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Abstract

Concurrent programming languages provide a paradigm for describing pro-
grams with complicated communication networks in a clear way. They sup-
port the creation of multiple computational units called processes that run
concurrently in a program together with the mechanism for communication
between processes, thereby simplifying the programming of synchronization
and communication. Among them, concurrent languages that support fine-
grained processes are suitable for formal specification of concurrent systems.

A runtime system of a fine-grained concurrent language, however, tends
to suffer from overheads of primitive operations needed for handling con-
currency. Although there is a lot of work on static analysis and optimiza-
tion techniques for removing these overheads, comprehensive research on the
safety of applying multiple optimization techniques has been limited in its
scope. For instance, no frameworks have existed that can justify the cor-
rectness of static scheduling of concurrent processes and memory reuse. The
point is that some issues of optimization cannot be fully expressed as pro-
gram transformation on the original concurrent language. When these issues
are not described formally, the optimization must be carried out on the re-
sponsibility of implementors of an optimizing compiler and hence there is no
proof that the optimization is really correct.

The objective of this dissertation is to clarify (a) how to perform semantics-
based runtime system optimization for concurrent programming languages
and (b) how to give theoretical justification to such optimization. To this
end, we take two concrete target languages—the concurrent logic program-
ming language and the concurrent graph rewriting language LMNtal (pro-
nounced as elemental)—and discuss for these languages several methods to
perform static analysis and runtime system optimization based on the anal-
ysis.

In this dissertation, several semantics-based program analysis techniques
are proposed for optimizing compilation. For concurrent logic programs, the
following will be explained: the safety of moving synchronization points as
semantics-preserving program transformation for process scheduling, sequen-
tiality analysis and code generation as a justified framework of applying mul-
tiple optimization techniques, and occurs-check analysis under cooperative
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modings for runtime system optimization. After that, we will discuss pro-
cess structure analysis for the concurrent graph rewriting language LMNtal
by introducing a type system useful for runtime system optimization.
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Chapter 1

Introduction

1.1 Background

Concurrent programming languages provide a paradigm for describing pro-
grams with complicated communication networks in a clear way. They sup-
port the creation of multiple computational units called processes that run
concurrently in a program and provide the mechanism for communication
between processes, thereby simplifying the programming of synchronization
and communication. In particular, we are interested in concurrent languages
designed in a close relationship with a formally defined language model since
concurrent programs written in such languages provide formal specification
of the concurrent systems that can be analyzed precisely. Concurrent lan-
guages that support fine-grained processes are suitable for this purpose since
they enable us to uniformly describe computation as interaction between pro-
cesses. These languages include process calculi such as the pi-calculus, lazy
functional programming languages, functional languages with future primi-
tives, concurrent logic languages, and concurrent object-oriented languages.
Moreover, since concurrent languages offer a framework for describing parallel
and distributed systems in a cleaner semantics, they are expected to provide
foundations for parallel and distributed programming languages where more
and more study is being required lately both in theory and in practice.

A runtime system of a fine-grained concurrent language on sequential
machines, however, tends to suffer from overheads of primitive operations
needed for handling concurrency, which is not the case with a simple con-
current extension of a sequential language by threads because most of the
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primitive operations are designed in a sequential setting. There is a lot of
work on static analysis and optimization techniques for removing these over-
heads, including schedule analysis and data representation optimization (see
for example the papers [13, 14, 23]). However, comprehensive research on the
safety of applying multiple optimization techniques so far has been limited
in its scope. For instance, no frameworks have existed that can justify the
correctness of static scheduling of concurrent processes and memory reuse.
As a more specific example, the paper [15] discusses the safety of multiple
program transformation techniques, which as a whole introduces a justified
unfold/fold transformation system for concurrent constraint programs, but
the scope of the optimization covered by their work is limited in that it does
not focus on data representation. The point is that some issues of optimiza-
tion, including static scheduling and memory reuse, cannot be fully expressed
as program transformation on the original concurrent language. When these
issues are not described formally, the optimization must be carried out on
the responsibility of implementors of an optimizing compiler and hence there
is no proof that the optimization is really correct.

1.2 Objectives

The objective of this dissertation is to clarify (a) how to perform semantics-
based runtime system optimization for concurrent programming languages
and (b) how to give theoretical justification to such optimization. To this end,
we take two concrete target languages—the concurrent logic programming
language and the concurrent graph rewriting language LMNtal (pronounced
as elemental)—and discuss for these languages several methods to perform
static analysis and runtime system optimization based on the analysis.

Concurrent logic programming is oriented to concurrent symbol manip-
ulation. In particular, it allows us to describe in a flexible way complex
message protocols among concurrent processes as well as dynamic process
networks found in a distributed system. All of these characteristics come from
the expressive power of logic variables used for representing communication
channels among concurrent processes. Moreover, the single-assignment prop-
erty of logic variables enables us to perform theoretical analysis of concurrent
logic programs elegantly.
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1.3 Contributions

The contribution of this dissertation is as follows. First, we provide the
results on three topics on static analysis of concurrent logic programs:

• the safety of the motion of synchronization points,

• sequentiality analysis, and

• occurs-check analysis under cooperative modings.

After that, we will discuss:

• process structure analysis for the concurrent language LMNtal.

Details of each of these topics are explained in the following subsections.

1.3.1 On the Safety of Moving Synchronization Points

In concurrent logic programming languages, processes synchronize by means
of input and output on a global store. Any output from a process is accu-
mulated in the store while any input to a process is looked up in the store.
Most processes in concurrent logic programs or more generally in concurrent
constraint programs have a restartability property, meaning that once they
can proceed they can also proceed at any future time. Hence, the execution
of a process that requires some input in order to produce any output may
be deferred until the necessary input becomes available. This kind of static
scheduling helps us to determine the order of computation within a process
and hence can be applied to optimizing compilation that reduces runtime
overheads. The program transformation that achieves this kind of schedul-
ing is called the motion of synchronization points. In order to implement this,
it is necessary to analyze what input is required by a process for that process
to produce any output. In the nondeterministic paradigm like concurrent
logic programming, it might seem hard to analyze this precisely.

In this work, we present an abstract interpretation method to find out
which of the variables contained in a process should be instantiated (i.e.,
assigned a value) prior to its execution. For any good process, namely a
process without the possibilities of divergence (infinite computation) and
failure (inconsistent output), we have proved that the semantics of the process
does not change after moving synchronization points.
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The main contribution of this work is on the definition of the seman-
tics suitable for justifying program transformation. There are two results.
Firstly, the denotational semantics of a process we will define has a direct
correspondence with the operational semantics, which facilitates the proofs
of process equivalence. Secondly, we define the denotational semantics so
that it takes account of not only the interaction sequences of input and out-
put on the store but also termination, divergence, and failure, which reflects
our observation that doing so is desirable for the purpose of justifying the
program transformation. These results will be explained in Chapter 3.

Another contribution is the construction of the abstract domain suitable
for analyzing the motion of synchronization points. The abstraction of the
constraint store is the set of possibly instantiated variables occurring in a
goal. We will also give a theoretical account on what happens if our algorithm
is applied to a process with divergence or failure. These results will be
explained in Chapter 4.

1.3.2 Sequentiality Analysis for Concurrent Logic Pro-
grams

In this work, we present a bottom-up method of extracting those fragments
of concurrent logic programs that can be executed sequentially, and propose
a framework of optimizing compilation of concurrent logic programs that uses
sequential intermediate code generated through the extraction of sequential-
ity. The extraction of sequentiality is directed by the inference of an interface
of a process, where an interface represents a possible behavior of a process
under some class of input. Using interfaces, we can systematically analyze a
specialized way of the execution of given processes.

Although the specialization of an agent by sequentialization using the
notion of interfaces could be axiomatized as a type system not in terms of
the operational semantics, this work proposes formalizing an interface of an
agent in terms of the operational semantics, which enables us to directly
justify the inference of interfaces that takes place in the program analysis.
The way of formalizing types in this way for justifying process specialization
is one of the contributions of this work.

Our framework of optimizing compilation proposes that sequentialization
be performed first to generate sequential intermediate code, and then other
optimization including source-level transformation, such as copy propagation,
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and implementation-level optimization, such as tag elimination and update-
in-place optimization, be performed on the generated sequential code. If a
formal semantics of the sequential language is given, we can prove the cor-
rectness of the implementation-level optimization techniques that cannot be
formally proved by source-level analysis on the original concurrent program.

Although the formalism of interfaces exploits the constraint-based com-
munication feature of concurrent logic programming, our method can also be
applied to extracting sequentiality in other fine-grained concurrent languages
including functional languages with futures.

1.3.3 Occurs-Check Analysis under Cooperative Mod-
ings

In this work, we present a mode-based static occurs-check algorithm that
can handle logic programs with bidirectional communication between goals.
Occurs-check is a task in unification that determines whether the unifica-
tion generates an infinite structure. This check is required for justifying the
soundness of a runtime system of logic programming as a prover of first-order
logic as well as for guaranteeing the termination of recursive predicate calls.

Our algorithm attempts to prove the NSTO (Not Subject To Occurs-
check) property of a given program, which is a sufficient condition for guar-
anteeing that the program does not build any infinite structures in the pro-
gram execution and hence runtime occurs-check can be safely omitted. The
central part of our analysis is formulated as a constraint satisfaction problem
on mode information. Modes express the direction of information flow. We
assume that the program is cooperatively moded, that is, every variable in
a program clause has exactly one output occurrence, which is a relatively
reasonable requirement in the concurrent logic programming language with-
out atomic tells. We exploit this assumption to prove the correctness of our
analysis. Our algorithm requires that the head of every program clause is
linear, namely, every variable occurs at most once in a clause head. We ex-
plain how to transform a cooperatively-moded concurrent logic program into
a linear-headed program so that our algorithm is applicable.

In this work, the program execution is abstracted as a connection graph,
which expresses the equality between variables that have been introduced
so far. Every infinite structure is represented as a cycle in the connection
graph and each cycle is initiated by an initial graph, which is a subset of a
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connection graph and expresses the multiple body occurrences of variables in
a clause. Our algorithm attempts to ensure that there is no cycle by reducing
every initial graph to the empty graph. We can reduce initial graphs by
strengthening the mode information with asymptotic equality constraints.

The main contribution of this work is that our algorithm can prove the
NSTO property of a program with bidirectional communication between
goals, which cannot be handled by existing analysis. Technically, this re-
sult relies on the formalism of mode information originated from the paper
[34] which takes account of not only top-level mode information of predi-
cate arguments but also deeper mode information, namely mode information
inside the terms passed as predicate arguments.

1.3.4 Process Structure Analysis for LMNtal

This work explains how to apply the above-mentioned mode analysis for
concurrent logic programs that handles deeper mode information [34] to a
hierarchical graph rewriting language, LMNtal, in order to obtain a type
system useful for optimizing compilation. The type system introduced ex-
presses several static properties on process structures formed by graph nodes,
including the direction of information flow, and what kind of graphs can be
connected to certain graph nodes. Since LMNtal is a relatively simple lan-
guage in the sense that it has no syntactic distinction between processes and
data—both of these are just represented as graph nodes called atoms—we
need to reconstruct the distinction between them so that the type system has
practical usefulness. To this end, we introduce a typing scheme that makes
this distinction explicit, which is one of the novelties of this work.

The main contribution of this work is to present a useful type system for
a graph rewriting language where the types are reconstructed during type
inference, rather than they are assumed to be given prior to type checking.
In our type system, a programmer only needs to classify atoms into active
atoms and data atoms in order to obtain by inference a type graph that
describes complex process structures in the program.

LMNtal provides a feature called membranes that allows us to group
atoms in a graph structure and to localize computation to each membrane.
Membranes can be arbitrarily nested so that they form a hierarchical graph.
Another contribution of this work is to type a nested graph.

Properties of the type system, including type safety, will be shown.
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1.4 Overview of the Thesis

The rest of this dissertation is organized as follows.
Chapter 2 defines a concurrent logic programming language we will work

on throughout the dissertation. The operational semantics of the concurrent
logic programming is given by means of that of CCP (concurrent constraint
programming), which is a generalization of concurrent logic programming.
To do this, the syntax and semantics of CCP will also be explained. Chap-
ter 3 formalizes a denotational semantics of CCP, which is required for the
theoretical discussion on the safety of program transformation. Chapter 4
explains the program transformation for concurrent logic programs called the
motion of synchronization points, introduces a fixed-point abstract computa-
tion algorithm for obtaining the program transformation, and then justifies
its correctness in terms of the denotational semantics. Chapter 5 explains
sequentiality analysis for concurrent logic programs and its application to
bottom-up code generation.

Chapter 6 introduces a moding system of concurrent logic programs and
shows an algorithm for static occurs-check under cooperative modings.

Chapter 7 explains process structure analysis for the concurrent graph
rewriting language LMNtal.

Chapter 8 gives concluding remarks.
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Chapter 2

Concurrent Logic Programs

This chapter defines a concurrent logic programming (CLP) language we will
work on throughout this dissertation (except for Chapter 7 where another
concurrent language based on hierarchical graph rewriting, LMNtal, is dealt
with). In concurrent logic programming, computation is essentially a series
of asks and tells of constraints with a constraint store that is strengthened
monotonically in the course of program execution. We adopt the formalism
of concurrent constraint programming (CCP) [32], which is a generalization
of concurrent logic programming, to describe the behavior of a process of
concurrent logic programming, for CCP has a mathematical characteristics
more suitable for proof description than concurrent logic programming [9].

2.1 Syntax of CLP (Concurrent Logic Pro-

gramming)

To begin with, we introduce the syntax of concurrent logic programming
(CLP).

Definition 2.1 The syntax of CLP is defined in Figure 2.1. There, terms
and variables are defined the same as those in first-order logic. Goals are
parallel composition of unification goals s = t and predicate calls p(t) where
s and t are terms and p is taken from a known set of predicate symbols. We
assume that parallel composition is commutative and associative.

A program P of CLP is defined as a set of rewrite rules ( p(s) :- e |G )
called clauses where p(s), e, and G are referred to as their head, guard, and
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Term s, t ::= X | f(t1, . . . , tn)
Goals G ::= s = t (unification)

| p(t) (predicate call)
| G ‖G (parallel composition)

Program P ::= | P.P | ( p(s) :- e |G ) (clauses)

Askable Constraints
e ::= e∧ e | s = t | wait(X) | int(X) | s >= t | s < t | . . .

Figure 2.1: Syntax of concurrent logic programming

body, respectively. ut

A unification goal s = t is to bind variables in s or t with terms so that s
and t express the same term. For example, X = 1 binds to X the term 1.

A clause rewrites predicate calls to goals. The head of a clause works
as a template of pattern matching and the guard specifies an additional
condition for rewriting with the clause. A constraint that can be written
in a guard is called an askable constraint. Askable constraints must at least
include ‘equality constraints’ of the form s = t specifying that the terms s and
t are the same. Chapter 4 requires that askable constraints also include the
synchronization constraint wait(X) specifying that the variable X is bound
to a non-variable term, in order to represent the motion of synchronization
points. Askable constraints can also include other conditional tests such as
integer comparison (e.g. s >= t) and runtime typechecking (e.g. int(X)).

In the concrete syntax, we will use commas (,) instead of ‖ to describe
parallel composition, and we may abbreviate t = t to true.

Example. Figure 2.2 shows a concurrent logic program. The two processes
intlist(1,N,S) and sum(S,X0,X) proceed concurrently, that is, in parallel
or by interleaving, in this program. The final result of a goal stair(10,0,X)
should be X = 45. ut

Informal Operational Semantics.

