well
and deploy these object at the right place.

Auditory Auditory is a voice or sound interaction with microphones such as
speech input of sound input. This modality also can be used in a variety of sit-
uations. For examples, we can use speech command interface even if we are
walking, lying down on a bed, or being busy with both hands. But it is not useful
when users are in a noisy place or a place to be quiet.

Visual Visual is an image-based recognition technique with cameras such as
hand-gesture or eye-tracking and so on. We can use this modality if we can
use devices that can capture images. This modality includes Optical Character
Recognition(OCR) that can distinguish characters on papers. This modalities of-
fen needs enough calibrations of targeted objects.

14

3.1.2 Expression

Expressionis an available operation or a sensed region of input widgets. For
example, a standard mouse device has two buttons and one sensor that senses
two-axis motions. That means its expression is two buttons and two axis. This
attribute implies the number of manipulated variables.

3.1.3 Roles

Input widgets have semantics and functions to control or modify objects in their
environments. We have considered that we could categorize the interaction roles
of input widgets into a few terms such asAction(sending messages of something
happened),Pointing (selecting objects or drawing images with pointers),Move-
Grow(changing parameters of target objects),Text Input(editing texts or sending
commands).

3.1.4 Bounded or Infinite

Bounded or Infiniteis whether the state of the input modalities is bounded or not.
The former isBoundedValueand the latter isInfinite. If the state is binary, that is
part of the bounded value, this parameter isBinary.

3.1.5 Relative or Absolute

This attribute shows whether input modalities handle a relative value or an abso-
lute value. For examples, a stylus provides absolute positional information and a
mouse provides relative values of motion.

3.2 Taxonomy of input modalities

We have examined and classified interaction techniques depending on the design
space. We have focused on lightweight, small and easily deployed devices that is
effective and useful in ubiquitous computing environments(Figure 3.1).

3.2.1 Mouse

A mouse is a handheld pointing device for computers, involving a small object
fitted with one or more buttons and shaped to sit naturally under the hand. The
underside of the mouse houses a device that detects the mouse’s motion relative

15

Figure 3.1: Device Capabilities of Input Modalities

to the flat surface on which it sits. The mouse’s 2D motion is typically translated
into the motion of a cursor on the display.
A standard mouse has two buttons and one tracking device that detects two-axis
motions. The role of this device is two triggers and two-axis move-grow actions
mainly to control a pointer on GUIs. The value of the axis are infinite and relative.
Five or more buttons have sometimes been built in to mice, especially ones de-
signed for the Windows operating system. A few have included an extensive ar-
ray of buttons. Depending on the user’s preferences, these buttons might allow
forward and backward web navigation, or scrolling through a browser’s history.
However, these newer functions are not supported by all software. The additional
buttons are often used in computer games, where quick and easy access to a wide
variety of functions (for example, weapon-switching in first-person shooters) can
be very beneficial.

3.2.2 Keyboards

A standard keyboard has over 100 keys for input text. They are consisted of text
keys, function keys, modifier keys, direction keys and so on. The main function
of this device is handling text input and sending text message to applications. The
value of the text input is infinite and absolute.

16

3.2.3 Tangible Widgets

Phidgets[8] are a set of building blocks for low cost sensing and control devices
with USB interfaces. A phidget slider can handle a one-axis absolute value. A
phidget joystick sensor treats two-axis values with momentary switch. And a
knob formed device by griffin technology, treats one button and a one-axis value.
These devices are used to change parameters of services.

3.2.4 Auditory Recognition

Audio recognition has two aspects of interaction. The one is the speech input, and
the other is the sound input. The former can handle the text and enable verbal
interaction with applications. The latter can extract the non-verbal properties of
sound or voices such as pitch, volume, timing and so on, and it controls parameters
of services.

3.2.5 Vision Recognition

Vision-based devices such as cameras can recognize gestures and postures. Our
implementation of hand-gesture recognition toolkit can determine the position and
the orientation of fingers. These modalities send messages or relative changes of
states.