In the following paragraphs, we will introduce an informal operational se-
mantics of this language in order to give an idea of how it works. The formal
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stair(N,X0,X) :- true | intlist(1,N,S), sum(S,X0,X).

intlist(K0,N,S) :- K0>=N | S=[].

intlist(K0,N,S) :- K0< N | S=[K0|S1], K:=K0+1, intlist(K,N,S1).

sum([], X0,X) :- true | X=X0.

sum([E|S],X0,X) :- true | X1:=X0+E, sum(S,X1,X).

Figure 2.2: A concurrent logic program

definition will be given by means of concurrent constraint programming that
will be defined later.

Before that, we define substitutions as usual.

Definition 2.2 A substitution is a mapping from variables to terms. For a
substitution σ and a syntactic object A (such as a term or goals), Aσ denotes
the result of application of σ to A. For substitutions σ and θ, σθ stands for
the substitution satisfying A(σθ) = (Aσ)θ for all A where = is the syntactic
equality. ut

In concurrent logic programming, the ordering of goals has no meaning.
A goal can be reduced whenever possible.

In the informal operational semantics, the store is expressed as a substi-
tution. The configuration of the informal reduction system is a pair 〈G, σ〉
of goals G and a substitution σ. The initial store is an empty substitution.
We have only two reduction rules depending on the goal to be reduced.

A goal p(t) reduces as follows:

〈p(t) ‖G, σ〉−→〈Aθ ‖G, σ〉

where there exist a clause ( p(s) :- e |A ) and a substitution θ such that
both of sθ = t and eθ hold in the pre-defined constraint system of askable
constraints. Here, θ must replace for every variable occurring in (e, A) and
not in s by a fresh, distinct variable.

Notice that we require sθ = t rather than sθ = tθ that would be the case
in other logic programming languages including Prolog. This reflects the
setting that the head of a clause works as a template of pattern matching
and does not produce any output.

On the other hand, a goal s = t reduces as follows:

〈s = t ‖ G, σ〉−→〈Gθ, σθ〉
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where θ is an mgu of s and t. The reader can see that the store accumulates
the effect of the unification goals reduced so far. Recall that for terms s and
t we say that a substitution θ is an mgu (most general unifier) of s and t if
and only if sθ = tθ and for each σ such that sσ = tσ there exists τ such that
σ = θτ .

There are two cases where no reductions are possible. When some goals
remain but none of them can be reduced, the computation is in deadlock.
On the other hand, when all goals are reduced, the computation terminates
and the store contains the binding information on all the variables that have
occurred so far. Since most of them are local variables and in reality of no
interest, we should consider the restriction of the store to a variable set of
interest.

Why We Will Use CCP.

While the informal semantics explained above is concise and suitable for
symbolic, rapid prototype implementation, it is not suitable for analyzing
various properties of concurrent processes including the properties on inter-
action between goals and termination. This is mainly because the semantics
provides no means to group the distributed components of a process, that
is, subprocesses and local channels, originally written as only one or a few
predicate calls in the program text. Another reason is that a rewriting of
a predicate call is composed of too many tasks—namely, predicate defini-
tion lookup, head matching, guard testing, variable renaming, fresh variable
introduction, and replacement of a call with a clause body—which makes
a formal proof difficult to grasp. Moreover, we must sooner or later define
a constraint system of askable constraints in order to formulate the precise
semantics of guards because most of interesting askable constraints, includ-
ing wait(X) we will use in Chapter 4, cannot be directly represented as a
substitution.

To give a formal operational semantics of concurrent logic programming,
we shall use the CCP (concurrent constraint programming) language, for
CCP has a mathematical characteristics more suitable for proof description
than concurrent logic programming. We define the operational semantics of
concurrent logic programming through that of CCP. The following sections
define the CCP language.
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Notes on Atomic Tells.

In this dissertation, we will not allow a so-called atomic tell operation. An
atomic tell of a constraint e0 performs a consistency check of the constraint
e0 to the store before proceeding the rest of computation. A clause with an
atomic tell is commonly written as ( p(s) :- e : e0 |A ). Here, e is a rewriting
condition (same as in the original syntax of a clause) and e0 is a comma-
separated list of equality constraints executed as an atomic tell. If e0 is
consistent with the store, e0 is added to the store atomically with the test and
then the rewriting takes place; otherwise the rewriting does not take place.
Since atomic tells are known to make the program semantics complicated [30],
we have decided to restrict ourselves to only eventual tells (i.e., unification
goals). This decision will be exploited in Theorem 2.1 in this chapter, which
pertains to process scheduling, and in its applications in Chapters 4 and 5.
On the other hand, the decision is not exploited in the other parts including
Chapter 6, which presents a static occurs-check algorithm.

2.2 Constraints

In this section, we define the syntax and semantics of constraints. In the CCP
formalism, constraints are used to represent a store state in place of substi-
tutions. Unifications to be told to the store as well as askable constraints
to be asked of the store are also represented as constraints. Intuitively, a
constraint is a logical formula that describes certain information on variables
such as binding information.

2.2.1 Lattice Structure of Constraints

Section 2.2.1 originates from the paper [32]. Recall that (S,≤) is a lattice if
≤ is a partial order over S with a top element and a bottom element, and that
≤ is a partial order if it enjoys reflexivity, antisymmetry, and transitivity.

Definition 2.3 Let (Con,≤) be a lattice with the bottom element true and
the top element false. We call an element of Con a constraint. ut

In the following, we introduce several assumptions on constraints.
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Assumption 2.1 We assume that constraints can be interpreted as logical
formulas and that the least upper bound c t d of two constraints c and d is
interpreted as their conjunction c ∧ d. ut

By the above assumption, we can say that c ≤ d, or equivalently c∧d = d,
means that d contains more information than c (in short, d entails c). The
constraint true represents no constraints while false represents inconsistency.

Assumption 2.2 We assume that the sets of variables and terms of first-
order logic are given. The set of all variables is denoted by Var . We assume
there is a special variable denoted by α. For any term t, we denote by Vars(t)
the set of variables occurring in t. ut

We reserve the variable α to represent the formal parameter in a predicate
definition. In fact, this makes sense because we will later define the language
so that every predicate takes exactly one argument. The choice of the name
of α is derived from the initial letter of ‘argument’.

2.2.2 Pathed Variables

Next, we extend the definition of terms to obtain a new syntactic category
which we call pathed terms.

Definition 2.4 A pathed term t′ is defined by the following syntax:

Pathed Variables X ′ ::= X | X ′ · i
Pathed Terms t′ ::= X ′ | f(t′1, . . . , t

′
n)

where X ∈ Var and i ≥ 1 and n ≥ 0. X ′ is called a pathed variable. ut

The objective of extending terms with pathed variables is to give a concise,
formal description of the meaning of unification between first-order logic
terms. The pathed variable X ′ · i is intended to be interpreted as the i-th
argument of (the term that has been unified with) the pathed variable X ′.

Assumption 2.3 We assume that every constraint can be represented syn-
tactically as a finite conjunction of pathed terms. ut
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Since we have already assumed that every constraint can be interpreted
as a logical formula, it follows that a finite conjunction of pathed terms
that represents a constraint must be interpreted as a logical formula. The
interpretation of pathed variables has already been explained above. The
objective of this assumption is to define the effect of unification by means of
syntactic substitution, which will be explained in Section 2.2.4.

The syntactic representation of a constraint as a finite conjunction of
pathed terms is not unique. Two representations of the same constraint may
even have different sets of variables occurring in them. Given a syntactic
representation c′ of a constraint c, we shall say that a pathed variable X
syntactically occurs in the constraint c if and only if X occurs in c′. Hence,
in saying that a (pathed) variable syntactically occurs in a constraint, we
assume a syntactic representation of that constraint.

2.2.3 Equality Constraints

Next, we define equality constraints that express the effect of unification.

Assumption 2.4 For any pathed variables X and Y , we assume that the
constraint X =Y is in Con representing the equality between them. We also
assume that these constraints satisfy the following:

(U1) (X =X) = true
(U2) (X =Y ) = (Y =X)
(U3) c[Y/X] ≤ c ∧ (X =Y )
(U4) (X ·i =Y ·i) ≤ (X =Y )

where X and Y are pathed variables, c ∈ Con, and [Y/X] syntactically
replaces every X by Y . ut

Assumption 2.5 For any function symbol f and an integer n ≥ 0, we
call the pair of these, written as f/n, a functor. For any pathed variable
X, function symbol f , and an integer n ≥ 0, we assume there exists the
constraint func(X,f,n) in Con representing that the pathed variable X is
bound to the functor f/n.

We will also assume that there exists the constraint wait(X) in Con
such that for all functors f/n it holds that wait(X) ≤ func(X,f,n). ut

Now we can define equality constraints between pathed terms.
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Definition 2.5 For pathed terms s and t, the equality constraint s = t is
defined inductively as follows:

(U5) (X = f(t1,. . .,tn)) = func(X,f,n) ∧ ∧n
i=1(X ·i = ti)

(U6) (f(t1,. . .,tn) =X) = func(X,f,n) ∧ ∧n
i=1(X ·i = ti)

(U7) (f(s1,. . .,sn) = f(t1,. . .,tn)) =
∧n

i=1(si = ti)
(U8) (f(s1,. . .,sm) = g(t1,. . .,tn)) = false if f/m 6≡ g/n

where X is a pathed variable, and si and tj are pathed terms. ut

Equality constraints can be better seen as tellable constraints:

Definition 2.6 A constraint is a tellable constraint if and only if it can be
represented in the following syntax:

Tellable Constraints c ::= c ∧ c |X =Y | func(X,f,n)

where X and Y are pathed variables and f/n is a functor. We denote by
Con0 the set of all the tellable constraints. ut

The name of tellable constraints reflects that these are the only con-
straints that can be told in concurrent logic programming.

The store c is strengthened to e∧c by a tell of e. When the store becomes
false, we consider that the computation fails. Failure can be thought of as a
program error like division by zero.

2.2.4 Hiding Operator

Finally, we introduce a family of operators for restricting the scopes of vari-
ables. These operators are borrowed from the formalization of cylindric con-
straint systems [10, 32], which are algebraic systems for modeling variable
hiding and parameter passing where these operators are called as cylindrifi-
cation operators.

Assumption 2.6 For each variable X we assume that the hiding operator
∃X : Con → Con is defined satisfying:

1. ∃X(c) ≤ c

2. c ≤ d implies ∃X(c) ≤ ∃X(d)
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3. ∃X(∃Y (c)) = ∃Y (∃X(c))

4. ∃X(c ∧ ∃X(d)) = ∃X(c) ∧ ∃X(d)

5. ∃X(false) = false

ut

Intuitively, ∃X(c) represents the partial constraint of c that forgets the
information on X. In addition, we require the following assumption.

Assumption 2.7 The hiding operators enjoy the following properties:

(E1) ∃X(X = t) = true if X does not occur syntactically in t
(E2) ∃X(c) = c if X does not occur syntactically in c

for any variable X, any pathed term t, and any constraint c. ut

(E1) states that the operator ∃X must fully hide the information on X.
(E2) states that the operator ∃X must not hide any information on a variable
other than X. By (E2), we have ∃X(c[Y/X]) = c[Y/X].

Example.

∃A(A = f(B)) = true
∃B(A = f(B)) = (A = f(_))
∃C(A = f(B)) = (A = f(B))
∃X(Y = f(X,X·4)) = func(Y,f,2) ∧ (Y·1·4 = Y·2).

In the example, _ stands for an anonymous variable, which is formally

defined as C[_]
def
= ∃X(C[X]) where C[·] is a context with a single hole in a

pathed-term position and X does not occur syntactically in C[·]. ut
The set of tellable constraints, Con0, is closed under hiding operators.
Equality constraints and hiding operators together can model parameter

passing. The following proposition demonstrates how this is done. The
proposition states that the information on the variable X in a constraint c is
fully transmitted to the formal parameter Y that is fresh, namely ∃Y c = c.

Proposition 2.1 ∃X(c ∧ (X =Y )) = c[Y/X] if ∃Y c = c.
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Proof. Since

∃X(c ∧ (X =Y )) = ∃X(c ∧ (X =Y ) ∧ (Y =X))
≥ ∃X(c[Y/X] ∧ (Y =X))
≥ ∃X(c[Y/X][X/Y ] ∧ (X =Y ))
= ∃X(c ∧ (X =Y ))

we have
∃X(c ∧ (X =Y )) = ∃X(c[Y/X] ∧ (Y =X))

= c[Y/X] ∧ ∃X(Y =X)
= c[Y/X].

ut
Cylindric constraint systems provide diagonal elements, in place of equal-

ity constraints, for modeling parameter passing and variable substitution.
They call the equality constraint X =Y between variables X and Y a diago-
nal element and write it by dXY . Diagonal elements clarify the mathematical
structure of variable renamings, We have decided not to obey the entire for-
malization of cylindric constraint systems that includes diagonal elements
because our direct approach of defining substitution by means of (U3) seems
more suitable for our purpose of justifying program analysis.

Definition 2.7 (Constrained Variables) For c ∈ Con, we define

var(c)
def
= {X ∈ Var | c 6= ∃X(c)}

if c 6= false, and var(false)
def
= Var . ut

The set var(c) represents the set of variables constrained in c.

Example.

var(E = 1) = {E}
var(A = f(B)) = {A, B}

var(A = f(B)∧ C = D) = {A, B, C, D}
var(X = X) = var(true) = {} .

We have B ∈ var(A = f(B)) since (A = f(B)∧ B = 4) 6= (∃B(A = f(B))∧ B = 4). ut

Proposition 2.2 For any c 6= false, we have var(∃Xc) ⊆ var(c) \ {X}.
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Proof. Let Y 6∈ var(c) \ {X}. If Y 6∈ var(c), we have ∃Y ∃Xc = ∃X∃Y c =
∃Xc, which means Y 6∈ var(∃Xc). In the other case, Y is equal to X and
hence we have Y 6∈ var(∃Xc) because ∃Y ∃Xc = ∃X∃Xc = ∃Xc. ut

Here is a typical example where equality does not hold:

var(∃X(X = Y)) = var(true) = {} 6= {Y} = var(X = Y) \ {X} .

Some constraints in Con may be non-tellable. For example, we may
want to have int(X) in Con representing that X is bound to some integer.
Moreover, we can even have a disjunction of two constraints expressed as a
constraint. In order to allow arbitrary non-tellable constraints, however, we
will require extra assumptions on hiding operators.

In this dissertation, we postulate the following assumption.

Assumption 2.8 c ∧ d 6= false implies var(c ∧ d) ⊆ var(c) ∪ var(d).

This assumption states that a constraint has the information about which
variables it has an influence on.

This assumption will be strengthened in Section 4.2.3 (devoted to moving
synchronization points) by:

var(c ∧ d) = var(c) ∪ var(d).

With this strengthening, we have c ≤ d ⇒ var(c) ⊆ var(d) and disjunctions
over different sets of variables such as ((X = 1) ∨ (Y = 2)) cannot be described
as a member of Con. Note however that disjunctions over the exactly same
set of variables such as int(X) can still be a member of Con.

2.3 Syntax of CCP (Concurrent Constraint

Programming)

Having formalized the constraint system, we are going to define our CCP
language. In this section, we will define the syntax of CCP.

Given the set Pred of predicate symbols, we define the syntactic class of
agents as in Figure 2.3. We denote by Agents the set of all agents.