17

Chapter 4

Architecture

In ubiquitous computing, various interaction devices are deployed independently
and they work cooperatively. For examples, instead of mouse and keyboards,
we may use a game controller for controlling mouse cursor and assign its button
to click action. In addition we may want to input texts by speech recognition
interface with a headset. Frequently, these functions are not on the same host and
we must take into account multiple devices and heterogeneous platforms. And
if we want to switch input modalities to operate services according to contexts,
we have to implements the dynamic reconfiguration APIs in these modules. But
if input modalities and services are not built on a common infrastructure, it is
difficult to implement them interoperably.
In this chapter, we introduce the design of application framework that we call
concertofor distributed interaction environments. This framework provides the
high-level abstraction for application programmers to help them easy to learn and
increase reusability of their codes. Also it provides standard and semantic inter-
faces between input modalities and services. Accordingly application program-
mers are encouraged to develop input modalities and services independently with
no or a little knowledge of each others. And it offers a dynamic reconfiguration
mechanism between input modalities and services at runtime.

4.1 MetaInputs

To ensure connectivity of input modalities and services, we have defined the
MetaInputsthat are the device-independent abstract software controller proxies.
In turn, they offer standard and semantic interfaces between input modalities and
services. They take responsibility to generate the typed events by the method call
from input devices, and send them to service components. We have considered
the MetaInputs need to fill the following requirements to increase reusability of

18

input modalities.

• Meta-inputs must employ a small and fixed set of generic interfaces that are
separated from the particular devices or services.

• Meta-inputs should clarify their roles, their functions, and the type of event
data.

Figure 4.1: Extraction of meta-inputs from design space

They are organized by the characteristics of the roles and values of various input
modalities based on the design space. Examining the categories of input modali-
ties, we have defined the four types of MetaInputs such asTrigger, Delta, Bound-
edValueandTextInput.

Trigger TheTrigger module is used to cause something to happen immediately
when an event occurs. For examples, when a mouse button is pressed or when a
particular gesture is recognized, this MetaInput module is invoked. This module
has the state of binary, and it hastrigger functions.

Delta TheDeltamodule can express a relative change of values, such as when a
mouse cursor is moved or audio volume is turned up/down. This module express
a change of input modalities as relative integer values, and it has thechange,
increaseanddecreasefunctions.

19

BoundedValue The BoundedValuemodule is used to adjust absolute bounded
value to service such as a phidget slider and a pen stylus. The BoundedValue
module has treat the bounded value from 0.0 to 1.0, and it has theadjustfunction
to modifier the absolute bounded value.

TextInput The TextInputmodule supports sending the text information to ser-
vices. For examples, when we input the text with the keyboards or we speech
with the microphone, this module is used. This module has theinputChar and
inputStringfunction and so on.

4.2 Architecture Overview

Figure 4.2: Interaction Components of the application framework

Our application framework is based on the distributed MVC model as same as
Gaia [13] and BEACH [14]. Our framework consists of three parts,Input Modalites,
Service ComponentsandBinding Conductor(Figure 2).

4.2.1 Input Widgets

An input widget is an interaction component that provides input events to other
components. It has a number of meta-inputs, that is the semantic and standard
interface module to connect other component’s slots. The tasks of an input widget
are to produce data from input devices, and to process these data, and to invoke
methods of meta-inputs adequately. They indicates that we can design and imple-
ment input widget independently as a stand-alone conponent.

20

Meta-input modules generate typed events to service components by method calls.
Meta-input modules are implemented as Ice objects [9] and provide location trans-
parency and data transparency to programmers. An input modality has one or
more meta-input modules, and each modules are able to send events to service
components.