The agent tell(c) adds constraint c to the store, while
∑n

i=1ask(ei) → Ai

nondeterministically waits for the store to entail some ei and then behaves as
Ai. The agent A1 ‖A2 is parallel composition while stop is the terminated
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Agents A ::= tell(c) | ∑n
i=1ask(ci)→Ai

| A ‖A | stop | ∃X〈A, c〉 | p(X)

where c ∈ Con, n ≥ 1, p ∈ Pred and X is a variable other than α.

Figure 2.3: Syntax of CCP agents

agent. ∃X〈A, c〉 is the agent A that introduces X as a local variable and c
as internal store that keeps local information on the variable X, as well as
shared information on the other variables.

We abbreviate ∃X〈A, true〉 to ∃XA.

Definition 2.8 For each agent A, we inductively define the set Vars(A) as
follows:

Vars(stop)
def
= {}

Vars(tell(e))
def
= var(e)

Vars(p(X))
def
= {X}

Vars(
∑n

i=1 ask(ei) → Ai)
def
=

⋃n
i=1 var(ei) ∪ Vars(Ai)

Vars(A ‖B)
def
= Vars(A) ∪ Vars(B)

Vars(∃X〈B, d〉) def
= (Vars(B) ∪ var(d) ) \ {X} .

Moreover, for any pair 〈A, c〉 of an agent A and a constraint c, we define
Vars〈A, c〉 = Vars(A) ∪ var(c). ut

Intuitively, Vars(A) is the set of variables occurring ‘free’ in the agent A.
We shall not interpret the set-theoretic meaning of Vars(A) for an agent A
that contains the inconsistency constraint false.

Finally, we can define a program of CCP. A program of CCP is a mapping
Prog from predicate symbols to Agents such that Vars(Prog(p)) ⊆ {α} for
every p. The condition part expresses that a predicate definition should not
contain free variables other than the formal parameter α.

2.4 Translating CLP into CCP

We now define a translating function T from CLP (concurrent logic program-
ming) goals to CCP (concurrent constraint programming) agents as follows:
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• T [[s = t]] = tell(s = t),

• T [[p(t)]] = ∃G〈p(G), G = t〉 where G is a variable not occurring in t and
other than α, and

• T [[G1 ‖G2]] = T [[G1]] ‖ T [[G2]].

Having defined this, we can translate a CLP program P into a CCP
program Prog defined by:

Prog(p) =
∑

(p(s):-e |A)∈P

ask(∃α((α = s) ∧ e)) → ∃α(tell(α = s) ‖ T [[A]])

where ∃α(A) abbreviates ∃X1 . . . ∃Xn(A) where {X1, . . . , Xn} is the set of
all the variables other than α that syntactically occur in the agent A. In
addition, ∃α(c) abbreviates ∃X1 . . . ∃Xn(c) where {X1, . . . , Xn} is the set of
all the variables other than α that syntactically occur in the constraint c.
We assume that every askable constraint e is in Con. For simplicity, we also
assume that there is at least one clause for each predicate.

Example. The intlist predicate in Figure 2.2 is translated into CCP as
follows:

Prog(intlist) =
ask(∃K0∃N∃L(α = (K0, N, L) ∧ K0 < N))
→ ∃K0∃N∃L∃K∃L1( tell(α = (K0, N, L)) ‖ tell(L = [K0|L1])

‖ ∃G〈:=(G), G = (K0, 1, K)〉
‖ ∃G〈intlist(G), G = (K, N, L1)〉 )

+ ask(∃K0∃N∃L(α = (K0, N, L) ∧ K0 >= N))
→ ∃K0∃N∃L( tell(α = (K0, N, L)) ‖ tell(L=[]) )

2.5 Operational Semantics of CCP

In this section, we define the operational semantics of CCP.
Given a program Prog , we define the operational semantics as the smallest

set −→ ⊆ Proc×Proc that enjoys the rules in Figure 2.4, where Proc is the

set of processes defined by Proc
def
= Agents × Con.
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(R1) 〈tell(c), d〉−→〈stop, c ∧ d〉
(R2) 〈∑n

i=1ask(ci)→Ai, d〉−→〈Aj, d〉 if cj ≤ d

(R3) 〈p(X), d〉−→〈∃α〈Prog(p), α =X〉, d〉
(R4)

〈A, c ∧ ∃Xd〉−→〈A′, c′〉
〈∃X〈A, c〉, d〉−→〈∃X〈A′, c′〉, d ∧ ∃Xc′〉

(R5)
〈A, d〉−→〈A′, d′〉

〈A ‖B, d〉−→〈A′ ‖B, d′〉
(R5′)

〈B, d〉−→〈B′, d′〉
〈A ‖B, d〉−→〈A ‖B′, d′〉

(R6) 〈∑n
i=1ask(ci)→Ai, d〉−→〈∑n

i=1ask(ci)→Ai, d〉 if ∀i (ci ∧ d = false)

Figure 2.4: Operational semantics of CCP

(R3) expresses the commencement of a goal p(X) with a new store de-
ployed. (R4) refreshes internal store as well as shared store for each reduction
of the subagent.

In this dissertation, we employ an operational semantics such that every
store in the configuration is updated after each reduction. Thanks to this,
we can formulate the restartability of agents concisely as in Theorem 2.1.

(R6) expresses the computation in the situation of reduction failure where
no legitimate reduction is possible for an ask agent. The consequences of
(R6) and its variants are summarized as follows:

• With (R6), reduction failure is observed as divergence (infinite com-
putation). This means that reduction failure cannot be distinguished
from divergence.

• If (R6) is removed, reduction failure is observed as suspension. This
means that reduction failure cannot be distinguished from suspension.
This is the semantics adopted by the theoretical papers [10, 32].

• If the right-hand side of (R6) is replaced with 〈∑n
i=1 ask(ei) → Ai, false〉,

reduction failure is observed as failure. This means that reduction fail-
ure cannot be distinguished from the failure by inconsistent tells.

The choice among these is independent of the rest of this dissertation.
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Let −→∗ denote the reflexive and transitive closure of −→ . At least in
principle, a concurrent process has nothing to do with how many reductions
other concurrent processes perform (as long as they are finite reductions).
Thus, −→∗ plays an important role in formalizing a denotational semantics
of processes in Chapter 3.

Proposition 2.3 (Monotonicity) 〈A, c〉−→〈A′, c′〉 implies c ≤ c′.

Proof. By structural induction on −→ . ut

2.6 External Input

In this section, we introduce a notation for expressing an agent that receives
external input. The need of this notation is due to the local store scattered
around the syntax of an agent. Nonetheless, this explicit treatment of exter-
nal input turns out to be useful in stating the restartability theorem in the
next section. The notation of external input was devised by the author for
the first time.

Definition 2.9 (External Input to Agents) Let A be an agent and a ∈
Con a constraint. We inductively define the agent Aa, called as the result of
external input of a to A, as follows:

stop a
def
= stop

tell(e) a
def
= tell(e)

p(X) a
def
= p(X)

(
∑n

i=1 ask(ei) → Ai) a
def
=

∑n
i=1 ask(ei) → Ai

(A ‖B) a
def
= (Aa) ‖ (B a)

(∃X〈B, d〉) a
def
= ∃X〈B(d ∧ ∃Xa), d ∧ ∃Xa〉

ut
External input to an agent models the communication from other agents,

which results in just updating every local store scattered within the agent.
Let A and A′ be agents satisfying Ac = A′c where c is a constraint. The

agents A and A′ are syntactically the same except for the content of the
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local stores they contain. Moreover, the processes 〈A, c〉 and 〈A′, c〉 have the
operational behavior. In this case, we will say that the agents A and A′ are
syntactically the same under the store c.

Example. The two agents ∃X〈p(X), X = Y〉 and ∃X〈p(X), X = Y ∧ Y = 1〉 are syn-
tactically the same under the store Y = 1 since we have ∃X〈p(X), X = Y〉(Y = 1) =
∃X〈p(X), X = Y ∧ Y = 1〉(Y = 1). ut

Definition 2.10 (External Input to Processes) We extend the notation
of external input to processes as follows:

〈A, c〉a def
= 〈A(c ∧ a), c ∧ a〉.

ut

Intuitively, a process 〈A, c〉 is updated to 〈A, c〉a on receiving a con-
straint a. We will write (∃X〈B, d〉)a as ∃X〈B, d〉a. Note that ∃X〈B, d〉a =
∃X(〈B, d〉∃Xa).

Proposition 2.4 f ≤ g implies Afg = Ag.

Proof. By structural induction on agents. The only nontrivial case is the
case of ∃X〈B, d〉 and a proof is shown below.

∃X〈B, d〉fg
= ∃X(〈B, d〉∃Xf)g
= ∃X〈B(d ∧ ∃Xf), d ∧ ∃Xf〉g
= ∃X〈B(d ∧ ∃Xf)(d ∧ ∃Xf ∧ ∃Xg), d ∧ ∃Xf ∧ ∃Xg〉
= ∃X〈B(d ∧ ∃Xf ∧ ∃Xg), d ∧ ∃Xf ∧ ∃Xg〉
= ∃X〈B(d ∧ ∃Xg), d ∧ ∃Xg〉
= ∃X〈B, d〉g.

ut
As a corollary to this, we have 〈A, c〉fg = 〈A, c〉g if f ≤ g. Moreover, we

can prove that f ≥ g implies Afg = Af and 〈A, c〉fg = 〈A, c〉f in almost
the same way.
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2.7 Restartability of Agents

We will prove a basic theorem on the restartability of agents. Intuitively,
the theorem guarantees that once an agent becomes reducible, it is reducible
forever. The result of this theorem is essential for proving the correctness of
program transformation explained in Chapter 4. It is worth noting that this
theorem relies on the absence of atomic tell operations.

Theorem 2.1 (Restartability) Assume 〈A, c〉−→〈A′, c′〉. For every agent
Â and constraint a satisfying Â(c ∧ a) = A(c ∧ a), there exists an agent Â′

such that 〈Â, c ∧ a〉−→〈Â′, c′ ∧ a〉 and Â′(c′ ∧ a) = A′(c′ ∧ a).

Note. The reader can first consider the special case where Â = A, in
which case the statement reads as this: “Assume 〈A, c〉−→〈A′, c′〉. For every
constraint a, there exists an agent Â′ such that 〈A, c ∧ a〉−→〈Â′, c′ ∧ a〉 and
Â′(c′∧a) = A′(c′∧a).” The agents Â′ and A′ are syntactically the same under
the store c′∧a but not always identical. The exact reason of not always having
Â′ = A′ is that, by the rule (R4), the local store within Â′ contains more
information than the corresponding local store within A′. Precisely speaking,
whereas c′ ∧ a can be distributed inside Â′ at the reduction, only c′ can be
distributed inside A′ at the reduction. Since we have assumed the external
input of a, we should only want to know whether 〈Â′, c′ ∧ a〉a = 〈A′, c′〉a,
namely Â′(c′ ∧ a) = A′(c′ ∧ a).

Proof. By structural induction on −→ .

• Case 〈tell(e), c〉−→〈stop, e ∧ c〉.
Note that Â = A. We have 〈tell(e), c ∧ a〉−→〈stop, e ∧ c ∧ a〉.

• Case 〈p(X), c〉−→〈∃α〈Prog(p), α =X〉, c〉.
Note that Â = A. We have 〈p(X), c ∧ a〉−→〈∃α〈Prog(p), α =X〉, c ∧ a〉.

• Case 〈∑n
i=1 ask(ci) → Ai, c〉−→〈Aj, c〉 where cj ≤ c.

Note that Â = A. Since cj ≤ c ≤ c ∧ a, we have

〈∑n
i=1 ask(ci) → Aj, c ∧ a〉−→〈Aj, c ∧ a〉.
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• Case 〈∑n
i=1 ask(ci) → Ai, c〉−→〈∑n

i=1 ask(ci) → Ai, c〉 where ∀i(ci ∧
c = false).

Note that Â = A. We have false = ci ∧ c ≤ ci ∧ c ∧ a.

• Case 〈∃X〈B, d〉, c〉−→〈∃X〈B′, d′〉, c ∧ ∃Xd′〉.
By definition of external input, there exist some B̂ and d̂ such that
Â = ∃X〈B̂, d̂〉 and d̂∧∃X(c∧a) = d∧∃X(c∧a) and B̂(d∧∃X(c∧a)) =
B(d ∧ ∃X(c ∧ a)).

By induction hypothesis for 〈B, d ∧ ∃Xc〉−→〈B′, d′〉 applied to ∃X(c∧
a), there exists B̂′ such that 〈B̂, d ∧ ∃X(c ∧ a)〉−→〈B̂′, d′ ∧ ∃X(c ∧ a)〉
and B̂′(d′ ∧ ∃X(c ∧ a)) = B′(d′ ∧ ∃X(c ∧ a)). Since ∃Xc ≤ ∃X(c ∧
a), we have d̂ ∧ ∃X(c ∧ a) = d ∧ ∃X(c ∧ a) and therefore we have
〈B̂, d̂ ∧ ∃X(c ∧ a)〉−→〈B̂′, d′ ∧ ∃X(c ∧ a)〉. Hence, we have

〈∃X〈B̂, d̂〉, c ∧ a〉
−→〈∃X〈B̂′, d′ ∧ ∃X(c ∧ a)〉, c ∧ a ∧ ∃X(d′ ∧ ∃X(c ∧ a))〉
= 〈∃X〈B̂′, d′ ∧ ∃X(c ∧ a)〉, c ∧ a ∧ ∃Xd′ ∧ ∃X(c ∧ a)〉
= 〈∃X〈B̂′, d′ ∧ ∃X(c ∧ a)〉, c ∧ ∃Xd′ ∧ a〉.

Moreover, we have

∃X〈B̂′, d′ ∧ ∃X(c ∧ a)〉(c ∧ ∃Xd′ ∧ a)

= ∃X(〈B̂′, d′ ∧ ∃X(c ∧ a)〉∃X(c ∧ ∃Xd′ ∧ a))

= ∃X(〈B̂′, d′ ∧ ∃X(c ∧ a)〉(∃Xd′ ∧ ∃X(c ∧ a)))

= ∃X〈B̂′(d′ ∧ ∃X(c ∧ a)), d′ ∧ ∃X(c ∧ a)〉
= ∃X〈B′(d′ ∧ ∃X(c ∧ a)), d′ ∧ ∃X(c ∧ a)〉
= ∃X(〈B′, d′〉(∃Xd′ ∧ ∃X(c ∧ a)))
= ∃X(〈B′, d′〉∃X(c ∧ ∃Xd′ ∧ a))
= ∃X〈B′, d′〉(c ∧ ∃Xd′ ∧ a).