4.2.2 Service Component

Service components consist of three parts, that isSlot, AdapterandServant.
Slotcan bind meta-inputs and receive meta-input events if their type are the same.
They are implemented as Ice objects and they can receive the event from meta-
input modules as long as their types are the same.
Adapterhas an event queue that aggregates received events. A callback function
can be registered to the event queue and are invoked if the particular events are
stored.
Servantimplements logic of applications and exports an interface. Servant has
meta-input adapters, and the adapters invoke the callback methods of the ser-
vant by the observation of meta-input’s events. Currently, we have assumed that
our framework targeted existing services such as remote desktop services, script-
based services (e.g., Applescript) and web services (e.g., controlling home appli-
ances).

4.2.3 Binding Conductor

To develop applications, our framework can couple input modalities with ser-
vices. Binding Conductorcomponents is responsible for composition among
input modalities, filters and services. And this component can register and un-
register meta-inputs from slots dynamically. Therefore it enables users to switch
input modalities at run-time according to users’ contexts.

21

Chapter 5

Implementation

In this chapter, we describe the input event framework described in the previous
chapter. It is designed for easy usage and fast development of distributed multi-
modal applications. For this purpose, the framework are implemented as C++ and
Java class that can be extended by developers.

5.1 Language and Platform Transparency

The input event framework consist of Internet Communitation Engine(Ice) IDL
definitions of the component’s interface and C++ and Java classes for the imple-
mentation. This means application developpers can develop input modalities and
services with both C++ and Java. And it will be ported to C#, Visual Basic and
Python easily because of Ice IDL.
The framework is worked on a various platforms such as Window, Linux and Mac
OSX and so on. And it is easy to use other open source libraries and modules for
processing input modalities and services.
These features provide obvious benefits to develop heterogeneous input modalities
in ubuquitous computing environments because there are heterogeneous platforms
and languages in these environments.

5.2 Interaction Components

The C++ or Java class CoComoponent implements an abstraction of an interaction
components. The class is composed of one or more communication modules such
as meta-inputs and their slots, and it has a application logics that manages these
communication modules.The interaction component is classified into three types,
such as CoInputWidget, CoComposer and CoService.

22

Figure 5.1: UML class diagram for interaction components

A CoInputWidget has one or more meta-inputs and the mechanism that invokes
these meta-inputs. From a different view, a CoInputWidget explain their input
forms as meta-inputs. For examples, the standard mouse is implemented as the
input widget that has two trigger meta-inputs and two delta meta-inputs.
A CoComposer has one or more meta-inputs and one or more slots. The main role
of this component is to composite or transform input events from input widgets.
This component receives meta-input events from input widgets or other composer
components.
A CoService has one or more slots and contains service logics. A CoService has
adapters that interprets meta-input events and invoke high-level semantic methods
such as pointerMove or pointerDrag. It facilitates service developers to adapt
existing services to this framework.

5.3 Communication Modules

This framework has communication modules such as CoMetaInput and CoSlot.
These modules are defined as Ice Interfaces and implemented as C++ or Java
classes. We have designed a meta-input can be bind with multiple slots and a
slot can be bind with multiple meta-inputs if the type of these modules are the
same. There are four types of meta-inputs and slots such as CoTrigger, CoDelta,
CoBounded and CoTextInput.
A CoTrigger is the subclass of CoMetaInput and it has the trigger method. And
it can send the CoTriggerEvent that contains the state of CoTrigger that is true or

23

false. A CoTrigger only can be bind with CoTriggerSlot that is the subclass of
CoSlots.
A CoDelta is the subclass of CoMetaInputs and it has the change method. This
module can send a variation of input forms. This module support the ratio of
values to slots.
A CoBounded has the adjust method. And it controls the absolute bounded value.
Default value is from 0.0 to 1.0
A CoTextEntry has the setText method. And it can send the text message to Co-
TextEntrySlots. It can treat the modifier keys and function keys.
These modules encapsulates the communication logic to other modules. It can be
said that these modules enable location transparency to other components.