• Case 〈B1 ‖B2, c〉−→〈B′
1 ‖B2, c

′〉.
There exist B̂1 and B̂2 such that B̂ = B̂1 ‖ B̂2 and B̂1(c∧a) = B1(c∧a)
and B̂2(c∧a) = B2(c∧a). By induction hypothesis for 〈B1, c〉−→〈B′

1, c
′〉,

there exists B̂′
1 such that 〈B̂1, c ∧ a〉−→〈B̂′

1, c
′ ∧ a〉 and B̂′

1(c
′ ∧ a) =

B′
1(c

′ ∧ a). Hence we have 〈B̂1 ‖ B̂2, c ∧ a〉−→〈B̂′
1 ‖ B̂2, c

′ ∧ a〉.
Moreover, since B̂2(c

′ ∧ a) = B̂2(c ∧ a)(c′ ∧ a) = B2(c ∧ a)(c′ ∧ a) =

B2(c
′ ∧ a), we have (B̂′

1 ‖ B̂2)(c
′ ∧ a) = B̂′

1(c
′ ∧ a) ‖ B̂2(c

′ ∧ a) = B′
1(c

′ ∧
a) ‖B2(c

′ ∧ a) = (B′
1 ‖B2)(c

′ ∧ a).
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The case of 〈B1 ‖B2, c〉−→〈B1 ‖B′
2, c

′〉 is similar. ut

Example. Consider the agent ∃X〈tell(Y = f(X)), true〉. For the reduction
〈∃X〈tell(Y = f(X)), true〉, true〉−→〈∃X〈stop, Y = f(X)〉, Y = f(_)〉, we have
〈∃X〈tell(Y = f(X)), true〉, Z = 1〉−→〈∃X〈stop, Y = f(X) ∧ Z = 1〉, Y = f(_) ∧ Z = 1〉
and that ∃X〈stop, Y = f(X)〉(Y = f(_) ∧ Z = 1) = ∃X〈stop, Y = f(X) ∧ Z = 1〉 =
∃X〈stop, Y = f(X) ∧ Z = 1〉(Y = f(_) ∧ Z = 1). This says that we can defer the
execution of ∃X〈tell(Y = f(X)), true〉 until the store becomes Z = 1. ut
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Chapter 3

Denotational Semantics

Although a compiler should generate object code which behaves as specified
by the input program, the exact meaning of the correctness of a compiler
depends on the definition of behavior. In a nondeterministic setting, it is
sometimes needed to alter the behavior of the object code in order to per-
form particular optimization. A denotational semantics maps a process to a
denotation (a certain mathematical object) representing the behavior of that
process, thereby enabling the discussion of relationships between different
behaviors. In this chapter, we build a denotational semantics of processes
based on observational equivalence. To do this, we first give the definition
of the observables of a process and then define the denotational semantics
of processes that is fully abstract, meaning that no contexts exist that can
distinguish two processes having the same denotation.

3.1 The Observables

We formalize the observables of a process by all the phenomena we want to
regard as its whole behavior.

Definition 3.1 (Observables) Given a program Prog , we define the ob-
servables of a process 〈A, c〉, written as O[[〈A, c〉]]Prog , as follows:

O[[〈A, c〉]]Prog
def
= {d·⊥ | 〈A, c〉−→∗ 〈A′, c′〉, c ≤ d ≤ c′, d ∈ Con}
∪ {c′ · dd | 〈A, c〉−→∗ 〈A′, c′〉 /−→ , A′ 6∈ Stop}
∪ {c′ · tt | 〈A, c〉−→∗ 〈A′, c′〉, A′ ∈ Stop}
∪ {c′ · ∞ | 〈A, c〉−→∗ 〈A′, c′〉−→∞} (3.1)
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where 〈A, c〉−→∞ means the existence of infinite computation beginning
with 〈A, c〉, in which case we say 〈A, c〉 diverges, and Stop is the set of agents
containing no asks, tells, or calls. Formally, the set Stop of the terminated
agents is defined as follows:

S ::= stop | S ‖S | ∃X〈S, c〉
where X is a variable and c ∈ Con. ut

The d · ⊥ in O[[〈A, c〉]]Prog represents the possibility that the agent A at
the store c may cause the store to entail d. On the other hand, c′ · dd, c′ · tt,
and c′ ·∞ represent the possibility that A at the store c may make the store
c′ and then suspend, terminate, and diverge, respectively.

The reason of having partial information d · ⊥ in addition to the total
information c′ · ⊥ in the observables is to reflect the setting that tells are
eventual, not atomic. The outcome of this definition is that we can freely
convert several tells to their equivalent composite and vice versa without
worrying about the change of the program semantics, which greatly simplifies
the justification of these kinds of program transformation.

We may abbreviate O[[〈A, true〉]]Prog to O[[A]].

Example.

O[[〈tell(c ∧ d), true〉]]Prog = {e · ⊥ | e ≤ cd} ∪ {cd · tt}
O[[〈tell(c) ‖ (ask(c) → tell(d)), true〉]]Prog = {e · ⊥ | e ≤ cd} ∪ {cd · tt}

O[[〈ask(c) → tell(d), true〉]]Prog = {true · ⊥} ∪ {true · dd}
O[[〈ask(c) → tell(d), c〉]]Prog = {e · ⊥ | c ≤ e ≤ cd} ∪ {cd · tt}

where c and d are constraints and cd abbreviates c ∧ d. We can see that the
observables of the first two agents coincide. It reflects the fact that there is
no contexts that distinguish between them. ut

It is known that collecting observables O[[〈C[A], true〉]]Prog for all contexts
C[·] generates a compositional denotational semantics of the agent A under
the program Prog [10, 32].

Observable Output

In executing a program, suspension of a process can be observed only if
every process is suspended, in which case we say that the computation is in
deadlock. It encourages us to define the notion of observable output:
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Definition 3.2 (Observable Output) We define the observable output of
a process 〈A, c〉 by the set O[[〈A, c〉]]Prog ∩ObsOut(c) where

ObsOut(c) = {d · ⊥ | d > c} ∪ {false · ⊥} ∪ {d · tt | d ≥ c} ∪ {d · ∞ | d ≥ c} .

We say that a process has observable output if and only if its observable
output is not empty. ut

Intuitively, a process has observable output if it can do something other
than suspension—that is, telling something new to the store, making the
store inconsistent, doing termination, or going to divergence.

3.2 Observational Equivalence

Next, we will define observational equivalence. An intuitive definition will
be given first. The formal definition will be given at the end of this section.

Intuitively, two processes are said to be observationally equivalent if and
only if their sets of possible sequences of input/output coincide, where input
is an ask of a constraint and output is either a tell, suspension, termination,
or divergence. Notice that the output other than a tell corresponds to the
set {dd, tt,∞} appearing in the definition of the observables.

We are interested in an observational equivalence that is a congruence,
i.e., preserved under parallel composition and local variable introduction. In
this section, we will see that our definition of the observables of processes has
enough information to make the resulting observational equivalence a con-
gruence. Finally, we will prove that our denotational semantics is equivalent
to the quotient set of all processes by the observational equivalence relation.

The key point in defining a denotational semantics of CCP is that local
choices (also known as indeterminism or don’t-care nondeterminism) cannot
be observed directly from other processes since every local choice takes place
asynchronously from the outside world. This is not the case with CCS (Cal-
culus of Communicating Systems) [28] or CSP (Communicating Sequential
Processes) [18] where communication is synchronous. Readers are referred
to the paper [10] for the details of these issues.

We first formalize the input/output sequences of a process.

Definition 3.3 (Interaction Sequences) Let 〈G0, b0〉 be a process and n
a non-negative interger. We call a finite sequence (a1, G1, b1), . . . , (an, Gn, bn)
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in (D × Agents ×D)∗ satisfying b0 ≤ a1 ≤ b1 ≤ . . . ≤ an ≤ bn and

〈Gi−1, ai〉−→∗ 〈Gi, bi〉, i = 1, . . . , n (3.2)

an interaction sequence of 〈G0, b0〉 and refer to n as its length. We shall write
an expression in the format of (3.2) to speak of an interaction sequence. ut

We should mention that each process 〈G0, b0〉 has an interaction sequence
of length 0.

A step-by-step interaction sequence is a special kind of an interaction
sequence of the form:

〈Gi−1, ai〉−→〈Gi, bi〉, i = 1, . . . , n.

Definition 3.4 (Observational Subsumption) Let 〈G0, b0〉 and 〈G′
0, b0〉

be processes. We say 〈G0, b0〉 is observationally subsumed by 〈G′
0, b0〉 if and

only if the following holds, in which case we write 〈G0, b0〉 ≤ 〈G′
0, b0〉:

For any interaction sequence

x : 〈Gi−1, ai〉−→∗ 〈Gi, bi〉, i = 1, . . . , n

of 〈G0, b0〉, there exists an interaction sequence

y : 〈G′
i−1, ai〉−→∗ 〈G′

i, bi〉, i = 1, . . . , n

of 〈G′
0, b0〉 satisfying the following:

(div) If 〈Gn, bn〉−→∞ then 〈G′
n, bn〉−→∞.

(end) If 〈Gn, bn〉−→∗ √ then 〈G′
n, bn〉−→∗ √.

We define that 〈A, c〉−→∗ √ means the existence of some S ∈ Stop such that
〈A, c〉−→∗ 〈S, c〉. ut

The reason of introducing 〈A, c〉−→∗ √ rather than simply saying A ∈
Stop is that we don’t want to make a distinction between 〈tell(e), c〉 and
〈stop, c〉 where e ≤ c. In fact, they are distinguishable only if the exact
number of reductions is taken into account in defining the equivalence. Such
an equivalence, however, is not suitable for our purpose of justifying program
transformation.

It can be easily shown that we can obtain the same definition of ≤ by
restricting x to only step-by-step interaction sequences.
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When 〈G0, b0〉 ≤ 〈G′
0, b0〉, every operational characteristic observable in

〈G0, b0〉 is also observed in 〈G′
0, b0〉. When 〈G0, b0〉 ≤ 〈G′

0, b0〉 and 〈G′
0, b0〉 ≤

〈G0, b0〉, they have the same set of operational characteristics and are thought
to be observationally equivalent to each other. Let us employ this as our
definition of the observational equivalence.

3.3 Denotations

In this section, we define a denotational semantics of processes so that the
correspondence with the operational semantics is induced straightforwardly.
This correspondence is important for the justification of the program analysis.
The denotation we are defining is due to the author but can be related with
the one defined in the paper [10] that is also based on a trace semantics with
explicit treatment of divergence.

We begin with the definition of traces of interaction sequences.

Definition 3.5 (Traces) For every interaction sequence

x : 〈Gi−1, ai〉−→∗ 〈Gi, bi〉, i = 1, . . . , n

of 〈G0, b0〉, we define its normal trace by

〈true, b0〉〈a1, b1〉〈a2, b2〉 . . . 〈an, bn〉 · ⊥.

Moreover, we define that x has a divergent trace

〈true, b0〉〈a1, b1〉〈a2, b2〉 . . . 〈an, bn〉 · ∞
if and only if 〈Gn, bn〉−→∞ holds.

Furthermore, we define that x has a terminated trace

〈true, b0〉〈a1, b1〉〈a2, b2〉 . . . 〈an, bn〉 · tt
if and only if 〈Gn, bn〉−→∗ √ holds. ut

Next, we define the set of denotations. Each denotation represents the
semantics of a certain process.

Definition 3.6 (Denotation) A subset E of

{〈true, b0〉〈a1, b1〉 . . . 〈an, bn〉 ·m |n ≥ 0, b0 ≤ a1 ≤ . . . ≤ bn, m ∈ {⊥,∞, tt}}
is called a denotation of a process if the following closure conditions are met:
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1. there is a unique constraint b0 such that 〈true, b0〉 · ⊥ ∈ E

2. t〈a, b〉t′ ·m ∈ E implies t〈a, b〉〈b, b〉t′ ·m ∈ E

3. 〈true, c〉t t′ ·m ∈ E implies 〈true, c〉t · ⊥ ∈ E

4. 〈true, c〉t t′ ·m ∈ E implies 〈true, c〉t′ ·m ∈ E

5. 〈true, c〉t〈a1, b1〉 . . . 〈an, bn〉 ·m ∈ E implies
〈true, c〉t〈a1 ∧ e, b1 ∧ e〉 . . . 〈an ∧ e, bn ∧ e〉 ·m ∈ E

6. ∀n ≥ 0 ∃b1 < . . . < bn( t〈a0, b0〉〈b0, b1〉 . . . 〈bn−1, bn〉 · ⊥ ∈ E ) implies
t〈a0, b0〉 · ∞ ∈ E

where t and t′ stand for finite sequences of pairs and e is a constraint. ut

( 1 ) represents the uniqueness of the initail store. ( 2 ) represents that
reductions are delayable. ( 3 ) represents that the trace is a time sequence.
( 4 ) and ( 5 ) represent the restartability of a process. ( 6 ) represents that a
process with infinite output diverges.

We will show that the denotational semantics of a process 〈A, c〉 can be
obtained as the set of (all of the three kinds of) traces of all the interac-
tion sequences of 〈A, c〉. We denote this set by D[[〈A, c〉]]. Our denotational
semantics can fully handle nondeterministic features of a process as the se-
mantics defined in the papers [33, 32, 10]. This is manifested by the following
proposition.

Proposition 3.1 (Equivalence to Operational Semantics)

〈G0, b0〉 ≤ 〈G′
0, b0〉 ⇔ D[[〈G0, b0〉]] ⊆ D[[〈G′

0, b0〉]].

Proof.

⇒) Obvious.

⇐) It can be easily shown that 〈G0, b0〉 6≤ 〈G′
0, b0〉 implies D[[〈G0, b0〉]] 6⊆

D[[〈G′
0, b0〉]]. ut

As a corollary of this proposition, the observational equivalence is a nec-
essary and sufficient condition for the coincidence of denotations.

34



3.4 Properties on Processes

In this section, we prove several properties on processes we will use later.
This section can be skipped in the first reading, for they are only needed for
describing proofs in the next chapter.

Proposition 3.2 (Tell Construction) If 〈A, c〉−→〈A′, c′〉 then there ex-
ists some e such that var(e) ⊆ Vars(A) and c′ = e ∧ c.

Proof. By structural induction on −→ .

• Case 〈tell(e), c〉−→〈stop, e ∧ c〉.
Note that var(e) = Vars(tell(e)).

• Case 〈p(X), c〉−→〈∃α〈Prog(p), α =X〉, c〉.
Let e = true.

• Case 〈∑n
i=1 ask(ci) → Ai, c〉−→〈Aj, c〉 where cj ≤ c.

Let e = true.

• Case 〈∑n
i=1 ask(ci) → Ai, c〉−→〈∑n

i=1 ask(ci) → Ai, c〉 where ∀i(ci ∧
c = false).

Let e = true.

• Case 〈∃X〈B, d〉, c〉−→〈∃X〈B′, d′〉, c ∧ ∃Xd′〉.
By induction hypothesis for 〈B, d ∧ ∃Xc〉−→〈B′, d′〉, there exists some
f such that var(f) ⊆ Vars(B) and d′ = f ∧ d ∧ ∃Xc. Therefore,
c∧∃Xd′ = c∧∃X(f ∧d∧∃Xc) = c∧∃X(f ∧d)∧∃Xc = ∃X(f ∧d)∧c and
var(∃X(f∧d)) ⊆ (var(f)∪var(d))\{X} ⊆ (Vars(B)∪var(d))\{X} ⊆
Vars(∃X〈B, d〉).

• Case 〈B1 ‖B2, c〉−→〈B′
1 ‖B2, c

′〉.
By induction hypothesis for 〈B1, c〉−→〈B′

1, c
′〉, there exists some e such

that var(e) ⊆ Vars(B1) ⊆ Vars(B1 ‖B2) and c′ = e ∧ c.

The case of 〈B1 ‖B2, c〉−→〈B1 ‖B′
2, c

′〉 is similar. ut
Proposition 3.3 If 〈A, c〉−→∗ 〈A′, c′〉 then there exists some e such that
var(e) ⊆ Vars(A) and c′ = e ∧ c.
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Proof. Corollary of the previous proposition.

Proposition 3.4 〈A, c〉−→〈A′, c′〉 implies Vars〈A′, c′〉 ⊆ Vars〈A, c〉.

Proof. By structural induction on −→ .

• Case 〈tell(e), c〉−→〈stop, e ∧ c〉.
Vars〈stop, e ∧ c〉 = var(e ∧ c) ⊆ var(e) ∪ var(c) = Vars〈tell(e), c〉.

• Case 〈p(X), c〉−→〈∃α〈Prog(p), α =X〉, c〉.

Vars〈∃α〈Prog(p), α =X〉, c〉
= (Vars(Prog(p)) ∪ var(α =X) ) \ {α} ∪ var(c)
⊆ ({α} ∪ {α, X}) \ {α} ∪ var(c)
= {X} ∪ var(c) = Vars〈p(X), c〉.

• Case 〈∑n
i=1 ask(ci) → Ai, c〉−→〈Aj, c〉.

Vars〈Aj, c〉 = Vars(Aj) ∪ var(c)
⊆ (

⋃n
i=1 var(ci) ∪ Vars(Ai) ) ∪ var(c)

= Vars〈∑n
i=1 ask(ci) → Ai, c〉

• Case 〈∑n
i=1 ask(ci) → Ai, c〉−→〈∑n

i=1 ask(ci) → Ai, c〉.
Obvious.

• Case 〈∃X〈B, d〉, c〉−→〈∃X〈B′, d′〉, c ∧ ∃Xd′〉.
By induction hypothesis for 〈B, d ∧ ∃Xc〉−→〈B′, d′〉, it is the case that
Vars〈B′, d′〉 ⊆ Vars〈B, d ∧ ∃Xc〉. Therefore, we have

Vars〈∃X〈B′, d′〉, c ∧ ∃Xd′〉
= Vars〈B′, d′〉 \ {X} ∪ var(c ∧ ∃Xd′)
⊆ Vars〈B′, d′〉 \ {X} ∪ var(c) ∪ (var(d′) \ {X})
= Vars〈B′, d′〉 \ {X} ∪ var(c)
⊆ Vars〈B, d ∧ ∃Xc〉 \ {X} ∪ var(c)
= (Vars(B) ∪ var(d ∧ ∃Xc) ) \ {X} ∪ var(c)
⊆ (Vars(B) ∪ var(d) ∪ (var(c) \ {X}) ) \ {X} ∪ var(c)
= (Vars(B) ∪ var(d) ) \ {X} ∪ var(c)
= Vars(∃X〈B, d〉) ∪ var(c)
= Vars〈∃X〈B, d〉, c〉.
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• Case 〈B1 ‖B2, c〉−→〈B′
1 ‖B2, c

′〉.
By induction hypothesis for 〈B1, c〉−→〈B′

1, c
′〉, we have Vars〈B′

1, c
′〉 ⊆

Vars〈B1, c〉. Therefore, we have

Vars〈B′
1 ‖B2, c

′〉 = Vars(B′
1) ∪ Vars(B2) ∪ var(c′)

= Vars〈B′
1, c

′〉 ∪ Vars(B2)
⊆ Vars〈B1, c〉 ∪ Vars(B2)
= Vars(B1) ∪ Vars(B2) ∪ var(c)
= Vars〈B1 ‖B2, c〉.

The case of 〈B1 ‖B2, c〉−→〈B1 ‖B′
2, c

′〉 is similar. ut

Proposition 3.5 Let 〈A, c〉 be a process and Â an agent satisfying Âc = Ac
and Y 6∈ Vars(Â). For every process 〈A′, c′〉 such that

〈A, c〉−→〈A′, c′〉,

there exists an agent Â′ such that Â′c′ = A′c′ and Y 6∈ Vars(Â′) and

〈Â,∃Y c〉−→〈Â′,∃Y c′〉.

Proof. Note that by Theorem 2.1 applied to 〈A, c〉−→〈A′, c′〉 with (Ac)c =
Ac, there exists an agent E such that 〈Ac, c〉−→〈E, c′〉 and Ec′ = A′c′.
Therefore, by Theorem 2.1 applied to 〈Ac, c〉−→〈E, c′〉 with Âc = (Ac)c,
there exists an agent Ê such that 〈Â, c〉−→〈Ê, c′〉 and Êc′ = Ec′ = A′c′.

By structural induction on −→ for 〈A, c〉−→〈A′, c′〉.

• Case 〈tell(e), c〉−→〈stop, e ∧ c〉.
We have 〈tell(e),∃Y c〉−→〈stop, e ∧ ∃Y c〉. Since Y 6∈ var(e), we have
∃Y e = e and hence ∃Y (e ∧ c) = e ∧ ∃Y c.

• Case 〈p(X), c〉−→〈∃α〈Prog(p), α =X〉, c〉.
We have 〈p(X),∃Y c〉−→〈∃α〈Prog(p), α =X〉,∃Y c〉.

• Case 〈∑n
i=1 ask(ci) → Ai, c〉−→〈Aj, c〉 where cj ≤ c.

Since Y 6∈ var(cj) ⊆ Vars(
∑n

i=1 ask(ci) → Ai), we have cj = ∃Y cj ≤
∃Y c and hence 〈∑n

i=1 ask(ci) → Ai,∃Y c〉−→〈Aj, ∃Y c〉.
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• Case 〈∑n
i=1 ask(ci) → Ai, c〉−→〈∑n

i=1 ask(ci) → Ai, c〉 where ∀i(ci ∧
c = false).

Let i be any of 1, . . . , n. Since Y 6∈ var(ci) ⊆ Vars(
∑n

i=1 ask(ci) → Ai),
we have ci = ∃Y ci and hence ci ∧ ∃Y c = ∃Y (ci ∧ c) = ∃Y false = false.

It follows that 〈∑n
i=1 ask(ci) → Ai,∃Y c〉−→〈∑n

i=1 ask(ci) → Ai,∃Y c〉.
• Case 〈∃X〈B, d〉, c〉−→〈∃X〈B′, d′〉, c ∧ ∃Xd′〉.

By definition of external input, we have Â = ∃X〈B̂, d̂〉 and d̂∧∃Xc =
d∧∃Xc and B̂(d∧∃Xc) = B(d∧∃Xc). We must show the assumption
Y 6∈ Vars(B̂) in order to use the induction hypothesis for 〈B, d ∧ ∃Xc〉
−→〈B′, d′〉.
We first consider the case where Y is other than X. In this case, we
have Y 6∈ Vars(B̂). Hence by induction hypothesis there exists B̂′ such
that

〈B̂, ∃Y (d ∧ ∃Xc)〉−→〈B̂′,∃Y d′〉
and Y 6∈ Vars(B̂′) and B̂′d′ = B′d′. Since ∃Y d̂ = d̂, this means that

〈B̂, d̂ ∧ ∃X∃Y c〉−→〈B̂′,∃Y d′〉

and thus we have

〈∃X〈B̂, d̂〉,∃Y c〉−→〈∃X〈B̂′,∃Y d′〉, ∃Y c ∧ ∃X∃Y d′〉.

All what we need is to prove:

1. ∃Y (c ∧ ∃Xd′) = ∃Y c ∧ ∃X∃Y d′,

2. ∃Y d′ ∧ ∃X(c ∧ ∃Xd′) = d′ ∧ ∃X(c ∧ ∃Xd′),

3. B̂′(d′ ∧ ∃X(c ∧ ∃Xd′)) = B′(d′ ∧ ∃X(c ∧ ∃Xd′)), and

4. Y 6∈ Vars(∃X〈B̂′,∃Y d′〉).
Proving statement 4 is easy.

Equation 3 holds because B̂′d′ = B′d′.

Equation 2 states that ∃Y d′ ∧ ∃Xc ∧ ∃Xd′ = d′ ∧ ∃Xc. We prove
this by showing that ∃Y d′ ∧ ∃Xc = d′. By Proposition 3.2 applied
to 〈B̂, d ∧ ∃Xc〉−→〈−, d′〉, there exists some f such that var(f) ⊆
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Vars(B̂) and d′ = f ∧ d ∧ ∃Xc. Since ∃Y f = f and ∃Y d̂ = d̂ and
d̂ ∧ ∃Xc = d ∧ ∃Xc, we have

∃Y d′ ∧ ∃Xc = ∃Y (f ∧ d ∧ ∃Xc) ∧ ∃Xc

= ∃Y (f ∧ d̂ ∧ ∃Xc) ∧ ∃Xc

= f ∧ d̂ ∧ ∃Y ∃Xc ∧ ∃Xc
= f ∧ d ∧ ∃Xc
= d′.

These proved that ∃X〈B̂′,∃Y d′〉(c ∧ ∃Xd′) = ∃X〈B′, d′〉(c ∧ ∃Xd′).

Finally, equation 1 holds since ∃Y (c∧∃Xd′) = ∃Y (c∧∃X(∃Y d′∧∃Xc)) =
∃Y (c ∧ ∃X∃Y d′ ∧ ∃Xc) = ∃Y (c ∧ ∃X∃Y d′) = ∃Y c ∧ ∃X∃Y d′.

Consider the case where X is equal to Y . Recall that 〈B, d ∧ ∃Xc〉
−→〈B′, d′〉 and B̂(d∧∃Xc) = B(d∧∃Xc). By Theorem 2.1, there exists
B̂′ such that 〈B̂, d ∧ ∃Xc〉−→〈B̂′, d′〉 and B̂′d′ = B′d′. Hence we have
〈∃X〈B̂, d〉, ∃Xc〉−→〈∃X〈B̂′, d′〉,∃Xc ∧ ∃Xd′〉. Note that ∃Xc∧ ∃Xd′ =
∃X(c ∧ ∃Xd′).

• Case 〈B1 ‖B2, c〉−→〈B′
1 ‖B2, c

′〉.
By definition of external input, we have Â = B̂1 ‖ B̂2 and B̂1c = B1c
and B̂2c = B2c. We also have Y 6∈ Vars(B̂1) ∪ Vars(B̂2). By in-
duction hypothesis for 〈B1, c〉−→〈B′

1, c
′〉, there exists B̂′

1 such that
〈B̂1,∃Y c〉−→〈B̂′

1,∃Y c′〉 and B̂′
1c
′ = B′

1c
′ and Y 6∈ Vars(B̂′

1). Hence,
we have 〈B̂1 ‖ B̂2,∃Y c〉−→〈B̂′

1 ‖ B̂2,∃Y c′〉.
Moreover, we have (B̂′

1 ‖ B̂2)c
′ = B̂′

1c
′ ‖ B̂2c

′ = B′
1c
′ ‖B2c

′ = (B′
1 ‖B2)c

′.

Finally, we have Y 6∈ Vars(B̂′
1) ∪ Vars(B̂2) = Vars(B̂′

1 ‖ B̂2).

The case of 〈B1 ‖B2, c〉−→〈B1 ‖B′
2, c

′〉 is similar. ut

This proposition states that an agent asks and tells through only those
variables contained in itself. This together with the condition Vars(Prog(p)) ⊆
{α} for predicate p means that clauses have no access to global variables.

Proposition 3.6 Let 〈G0, b0〉 be a process and Y 6∈ Vars(G0). For every
step-by-step interaction sequence

〈Gi−1, ai〉−→〈Gi, bi〉, i = 1, . . . , n
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of 〈G0, b0〉, there exists an interaction sequence

〈Ĝi−1,∃Y ai〉−→〈Ĝi,∃Y bi〉, i = 1, . . . , n

of 〈G0,∃Y b0〉 such that Ĝiai = Giai for i = 1, . . . , n where Ĝ0 = G0.
Moreover, if 〈Gn, bn〉−→∞ then one of such Ĝn satisfies 〈Ĝn,∃Y bn〉−→∞.

Proof. Corollary of Proposition 3.5. ut

Proposition 3.7 Let 〈A, c〉 be a process and Y 6∈ Vars(A). If 〈A, c〉−→∗ √,
then for every agent Â satisfying Âc = Ac we have 〈Â, ∃Y c〉−→∗ √.

Proof. By assumption, there exists an S ∈ Stop such that 〈A, c〉−→∗ 〈S, c〉.
By Proposition 3.5 there exists some Ŝ such that 〈Â,∃Y c〉−→∗ 〈Ŝ, ∃Y c〉 and
Ŝc = Sc. By definition of external input, it holds that Ŝ ∈ Stop. ut

Finally, we have the following theorem.

Theorem 3.1 〈true, b0〉〈a1, b1〉 . . . 〈an, bn〉m ∈ D[[〈G0, b0〉]] implies that
〈true, ∃Y b0〉〈∃Y a1, ∃Y b1〉 . . . 〈∃Y an,∃Y bn〉m ∈ D[[〈G0,∃Y b0〉]] if Y 6∈ Vars(G0).

Proof. By Propositions 3.6 and 3.7. ut
Intuitively, this theorem states that every agent performs asks or tells of

constraints on only those variables which occur syntactically in that agent.
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Chapter 4

On the Safety of Moving
Synchronization Points

This chapter shows a program transformation technique called the motion
of synchronization points, its implementation algorithm, and a proof of its
correctness. The algorithm is based on fixed-point abstract interpretation.
We will discuss in which sense the transformation is correct. In particular, we
prove that the transformation does not introduce deadlocks. In the discussion
of the correctness of the program transformation, we refer to the denotational
semantics introduced in Chapter 3.

4.1 Overview

This section introduces the motion of synchronization points and briefly ex-
plains how to prove its correctness in concurrent logic programming.

4.1.1 Moving Synchronization Points

In order to execute concurrent programs on sequential machines, control
transfer between processes is required. The time point when the control
transfers from one process to another is called a synchronization point. Trans-
ferring control to a process that is not ready for computation results in spawn-
ing child processes that all suspend without observable output, which can be
an overhead in the runtime system. This overhead can be eliminated by de-
laying the transfer of control until a sufficient amount of information needed
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by the process to produce some results becomes ready. This optimization is
called the motion of synchronization points.

Delaying computation too much, however, would introduce deadlocks to
the program. This chapter clarifies how to give a theoretical justification of
the safety of the motion.

In concurrent constraint programming, moving synchronization points
amounts to lifting up the ask operations. Since the asks should be lifted up
beyond predicate calls to whichever appropriate subagents within the whole
program, the formalization of a program transformation algorithm for the full
syntax of concurrent constraint programming could be troublesome. So, we
restrict ourselves to concurrent logic programming since the transformation
takes place only at the guard parts of program clauses. In concurrent logic
programming, the transformation is expressed as the strengthening of the
constraint in the guards.

4.1.2 Example of Moving Synchronization Points

The following program shows a definition of the predicate sigma. In this
program, the call sigma(K,N,Tmp,S) computes the value of Tmp+

∑N−1
i=K 1/i2

and binds it to S. Here, $:= is the built-in predicate that computes the right-
hand side expression and binds the result as a floating point value to the
left-hand side variable. It suspends until all the variables in the right-hand
side are bound to non-variable terms.

sigma(K,N,Tmp,S) :- K=<N | S $:= Tmp.
sigma(K,N,Tmp,S) :- K >N |

FK $:= float(K),
K1 := K+1,
Tmp1 $:= 1.0/(FK*FK)+Tmp,
sigma(K1,N,Tmp1,S).

Our optimization will translate this program into the following one:

sigma(K,N,Tmp,S) :- K=<N | S $:= Tmp.
sigma(K,N,Tmp,S) :- K >N, wait(Tmp) |

FK $:= float(K),
K1 := K+1,
Tmp1 $:= 1.0/(FK*FK)+Tmp,
sigma(K1,N,Tmp1,S).

42



Recall that the constraint wait(Tmp) specifies that this rule waits until
Tmp is bound to a non-variable term. This transformation will reduce the
number of suspended predicate calls to $:= that introduce overheads.

Although these two predicate definitions seem to have the same response
for any call, it is not easy to give a precise account of this fact. In this
chapter, we prove that the behavior of these programs coincide in terms of
the denotational semantics defined in Chapter 3.