5.4 Ice Interfaces

Our framework is built on the Internet Communication Engine(Ice) that is the
modern object-oriented distributed middleware supporting various languages such
as C++, Java, Python, C#, and various operating systems such as Windows, Linux,
Mac OSX.
The binding interfaces in this framework are written in Ice IDL. The IDL interface
definitions are implemented by C++ and Java classes.

5.5 Object Interaction

In this section the interaction of object on this framework will be described.
In CoInputWidget, the main class creates meta-inputs with CoMetaInputManager,
that is the Mangaer class of meta-inputs. In CoServiceWIdgets, the main class cre-
ates slots with CoSlotManager. And CoBindingConductor binds their modules. if
binding is completed, the meta-input modules can send their events to slots.

5.6 Building Input Widgets

We built several tangible modalities using a physical slider, a physical button and
a physical joystick device from phidget toolkits [8].
We leveraged the Julius [1], that is a high-performance large vocabulary contin-
uous speech recognition decoder software for speech recognition. And we built
our original non-verbal sound interaction toolkit that distinguishes the pitch, vol-
ume, and whether the sound is continuous or discrete, that was adapted to Delta
Meta-Input.

24

Figure 5.2: UML collaboration diagram for object interaction

Also, we built a vision-based hand-gesture module that extracts finger positions
and orientations . This module can recognizell the gestures and postures of both
hands.

5.7 Building Services

We have implemented three services and several input modalities. The first one
is a remote desktop service using RFB protocols. The second one is an applica-
tion script-based service that is a jukebox controller service by using AppleScript
on MacOSX. The last one is RPC-based service. We have implemented a light
switching service using X10 remotes.

5.8 Applications

We have developed three multi-modal applications on this framework. We have
focused on three types of sevices, such as remote desktop services, script-based
services and light control services. The first application is the remote desktop
application that shows how we reconfigure input widgets. The second application

25

is the audio controlling services that is controlled by application scripts. This
example shows how we reconnect services to the same input widgets. And third
application is the light control service using X10. This example shows the how
input widgets collaborate each other.

5.8.1 Remote Desktop Service

Figure 5.3: Remote desktop service

The first application is the remote desktop application. A user is working on the
one single display and he moves around the room. If he want to use the large
display without mouse and keyboard, he add the joystick to the system and he can
control mouse pointer by it. And he want to use the gesture input to control photo
application, he set camera and bind with them. If he swing his hand towards the
camera, he can change the photo that shown on the large display.
VNC is the remote desktop system that transfer the bitmap image and we change
the tightVNC viewer and develop gesture modules and phidget modules.

5.8.2 Script-based Service

The second application is the audio control application. A user sit the sensor
attached chair. When he start application, he can controls the audio services by its
chair. And when the movie starts, he can control the movie application with the
same controller.
These scenario is designed by script-based application. And the mechanism of
switching input widgets towards services. He need not to attend remote controllers
or other devices.

26

Figure 5.4: Audio service example

5.8.3 Light Control Service

Figure 5.5: Light service example

The third application is the light controlling services. A user point his finger to
light and say “On”. The light that are pointed becomes “on”. It is the composition
example of gesture widget and speech widget. And he says “Ah-“, he can control
the light brightness by its pitch continuously.
The light is controlled by X10 device that can controlles the voltage of devices.

27

Chapter 6

Discussion

6.1 Case studies

In our framework, we can switch an input modality for another one at runtime
when those input modalities have the same meta-input type. For example, a key-
board and a speech input modality have the TextInput module as their meta-input
module, so we can switch the speech interface from the keyboard dynamically to
input texts according to situations. Moreover, we can substitute the gesture for
the knob device to control the volume of the audio service because they have the
same meta-input type asDelta.
In that case, our framework facilitates the development and deployment of multi-
modal and multi-device applications as below.

• Our framework enables us to bind new input modalities to service compo-
nents without adding or modifying codes on the services side.

• Existing input modalities can be bound to new services without adding or
modifying codes on the controllers side.

• Input modalities are dynamically reconfigurable when the meta-input types
of the input modality components are same.