4.1.3 Basic Strategy

If a process can perform some output, there is a context that proceeds de-
pending on that output. For instance, in the above sigma example, S can be
fed to another predicate call that depends on S. Hence, we cannot in general
defer the execution of sigma when it can bind something to S.

In concurrent constraint programming, output that can be observed by
a process is limited to tells to the constraint store. On the other hand, a
runtime system of concurrent constraint programming can observe from the
program more than just constraint tells. Consider the following program.

countdown(K) :- K=<0 | true.
countdown(K) :- K >0 | K1 := K-1, countdown(K1).

Any call to countdown does not perform any constraint tells, but deferring
its reduction forever will introduce deadlock. In order to discuss this issue
precisely, we need a denotational semantics that takes termination into ac-
count. This issue was not considered in the work of Demand Transformation
Analysis [16] where only constraint tells were formulated.

In this chapter, we discuss how our program transformation is correct in
terms of the observable output of processes. Recall that we have defined the
observable output of a process to include termination, failure, and divergence
in addition to constraint tells.

4.2 Abstract Store Space

In order to formalize our abstract interpretation algorithm, we introduce a
unary abstraction operator on constraints that computes partial information.
We also introduce a few additional assumptions to the store space Con so
that the abstraction is correct.

43



4.2.1 Abstraction Operator

First of all, we must have an operator for making abstraction of the constraint
store. At the same time, we want to specify the class of possible constraints
that can be added to the guards of clauses in the motion of synchronization
points. Hence, we assume an operator on constraints, written by β, that
computes certain partial information of a constraint given as its argument
which can also serve as the abstraction of the original constraint.

Assumption 4.1 There exists a mapping β : Con → Con enjoying the
following:

(B1) β(c) ≤ c

(B2) c ≤ d implies β(c) ≤ β(d)

(B3) β(∃X(c)) = ∃X(β(c))

(B4) β(c ∧ d) = β(β(∃var(d)\var(c)(c ∧ d)) ∧ d) if d 6= false

(B5) c ∧ β(d) = false implies c = false if β(d) 6= false

ut
(B5) states that any β(d) 6= false does not introduce inconsistency.
Given such a mapping β, the set {β(c) | c ∈ Con} forms an abstract store

space where for each c ∈ Con, β(c) represents some information that in-
creases according to the program execution.

Proposition 4.1 Assume c ∧ d 6= false and var(c) ∩ var(d) = {}. We have
β(c ∧ d) = β(c) ∧ β(d).

Proof.

β(c ∧ d) = β(β(∃var(d)\var(c)(c ∧ d)) ∧ d)

= β(β(∃var(d)(∃var(d)(c) ∧ d)) ∧ d)

= β(∃var(d)(β(c)) ∧ d)

= β(β(c) ∧ β(d))

≤ β(c) ∧ β(d) ≤ β(c ∧ d).

ut
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4.2.2 Instantiation Information

Our program transformation amounts to adding to the guards of clauses
constraints of the form wait(X) defined in Section 2.2.3. Hence, we will
restrict β as follows:

Definition 4.1 Let c be a constraint. A variable X is said to be instantiated
in c if and only if wait(X) ≤ c. We denote by bound(c) the set of all the
variables instantiated in c and call the set the instantiation information of c:

bound(c)
def
= {X ∈ Var | wait(X) ≤ c} .

We will then let
β(c) =

∧

X∈bound(c)

wait(X).

ut
Note that this definition satisfies the conditions in Assumption 4.1.
We have bound(c) ⊆ bound(d) if and only if β(c) ≤ β(d).
We also have bound(c) = var(β(c)).

Example.

bound(A = B) = var(true) = {}
bound(A = f(B)) = var(wait(A)) = {A}

bound(A = f(B)∧ C = D∧ E = 1) = var(wait(A) ∧ wait(E)) = {A, E} .

ut

4.2.3 Additional Assumptions on Store

Our plan is to make abstraction of a given constraint c with var(c) and to
compute the instantiation information of c from var(c). To make abstraction
of a tell work correctly, we need the following assumption:

Assumption 4.2 c ∧ d 6= false implies var(c ∧ d) = var(c) ∪ var(d). ut
As mentioned in Section 2.2.4, this assumption makes var monotonic. More-
over, we have bound(c) ⊆ var(c) because of β(c) ≤ c.

Finally, we will employ the following assumption in order to ensure that
the existence of constraint output can be known only from the constrained
variable set, i.e. var(c):

Assumption 4.3 var(c) = {} implies c = true. ut
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4.3 Required Variable Sets

Having defined bound , we can now describe the notion of a required variable
set of a goal G. It is the set of all the variables required to be instantiated
in the input to G in order that G performs some observable output.

Definition 4.2 (Required Variable Sets) For every goal G of concurrent
logic programming, we define the required variable set of G, written as req(G),
as follows:

req(G) =
⋂ {V ⊆ Var | says(G, V ) 6= {}}

says(G, V )
= {X ∈ var(c′) | bound(c) ⊆ V

and 〈T [[G]], c〉−→∗ 〈A′, c′〉 and c 6= c′ 6= false}
∪ {end | bound(c) ⊆ V and 〈T [[G]], c〉−→∗ 〈S, c′〉 and S ∈ Stop}
∪ {fail | bound(c) ⊆ V and 〈T [[G]], c〉−→∗ 〈A′, false〉}
∪ {div | bound(c) ⊆ V and 〈T [[G]], c〉−→∞} .

ut
We have a few words to these formulas. The first term in says(G, V ), a

set of variables, represents the set union of the var(c′)’s for all c′ satisfying
the condition part. The last term in says(G, V ) becomes {div} if there
exists some c such that bound(c) ⊆ V and 〈T [[G]], c〉−→∞, and otherwise
it becomes the empty set. We have that V ⊆ W implies says(G, V ) ⊆
says(G,W ).

Let c ∈ Con. If req(G) contains some variable not instantiated in c, then
the process 〈T [[G]], c〉 never performs any observable output.

The set says(G, V ) expresses the set of variables through which the pro-
cess 〈T [[G]], c〉 may perform observable output where bound(c) ⊆ V . The
symbol end expresses the possibility of termination. Similarly, the symbols
fail and div represent the possibilities of failure and divergence, respectively.
These three symbols can be handled in principle in the same way as ordinary
variables.

If says(G, V ) is the empty set, then we can safely defer the execution of
the process 〈T [[G]], c〉 where bound(c) ⊆ V since it has no possibilities of
performing observable output.

A fixed-point computation algorithm will be presented later that com-
putes a set a(G, V ) satisfying says(G, V ) 6= {} ⇒ a(G, V ) 6= {}. As we will
see, we can obtain a subset of req(G) from a(G, V ).
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4.4 Formalization of Moving Synchronization

Points

Assume that we have computed a subset of req(G) for each G. We formalize
the motion of synchronization points and prove that the motion does not
alter the denotational semantics of the program agents.

4.4.1 Program Transformation

Given a concurrent logic program P , we introduce the transformed program,
denoted by P$, as follows. For each

( p(s) :- e |B ) ∈ P

we postulate
( p′(s) :- β(q) ∧ e |B$ ) ∈ P$

where q ∈ Con and bound(β(q)) ⊆ req(p(s))∩var(s) and p′ is a new predicate
symbol unique to p.

For each agent A in concurrent logic programming or concurrent con-
straint programming, we define A$ as the agent A with every predicate call
p(X) replaced with p′(X).

As long as the above condition is met, we can choose arbitrary q. For
instance, we may want to let β(q) = true for those clauses to which we do
not perform our program transformation.

4.4.2 Safety of Transformation

In this subsection, we prove that moving synchronization points by adding
β(q) as explained above does not alter the denotational semantics.

The following proposition states that any reduction in a transformed pro-
gram has a corresponding reduction in the original program.

Proposition 4.2 In the program P ∪ P$, the following holds:

〈A$, c〉−→〈A′$, c′〉 implies 〈A, c〉−→〈A′, c′〉.
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Proof. By structural induction on −→ . The only nontrivial case is when
A is of the form

∑n
i=1 ask(fi) → Ai. We have two cases.

In the case where

〈∑n
i=1 ask(∃α((α = si) ∧ ei ∧ β(qi))) → Ai$, c〉−→〈Aj$, c〉,

we have 〈A, c〉−→〈Aj, c〉 since ∃α((α = si)∧ej) ≤ ∃α((α = si)∧ej∧β(qj)) ≤ c.
In the other case, we have

〈∑n
i=1 ask(∃α((α = si) ∧ ei ∧ β(qi))) → Ai$, c〉

−→ 〈∑n
i=1 ask(∃α((α = si) ∧ ei ∧ β(qi))) → Ai$, c〉.

and ∀i(∃α((α = si)∧ei∧β(qi))∧c = false). To prove 〈A, c〉−→〈A, c〉, we must
show that ∃α((α = si)∧ei∧β(qi))∧c = false implies ∃α((α = si)∧ei)∧c = false
for all i, and this is done using the property (B5) of β. ut

The following is the main theorem in this chapter. It states that any
computation in a program can be simulated in the transformed program.

Theorem 4.1 For the program P ∪ P$, we have 〈T [[G]], c〉 ≤ 〈T [[G]]$, c〉.

Proof. The key point of the proof is to show that whenever an ask agent
performs some observable output, the corresponding guard strengthening
β(q) is always satisfied after a finite number of reductions.

We will prove that 〈A, c〉 ≤ 〈A$, c〉 for those agents A such that every ask
agent occurring within A is declared as Prog(p) with some predicate symbol
p. These agents form a class of agents that is preserved under reductions
because Prog(p) itself is in this class. Moreover, every T [[G]] is also contained
in this class. Hence, it is sufficient to consider only this class of agents.

To prove the theorem, we first construct for every interaction sequence

x : 〈Gi−1, ai〉−→〈Gi, bi〉, i = 1, . . . , n

of 〈G0, b0〉, an interaction sequence

y : 〈G′
i−1, ai〉−→∗ 〈G′

i, bi〉, i = 1, . . . , n

of 〈G0$, b0〉.
This is done by mathematical induction on the length n for all G0’s at a

time, and then by structural induction on each G0.
Let n ≥ 1. We proceed depending on the top-level construct of G0:
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• Case tell(e).

We have 〈tell(e)$, b0〉 = 〈tell(e), b0〉−→〈stop, e ∧ b0〉.
• Case ∃X〈H0, c0〉.

The interaction sequence x is of the form

〈∃X〈Hi−1, ci−1〉, ai〉−→〈∃X〈Hi, ci〉, bi〉, i = 1, . . . , n

where
〈Hi−1, ci−1 ∧ ∃Xai〉−→〈Hi, ci〉, i = 1, . . . , n

and
bi = ai ∧ ∃Xci, i = 1, . . . , n.

By induction hypothesis there exists an interaction sequence

〈H ′
i−1, ci−1 ∧ ∃Xai〉−→∗ 〈H ′

i, ci〉, i = 1, . . . , n

of 〈H0$, c0〉. This leads to

〈∃X〈H ′
i−1, ci−1〉, ai〉

−→∗〈∃X〈H ′
i, ci〉, ai ∧ ∃Xci〉

= 〈∃X〈H ′
i, ci〉, bi〉, i = 1, . . . , n

and this is an interaction sequence of 〈∃X〈H0, c0〉, b0〉$.

• Case p(X).

Since p(X) has exactly one outgoing reduction of the form

〈p(X), a1〉−→〈∃α〈Prog(p), α =X〉, a1〉,
we have

〈p′(X), a1〉−→〈∃α〈Prog(p′), α =X〉, a1〉.
Since Prog(p′) = Prog(p)$, we can make use of induction hypothesis
on length.

• Case
∑n

i=1 ask(fi) → Ai.

We determine k as follows:

– If 〈Gn, bn〉−→∞, there exists the smallest positive integer k sat-
isfying 〈Gk, bk〉−→∞. We call this k by k1 if any.
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– If 〈Gn, bn〉−→∗ √, there exists the smallest positive integer k sat-
isfying 〈Gk, bk〉−→∗ √. We call this k by k2 if any.

– There may exist the smallest positive integer k satisfying ak 6= bk.
We call this k by k3 if any.

If none of the above applies, for every i = 1, . . . , n it holds that ai = bi.
In this case, letting G′

i = G0$ for i = 1, . . . , n is sufficient. (k is not set
but the proof is done). Otherwise, at least one of the above applies.
So, let k be the smallest of k1, k2, and k3.

Let V = var(ak) \ {α}.
The first reduction in x is of the form

〈∑n
i=1 ask(fi) → Ai, a1〉−→〈Aj, a1〉.

By assumption, there must be a predicate symbol p such that

Prog(p) = G0 =
∑n

i=1 ask(∃α((α = si) ∧ ei)) → Ai, and
Prog(p′) = G′

0 =
∑n

i=1 ask(∃α((α = si) ∧ ei ∧ β(qi))) → Ai$.

Since ∃α((α = sj)∧ ej) ≤ ak, we have ∃α((α = sj)∧ ej) ≤ ∃V ak. We also
have that ∃Vars(sj)(α = sj) ≤ ∃V ak.

By Proposition 3.6, there exists a step-by-step interaction sequence

〈Ĝi−1, ∃V ai〉−→〈Ĝi,∃V bi〉, i = 1, . . . , n

such that Ĝiai = Giai for i = 1, . . . , n where Ĝ0 = G0. We also have
that 〈Ĝn,∃V bn〉−→∞ if 〈Gn, bn〉−→∞.

Let
g = ∃α(α = sj ∧ ∃V ak),
c = g ∧ (G = sj) = ∃α(G = sj ∧ α = sj ∧ ∃V ak), and
c′ = c ∧ ∃α(α =G ∧ c ∧ ∃V bk) = ∃α(α =G ∧ c ∧ ∃V bk)

where G is a variable not in var(ak) ∪ {α} ∪ Vars(sj).

By Theorem 2.1, there exists an agent Ek satisfying

〈G0, (α =G) ∧ c〉−→∗ 〈Ek, α =G ∧ c ∧ ∃V bk〉
and Ek(α =G ∧ c ∧ ∃V bk) = Gk(α =G ∧ c ∧ ∃V bk).
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Therefore, we have

〈∃α〈G0, α =G ∧ c〉, c〉
−→∗ 〈∃α〈Ek, α =G ∧ c ∧ ∃V bk〉, c′〉

and
〈T [[p(sj)]], g〉

= 〈∃G〈p(G), G = sj〉, g〉
−→ 〈∃G〈∃α〈G0, α =G〉, c〉, g〉
−→∗ 〈∃G〈∃α〈Ek, α =G ∧ c ∧ ∃V bk〉, c′〉, g ∧ ∃Gc′〉.

Recall that we have at least one of the following:

1. 〈Gk, bk〉−→∞ holds.

2. 〈Gk, bk〉−→∗ √ holds.

3. ak 6= bk holds.

We will prove says(p(sj), bound(g)) 6= {} for each of these cases.

– Case 1.

Since 〈Gk,∃V bk〉−→∞, we have 〈Ek, α =G ∧ c ∧ ∃V bk〉−→∞ and
therefore

〈∃G〈∃α〈Ek, α =G ∧ c ∧ ∃V bk〉, c′〉, g ∧ ∃Gc′〉−→∞.

And hence we have div ∈ says(p(sj), bound(g)).

– Case 2.

By Proposition 3.7 we have that 〈Gk, ∃V bk〉−→
√
. Hence, we have

〈Ek, α =G ∧ c ∧ ∃V bk〉−→∗ √ and therefore

〈∃G〈∃α〈Ek, α =G ∧ c ∧ ∃V bk〉, c′〉, g ∧ ∃Gc′〉−→∗ √.

And hence we have end ∈ says(p(sj), bound(g)).

– Case 3.

By definition of Prog , we have that Vars(G0) ⊆ {α}. By Propo-
sition 3.2, there exists some f such that var(f) ⊆ Vars(G0) and
bk = f∧ak. Thus, we have ∃V f = f and therefore ∃V bk = f∧∃V ak.
If f ≤ ∃V ak then we have f ≤ ∃V ak ≤ ak and this is not consistent
with ak 6= bk. Therefore, we have that ∃V ak 6= ∃V bk.
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Let us assume, hypothetically, that ∃Gc′ ≤ g. Since ∃Gc′ =
∃α(α = sj ∧ g ∧ ∃V bk) ≥ ∃αg = g, we have ∃Gc′ = g. This means,
however, that ∃V ak = ∃V bk since

∃Vars(sj)(α = sj ∧ g)
= ∃Vars(sj)(α = sj ∧ ∃α(α = sj ∧ ∃V ak))
= ∃Vars(sj)(α = sj ∧ ∃G(α =G ∧ ∃α(α =G ∧ ∃V ak)))
= ∃Vars(sj)(α = sj ∧ ∃V ak)
= ∃Vars(sj)(α = sj) ∧ ∃V ak

= ∃V ak

and

∃Vars(sj)(α = sj ∧ ∃Gc′)
= ∃Vars(sj)(α = sj ∧ ∃G∃α(α =G ∧ g ∧G = sj ∧ ∃V bk))
= ∃Vars(sj)∃G(α = sj ∧ ∃α(α =G ∧ g ∧G = sj ∧ ∃V bk))
= ∃Vars(sj)∃G(α = sj ∧G = sj ∧ ∃α(α =G ∧ g ∧ ∃V bk))
= ∃Vars(sj)∃G(α = sj ∧ α =G ∧ ∃α(α =G ∧ g ∧ ∃V bk))
= ∃Vars(sj)(α = sj ∧ ∃G(α =G ∧ ∃α(α =G ∧ g ∧ ∃V bk)))
= ∃Vars(sj)(α = sj ∧ g ∧ ∃V bk)
= ∃Vars(sj)(α = sj ∧ g) ∧ ∃V bk

= ∃V ak ∧ ∃V bk

= ∃V bk.

This contradicts the assumption.

Thus, g∧∃Gc′ 6= g. Therefore, we have says(p(sj), bound(g)) 6= {}.

Since says(p(sj), bound(g)) 6= {} implies req(p(sj)) ⊆ bound(g), we
have bound(β(qj)) ⊆ req(p(sj)) ⊆ bound(g) and thus we have β(qj) ≤
β(g) ≤ g. Since

∃α(α = sj ∧ ej) ≤ ∃V ak

∃α(α = sj ∧ ∃α(α = sj ∧ ej)) ≤ ∃α(α = sj ∧ ∃V ak)
∃G(G = sj ∧ ∃α(α =G ∧ ∃α(α =G ∧ ej))) ≤ g
∃G(G = sj ∧ ej) ≤ g
ej ≤ g,

we have ej ∧ β(qj) ≤ g and therefore

∃α(α = sj ∧ ej ∧ β(qj)) ≤ ∃α(α = sj ∧ g) = ∃V ak ≤ ak.
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Thus, we have that
〈G′

0, ak〉−→〈G1$, ak〉.
Let (di, d

′
i) = (ak, ak) for i = 2, . . . , k − 1 and (di, d

′
i) = (ai, bi) for

i = k, . . . , n. By Theorem 2.1 applied to 〈Gi−1, ai〉−→〈Gi, bi〉, i =
2, . . . , n, there exists 〈Hi−1, di〉−→〈Hi, d

′
i〉, i = 2, . . . , n such that

Hid
′
i = Gid

′
i for i = 2, . . . , n where H1 = G1. By induction hypoth-

esis on length, there exists 〈H ′
i−1, di〉−→∗ 〈H ′

i, d
′
i〉, i = 2, . . . , n where

H ′
1 = H1$. This means we have 〈G′

0, ai〉−→∗ 〈G′
0, bi〉, i = 1, . . . , k − 1

and 〈G′
0, ak〉−→∗ 〈H ′

k, bk〉 and 〈H ′
i−1, ai〉−→∗ 〈H ′

i, bi〉, i = k + 1, . . . , n.

• Case D0 ‖E0.

By definition of −→ , we have

〈Di−1 ‖Ei−1, ai〉−→〈Di ‖Ei, bi〉, i = 1, . . . , n

where

〈Di−1, ai〉−→〈Di, bi〉 and Ei−1 = Ei, i ∈ L, and
〈Ei−1, ai〉−→〈Ei, bi〉 and Di−1 = Di, i ∈ {1, . . . , n} \ L.

By induction hypothesis on G0, there exist two interaction sequences:

〈D′
i−1, ai〉−→∗ 〈D′

i, bi〉, i ∈ L,
〈E ′

i−1, ai〉−→∗ 〈E ′
i, bi〉, i ∈ {1, . . . , n} \ L

where D′
0 ‖E ′

0 = G0$ and

D′
i−1 = D′

i, i ∈ {1, . . . , n} \ L,
E ′

i−1 = E ′
i, i ∈ L.

Therefore, we have

〈D′
i−1 ‖E ′

i−1, ai〉−→∗ 〈D′
i ‖E ′

i, bi〉, i = 1, . . . , n.

Now, we have constructed for each 〈Gi−1, ai〉−→∗ 〈Gi, bi〉, i = 1, . . . , n,
〈G′

i−1, ai〉−→∗ 〈G′
i, bi〉, i = 1, . . . , n. Notice that the above proof uniquely

determines for each interaction sequence

〈Gi−1, ai〉−→〈Gi, bi〉, i = 1, . . . , m
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with m ≤ n, the sequence

〈G′
i−1, ai〉−→∗ 〈G′

i, bi〉, i = 1, . . . , m.

We can easily see that G′
i can be represented as a modification of Gi$

where agents in Gi$ may be replaced with asks.
Next, we prove that 〈Gn, bn〉−→∗ √ implies 〈G′

n, bn〉−→∗ √. To do this,
we assume Gn ∈ Stop and prove G′

n ∈ Stop. Note that G′
n cannot con-

tain p(X) or tell(e) because, if so, they must also be contained in Gn,
which is not the case. Assume, hypothetically, that G′

n contains an ask
agent A$. Then, there exists some k such that the ask agent A is re-
duced within 〈Gk−1, ak〉−→〈Gk, bk〉 because otherwise Gn would contain the
ask A. By the way, there exists the smallest integer m such that within
〈Gm−1, am〉−→〈Gm, bm〉 the descendant of A performs some observable out-
put, which may or may not be termination. Hence, according to the construc-
tion of G′

m, we have had the ask A$ reduced within 〈G′
m−1, am〉−→∗ 〈G′

m, bm〉,
which contradicts to the hypothesis. Thus, it holds that G′

n ∈ Stop.
Finally, we prove that 〈Gn, bn〉−→∞ implies 〈G′

n, bn〉−→∞. We have

〈Gi−1, ai〉−→〈Gi, bi〉, i ≥ 1 (4.1)

where ai = bi−1 for all i > n. Notice that we have constructed this:

〈G′
i−1, ai〉−→∗ 〈G′

i, bi〉, i ≥ 1.

Consider a minimal subagent A of Gn that performs infinite computation
in (4.1) without receiving external input to A after i = n. If this compu-
tation produces an infinite number of different local store values at A, by
the construction of G′

i’s we have that 〈G′
n, bn〉−→∞. Otherwise, there exists

some k such that Gk−1 contains an ask B that performs infinite computation
in (4.1) without receiving external input to B, without producing any con-
straints, and B is reduced within 〈Gk−1, ak〉−→〈Gk, bk〉. By construction of
G′

i’s, we have that B$ is reduced within 〈G′
k−1, ak〉−→〈G′

k, bk〉. This means
that we have 〈G′

n, bn〉−→∞. ut

Finally, we have the following theorem which states the correctness of our
program transformation.

Theorem 4.2 For the program P ∪ P$, D[[〈T [[G]], c〉]] = D[[〈T [[G]]$, c〉]]
holds.
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Proof. By Proposition 4.2 and Theorem 4.1. ut
As a corollary, replacing all p(t)’s by p′(t)’s at a time does not alter the

denotation of any process.

4.5 Practical Algorithm

4.5.1 The Algorithm

In the previous section, we have defined req taking divergence and failure
into account. However, it is not advisable to compute the possibility of
failure or divergence by means of abstract interpretation since abstraction
loses information needed for the precise analysis of failure or divergence. On
the other hand, most programs we want to perform optimizing compilation
do not exhibit failure or divergence. Therefore, we introduce the following
definition, req ′, disregarding the possibility of divergence and failure:

req ′(G) =
⋂ {V ⊆ Var | says ′(G, V ) 6= {}}

says ′(G, V )
= {X ∈ var(c′) | bound(c) ⊆ V

and 〈T [[G]], c〉−→∗ 〈A′, c′〉 and c 6= c′ 6= false}
∪ {end | bound(c) ⊆ V and 〈T [[G]], c〉−→∗ 〈S, c′〉 and S ∈ Stop} .

For every G and V , it is the case that says(G, V ) ⊇ says ′(G, V ), and
therefore req(G) ⊆ req ′(G). Note that req ′(G) = req(G) holds when the
process 〈T [[G]], c〉 (where c 6= false) neither diverges nor fails since in this
case the last two terms in the definition of says becomes empty.

It is easy to compute a superset of says ′(G, V ) by fixed-point computa-
tion. The computation is done by the abstract interpretation which takes for
each c ∈ Con a finite set var(c) ⊆ Var as its abstract store.

We will give a intuitive view of the algorithm. The algorithm in the form
of formulas will be given later.

For every clause ( p(s) :- e |B ) ∈ P and every variable set V ⊆ var(s),
we compute a set a(p(s), V ) satisfying says ′(p(s), V ) 6= {} ⇒ a(p(s), V ) 6=
{} as the least fixed point of the abstract store. The initial abstract store for
a(p(s), V ) is the empty set. The k-th iteration of computing a(p(s), V ) gen-
erates those elements which are contained in says ′(p(s), V ) and correspond
to reduction sequences whose predicate calls are limited to the depth k.
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Abstract computation for parallel composition is performed by local fixed-
point computation using a(p(s), V ) computed so far. The computation of
a(p(s), V ) can be done lazily to avoid irrelevant computation.

This fixed-point computation produces a subset of req ′(G).

4.5.2 Reforming a Process

The fixed-point method explained above preserves the denotational semantics
of a process only if the process does not either fail or diverge. In the following,
we will explain what is guaranteed if the process may fail or diverge.

Recall the definition of traces in Section 3.5.

Definition 4.3 We call a trace that ends with 〈a, false〉 · ⊥ a failed trace.
We say that 〈A, c〉 is reformed into 〈A′, c〉 if and only if:

• every trace in D[[〈A′, c〉]] that is failed or divergent is in D[[〈A, c〉]], and

• every trace in D[[〈A, c〉]] not failed or divergent is in D[[〈A′, c〉]]. ut

It can be proved that if we use req ′(p(s)) in place of req(p(s)) in the
construction of P$, we obtain a reformed process. This means that the
semantics of processes is preserved if the processes neither diverge nor fail,
and otherwise the processes are reformed in the sense that while divergence
and failure may be removed, other normal computation is preserved.

4.6 Fixed-Point Algorithm

In this section, we will detail the fixed-point computation explained in Section
4.5.1.

4.6.1 Variable Translation

In order to make abstraction of parameter passing in a predicate call, we
introduce a special notation which we call variable translation, and then
define two operations on sets of variables, using this notation. The two
operations defined are input variable translation, which expresses parameter
passing from caller to callee, and output variable translation, expressing that
from callee to caller.
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For terms s and t, we call the notation {t 7→ s} the variable translation
from t to s. We shall typically use σ to denote some variable translation.
The intention is that we use {t 7→ s} for expressing the parameter passing
mechanism that takes place when a predicate call p(t) is matched with a
clause head p(s) for some predicate symbol p.

In order to explain the use of a variable translation {t 7→ s}, we adopt
the following syntactic convention. For any subterm u of s, we shall write u′

to mean the term u with every variable X occurring in u replaced with its
corresponding variable X ′ that is unique to X and does not occur in var(t).

Notice that (t = s′) 6= false means that the call p(t) can match with the
clause head p(s). In writing {t 7→ s}, we shall assume that (t = s′) 6= false.
Now, we can decompose the equation t = s′ into a conjunction of equations
by iteratively replacing f(t1, . . . , tn) = f(s′1, . . . , s

′
n) with t1 = s′1 ∧ . . . ∧ tn = s′n.

Let
X1 = s′1 ∧ . . . ∧Xm = s′m ∧ t1 =Y ′

1 ∧ . . . ∧ tn =Y ′
n (4.2)

be a conjunction obtained by fully decomposing t = s′ and then by reordering
the conjuncts arbitrarily so that Xi ∈ Var and tj 6∈ Var for all i and j. We
have that Xi ∈ var(t) and Yj ∈ var(s).

Let U be the set of all the variables that occur more than once in the
left-hand side of the conjunction (4.2). We have U ⊆ var(t). Since these
variables impose constraints to some of the variables in the clause head, we
need to consider them in order to have correct abstraction of the execution.

Here, we introduce two operations for a given σ = {t 7→ s} together with
the conjunction (4.2) and the set U :

Definition 4.4 For V ⊆ var(t), we define the input variable translation of
V by σ, written as V σ, by

V σ
def
= {Y1, . . . , Yn} ∪

⋃

Xi∈U∪V

var(si).

For W ⊆ var(s), we define the output variable translation of W by σ,
written as Wσ−1, by

Wσ−1 def
= {Xi | var(si) ∩W 6= {}} ∪ ⋃

Yj∈W

var(tj).

ut
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As we have said, σ = {t 7→ s} is used for expressing parameter passing in
a call p(t) matched with a clause head p(s) for some p.

V σ contains all the variables in var(s) that can be constrained when V
contains all the variables constrained in the call. A variable Y in the clause
head p(s) has three possible sources of being constrained by the caller. The
first case is that Y is some Yj, in which case Y is instantiated with a non-
variable term tj prior to the execution of the callee. The second case is that Y
occurs in some sj and the caller variable Xj to which sj is bound is specified
as possibly constrained, that is, Xj ∈ V . In this case, Y may be constrained
since Y is a subterm of sj that is constrained. The third case is that Y occurs
in some sj and there exists some variable Z occurring in the right-hand side
of a conjunct the left-hand side of which contains the variable Xj, that is,
Xj ∈ U . In this case, Y may be constrained in terms of Z.

On the other hand, Wσ−1 contains all the variables in var(t) that can be
constrained when W contains all the variables constrained in the clause head.
A variable X in the call p(t) has two possible sources of being constrained
by the callee. The first case is that X is some Xi and its corresponding
head term si contains a variable Y specified as possibly constrained, that is,
Y ∈ W . The second case is that X occurs in some tj and the variable Yj to
which tj is bound is specified as possibly constrained, that is, Yj ∈ W .

Both of these variable translation are monotonic with respect to set in-
clusion.