6.2 High-level events

We may need the high-level event mechanism. When we develop the audio ap-
plication, we defined the function , next, back, start and stop. These function are
reusable when controlling multimedia applications. It is important to consider the
domain and reusable events.

28

6.3 Semantics between controller and services

We found the typed approach is not enough to share the semantics between service
developper and input widget developper. For examples, if the delta value of knob
device and x-axis of mouse is not the same. So it is not useful just mapped knob’s
delta to mouse pointer. It needs to be configured by user. And the input widget
develpper and service developper may need to publish the configurable APIs.

6.4 Synchronization of input widgets

We give the timestanps to input widgets and lifetime to meta-input evnets. If we
archive collaboration, we have to check the timing of events. We just implement
simple synchronization algorithm. If we need the complex collaborations, we
need the new algorithm or designed detail.

29

Chapter 7

Conclusion

We described the challenge of a middleware infrastructure that supports heteroge-
neous interaction modalities in pervasive computing. We pointed out that provid-
ing semantic standard interfaces between input modalities and services increases
independency, exchangeability and reusability of software components in multi-
modal and multi-device interaction environments. In the future, we’ll have more
practical applications and evaluations on our framework.

30

Bibliography

[1] A.Lee, T.Kawahara, and K.Shikano. Julius: an open source real-time large
vocabulary recognition engine.in Proc. EUROSPEECH, pp. 1691–1694,
2001.

[2] Johanson B. and Fox A. The event heap: A coordination infrastructure for
interactive workspaces.Proceedings of the 4th IEEE Workshop on Mobile
Computer Systems and Applications, 2002.

[3] Rafael Ballagas, et al. istuff: A physical user interface toolkit for ubiquitous
computing environments.In Proceedings of the ACM CHI 2003 Conference
on Human Factors in Computing Systems, pp. 537–544, 2003.

[4] Rafael Ballagas, Andy Szybalski, and Armando Fox. Patch panel: Enabling
control-flow interoperability in ubicomp environments.Proceedings of Per-
Com 2004. IEEE Computer Society, pp. 241–252, 2004.

[5] Stuart K. Card, Jock D. Mackinlay, and G. Robertson. The design space of
input devices.CHI, pp. 117–124, 1990.

[6] Stuart K. Card, Jock D. Mackinlay, and George G. Robertson. The design
space of input devices.Proceeding of CHI 1990, pp. 117–124, 1990.

[7] Pierre Dragicevic and Jean-Daniel Fekete. Input device selection and inter-
action configuration with icon.Proceeding of IHM-HCI 2001, 2001.

[8] Chester Fitchett and Saul Greenberg. The phidget architecture: Rapid de-
velopment of physical user interfaces.Workshop Application Models and
Programming Tools for Ubiquitous Computing, 2001.

[9] M. Henning, et al. Distributed programming with ice.ZeroC, 2003.

[10] H. Ishii and B. Ullmer. Tangible bits: Towards seamless interfaces between
people, bits, and atoms.Proceedings of CHI’97, pp. pp.234–241, 1997.

31

[11] Laurence Nigay and Joelle Coutaz. A design space for multimodal systems:
Concurrent processing and data fusion.Proceedings of INTERCHI, 1993.

[12] Manuel Roman and Roy H. Campbell. A middleware-based application
framework for active space applications.Middleware, pp. 433–454, 2003.

[13] Manuel Roman, et al. Gaia: A middleware infrastructure to enable active
spaces.IEEE Pervasive Computing Magazine, 2002.

[14] Peter Tandler. The beach application model and software framework for
synchronous collaboration in ubiquitous computing environments.Journal
of Systems and Software, January 2004.

[15] Buxton W. Lexical and pragramatic consideration of input structures.Com-
puter Graphics, pp. 31–37, 1983.

[16] M. Weiser. The computer for the 21th century.Scientific American, pp.
94–104, September 1991.

32