Example. Let σ = {(A,B,f(g(B,C),1)) 7→ (h(X),Y,f(Z,W))}.
We can use this σ to make abstraction of parameter passing in a call

p(A,B,f(g(B,C),1)) matched with a clause head p(h(X),Y,f(Z,W)).
By decomposing the equation

(A,B,f(g(B,C),1)) = (h(X),Y,f(Z,W)),

we obtain the conjunction

A = h(X) ∧ B = Y ∧ g(B,C) = Z ∧ 1 = W.

Thus, we have the following:

{}σ = {Y, Z, W}
{R} σ−1 = {}
{Z}σ−1 = {B, C}
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• ak(s = t, V )
def
= var(s = t) ∪ {end}

• a0(p(t), V )
def
= {}

• ak+1(p(t), V )
def
= { X ∈ ak(B, V σ)σ−1 |

( p(s) :- e |B ) ∈ P
and σ = {(t, end) 7→ (s, end)}
and bound(∃α(α = t ∧ ∃Vars(s)(α = s))) ⊆ V
and bound(e) ⊆ V σ }

• ak(G1‖ . . . ‖Gn, V )
def
= fix λT. T ∪ ⊔n

i=1 ak(Gi, V ∪ T )
where for sets V and W we define that

V tW
def
=

{
V ∪W if end ∈ V ∩W
(V ∪W ) \ {end} if end 6∈ V ∩W

Figure 4.1: Iterative formulas for computing fixed points

The set U of the left-hand side variables in the conjunction that occur
more than once is {B}. Hence, the variables Y and Z, both occurring in the
right-hand sides of conjuncts containing B, are always constrained—we have
Z·1 = Y. This explains Y, Z ∈ {} σ. In addition, W is always constrained, which
explains W ∈ {} σ. Since R is none of X, Y, Z, W (i.e., R is a local variable of the
callee), any output at R cannot be observed from the caller. On the other
hand, output at Z can be observed through B or C. ut

The objective of having different forms of variable translation between
input and output is to make precise abstraction of the operational semantics
where a clause head works as a template and does not produce any con-
straints. Roughly speaking, output variable translation is smaller than input
variable translation. In fact, we have W{t 7→ s} −1 ⊆ W {s 7→ t}. Using
{s 7→ t} instead of {t 7→ s} −1 in the analysis would result in non-variable
terms occurring in a clause head considered as possibly producing some out-
put, which could lower the precision of the analysis.

4.6.2 Iterative Formulas

The iterative formulas for computing fixed points are shown in Figure 4.1.
We assume that end is treated as a special variable that does not occur
elsewhere.
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The set ak(G, V ) is an abstraction of the reduction

〈G, c〉−→∗ 〈G′, c′〉, bound(c) ⊆ V and c 6= c′ 6= false.

Precisely speaking, ak(G, V ) stands for the set of variables through which
observable output may be told in the execution where the depth of predicate
calls is limited to k. The set ak+1(p(t), V ) is nonempty if some process
performs observable output starting from the abstract store V σ, thereby
it abstracts the execution of a predicate call. The computation of parallel
composition is abstracted by local fixed-point computation that does not
keep track of the history of internal computation and iteratively feedbacks
the possible instantiation information to the components.

Since ak(G, V ) ⊆ ak+1(G, V ), we will eventually obtain the least solution
of the simultaneous equations on a(G, V )’s obtained from Figure 4.1 by drop-
ping subscripts k and k +1 in the formulas. One can prove that the solution
a(p(s), V ) satisfies that

says ′(p(s), V ) 6= {} ⇒ a(p(s), V ) 6= {} .

4.7 Example of Fixed-Point Computation

In this section, we apply the fixed-point computation explained in Section 4.6
to an example program and perform program transformation of the motion
of synchronization points.

Consider the following program.

c([],A) :- true | true.
c([tell(Ans)|S],A) :- true | Ans:=A, c(S,A).
c([add(N)|S],A) :- true | A1:=A+N, c(S,A1).

We shall write the i-th clause of the above program as (Gi :- true |Bi).
We assume that c ∈ Pred and that c expects as its argument certain terms
of a special functor representing pairs, encoding the virtual arity 2 of c.

The computation of ak(Bi, V ) is summarized in Figure 4.1.
As we can see, we can reach the least fixed point with k = 3 and then we

obtain the subsets of req ′(Gi) as follows:
req ′(G1) ⊇ ⋂

(a(B1,V )6={}) V ={}
req ′(G2) ⊇ ⋂

(a(B2,V )6={}) V ={A}
req ′(G3) ⊇ ⋂

(a(B3,V )\{A1}6={}) V ={N, S, A}
This says that we can transform the program as follows.
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Table 4.1: Fixed-point computation of a(Bi, V ).
(a) a1(Bi, V )

B V a1(B, V )

B1 {} , {A} {end}
B2 {} , {Ans} , {S} , {S, Ans} {}

{A} , {A, Ans} {Ans}
{S, A} , {S, Ans, A} {Ans, end}

B3 {} , {N} , {A} {}
{N, A} {A1}
{S} , {N, S} , {S, A} {}
{N, S, A} {A1, end}

(b) a2(Bi, V )

B V a2(B, V )

B1 {} , {A} {end}
B2 {} , {Ans} , {S} , {S, Ans} {}

{A} , {A, Ans} {Ans}
{S, A} , {S, Ans, A} {Ans, S, end}

B3 {} , {N} , {A} {}
{N, A} {A1}
{S} , {N, S} , {S, A} {}
{N, S, A} {S, A1, end}

(c) a3(Bi, V )

B V a3(B, V )

B1 {} , {A} {end}
B2 {} , {Ans} , {S} , {S, Ans} {}

{A} , {A, Ans} {Ans}
{S, A} , {S, Ans, A} {Ans, S, end}

B3 {} , {N} , {A} {}
{N, A} {A1}
{S} , {N, S} , {S, A} {}
{N, S, A} {S, A1, end}
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c([],A) :- true | true.
c([tell(Ans)|S],A) :- wait(A) | Ans:=A, c(S,A).
c([add(N)|S],A) :- wait(N),wait(S),wait(A)| A1:=A+N,c(S,A1).

Notice that four wait constraints are added to the guard, which suspends
until the top-level of its argument is determined.

4.8 Conclusion

We have given a method for computing a set of variables for which we can
move synchronization points by program transformation. The construction
of the abstract domain suitable for the analysis of this program transfor-
mation was presented. We have also shown the theoretical account for the
safety of the program transformation. The safety guaranteed here is that the
semantics of processes is preserved if the processes neither diverge nor fail,
and otherwise the processes are reformed in the sense that while divergence
and failure may be removed, other normal computation is preserved. The
denotational semantics used for formalizing the safety is based on interaction
sequences which in turn are based on the operational semantics.

4.8.1 Related Work

The denotational semantics of concurrent logic programs that is based on
the set of traces is originated from the paper [33] on program transformation
of GHC (Guarded Horn Clauses). GHC is a concurrent logic programming
language without atomic tells and is essentially the same as the concurrent
logic programming language defined in Chapter 2.

Related work on the motion of synchronization points in concurrent logic
or concurrent constraint programs includes Demand Transformation Anal-
ysis [16]. It defines an abstract domain that can represent recursive data
structures and introduces a fixed-point method that computes for each de-
mand for some specific output the required input needed for obtaining that
output. In their work, however, only functional behaviors of processes are
considered, that is, only the relationship between input constraints and out-
put constraints is formalized. It means that moving synchronization points
based on solely their method can introduce deadlocks to a program since their
denotational semantics does not take termination into account. Our work, on
the other hand, gives a denotational semantics that can handle termination
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and divergence and then discusses the safety of the motion of synchroniza-
tion points. It should also be noted that our work does not require that the
program is well moded, whereas their work requires mode information that
specifies whether each argument of a predicate is input or output.

4.8.2 Additional Remarks

We have implemented a prototype version of the program transformation
tool for KLIC programs. KLIC is a language system based on GHC. We
have written this prototype tool itself in KLIC. It turned out, however, that
exploiting sequentiality in the program was more important to achieve good
optimization effect than simply inserting wait constraints to the guard. To
address this issue in a way that is based on the program semantics, we will in-
troduce in the next chapter the framework of sequentiality analysis and code
derivation directed by the sequentiality analysis. Nonetheless, optimization
by program transformation, including the motion of synchronization points,
has the advantage of being independent of any particular implementation of
the language system and is suitable for theoretical study.
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Chapter 5

Sequentiality Analysis for
Concurrent Logic Programs

5.1 Introduction

5.1.1 Background

Fine-grained concurrent languages such as concurrent logic programming lan-
guages allow us to describe parallel computation in a natural fashion. In gen-
eral, a runtime system for these languages tends to suffer from the overhead of
context switching and dynamic data manipulation. However, there are cases
where these overheads can be removed. Some fragments of a program can be
executed more efficiently by compiling them into sequential code [14]. More-
over, compilation into sequential code enables us to perform various low-level
optimization techniques for reducing runtime overheads substantially.

As an example, consider the program in Figure 5.1 copied from Figure
2.2. Suppose we can infer that intlist and sum can be reduced alternately.
Then, an optimizing compiler can perform elimination of suspension checks
and suspension itself, tag elimination (or unboxing; see [25, 26]), and heap
usage reduction—local messages between calls need not always be allocated
in the heap.

In principle, such optimization requires dataflow analysis that decides
whether an agent can be executed without suspension under a given input
constraint. Previous work on such optimization includes dependence analysis
between goals [23], suspension analysis based on abstract interpretation [6],
and demand transformation analysis [16]. But they all suffer from nonde-
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stair(N,X0,X) :- true | intlist(1,N,S), sum(S,X0,X).

intlist(K0,N,S) :- K0>=N | S=[].

intlist(K0,N,S) :- K0< N | S=[K0|S1], K:=K0+1, intlist(K,N,S1).

sum([], X0,X) :- true | X=X0.

sum([E|S],X0,X) :- true | X1:=X0+E, sum(S,X1,X).

Figure 5.1: A concurrent logic program

terminism in the order of reductions and are not able to extract sufficient
sequentiality for achieving the optimization effect. For instance, consider the
predicate stair in our example. Since the goal stair(0,X0,X) tells X0 = X,
the predicate stair does not depend on its second argument, that is, stair
can tell something even if the second argument is not instantiated. We know,
however, that this tell can often be deferred until the second argument X0 is
instantiated. This is because realistic programs with a goal stair(N,X0,X)
would not ask the constraint X0 = X but simply waits for the instantiation of
X.

One may think that assuming the mode of usage of a predicate may
simplify things. Note, however, that well-modedness itself does not ensure
that the second argument is instantiated whenever stair is called. This
means that X0 = X can still be told with X0 uninstantiated.

Compiled code of stair not specialized for the case where the second
argument has received an integer value will incur the suspension overhead
and may well lose opportunities for tag elimination.

5.1.2 Our Framework

Our challenge is to formalize the sequentialization of concurrent programs,
and to apply the formalism to the construction of an optimizing compiler
whose correctness can be formally justified in terms of program semantics.
In this dissertation, we propose a framework for constructing an optimizing
compiler for concurrent languages that

1. extracts sequentiality by sequentiality analysis,

2. generates sequential intermediate code that is specialized for the ex-
tracted sequential usage, and
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3. performs various code optimization including tag elimination and update-
in-place.

Our sequentiality analysis is directed by the inference of interfaces of
agents. Roughly speaking, each interface of an agent tells us, given a class
of input constraints, what class of constraints the agent can tell without
suspension and as what agent the residual agent behaves.

In this dissertation, we will explain sequentiality analysis and interme-
diate code generation. The formalization and implementation of particular
optimization techniques toward the intermediate code is an important issue
but not the scope of this dissertation.

We have chosen concurrent logic languages to explain our framework, for
it features constraint-based communication, which enables us to formalize our
analysis in a concise way. However, a part of our framework can be applied to
the optimizing compilation of other fine-grained concurrent languages, such
as the pi-calculus, to specialize programs by sequentialization.

The rest of this chapter is organized as follows. Section 5.2 formalizes an
interface in terms of the operational semantics. Sections 5.3 and 5.4 explain
our framework of optimizing compilation that generates intermediate code
directed by the bottom-up analysis using interfaces. Section 5.5 mentions
the optimization of the generated intermediate code. Section 5.6 shows some
related work, and Section 5.7 concludes.

5.2 Interfaces

Given the operational semantics, we can express concisely the behavior of an
agent under a given class of input. In this section, we introduce the notion
called interfaces of an agent to formalize such properties. Using interfaces,
we can systematically analyze a specialized way of the execution of agents,
which in turn guarantees the correctness of the generated intermediate code.

As before, the formalization is done taking concurrent constraint pro-
gramming language as the target language. In this chapter, we prefer reduc-
ing the number of local variables occurring in an agent, by replacing local
variables with pathed variables of the form X ′ · i introduced in Section 2.2.2,
so that we can analyze constraints more precisely. For example, we shall
translate the program in Figure 5.1 into Figure 5.2.

In this chapter, we shall use the following abbreviations. Firstly, for
every predicate symbol p, we abbreviate Prog(p) to p. Next, for a variable G
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stair = ∃S( intlist(1,α·1,S) ‖ sum(S,α·2,α·3) )

intlist = ask(α·1 >=α·2) → tell(α·3 = [])
+ ask(α·1 <α·2) → ∃S∃K(

tell(α·3 = [α·1|S]) ‖ add(α·1,1,K) ‖ intlist(K,α·2,S) )

sum = ask(func(α·1,[],0)) → tell(α·3 =α·2)

+ ask(func(α·1,.,2)) →
∃X( add(α·2,α·1·1,X) ‖ sum(α·1·2,X,α·3) )

Figure 5.2: Program translated from Figure 5.1

not occurring in pathed terms t1, . . . , tm, we write ∃G〈p(G), G = (t1, . . . , tn)〉,
namely T [[p(t1, . . . , tn)]], as p(t1,. . .,tn). We call this term abbreviation.

We need some preliminaries before giving the formalization of interfaces.

5.2.1 Result of Local Choices

A compiler and a sequential runtime system of concurrent programs are al-
lowed to remove local choices statically. In concurrent logic programs, local
choices exist as nondeterministic choice of clauses and do not exist within the
syntax of a goal. On the other hand, in concurrent constraint programs, local
choices do exist within the syntax of an agent, specifically at ask subagents,
as nondeterministic branches. Hence, we can formalize static removal of local
choices as a binary relation on agents.

We will define a reflexive and transitive relation on agents to formalize
safe transformation of agents, including static removal of local choices as well
as semantics-preserving transformation.

Definition 5.1 (Local Choices) Given a program Prog , we say that the
agent A′ is a result of local choices of A if and only if O[[〈C[A], true〉]]Prog ⊇
O[[〈C[A′], true〉]]Prog holds for any context C[·]. In such a case, we will write
A º A′. ut

The relationship A º A′ states that the agent A can be transformed into
the agent A′. Note that this relationship formulates not only removal of
local choices but also every semantics-preserving transformation. Moreover,

68



the relationship ask(c) → A º ask(c) → A′ means that A can be trans-
formed into A′ under a store that entails c, since this relationship entails
that O[[〈C[A], c〉]]Prog ⊇ O[[〈C[A′], c〉]]Prog for any context C[·].

5.2.2 Upward-Closed Sets of Tellable Constraints

Next, we define the class of constraint sets used as input and output in the
formalization of interfaces; they are upward-closed sets of tellable constraints.
Recall that Con0 denotes the set of tellable constraints defined in Section
2.2.3.

First, we define ↑c
def
= {d ∈ Con0 | d ≥ c}. We say a set S of tellable

constraints is upward-closed if S =
⋃

c∈S ↑c holds.
Every constraint in ↑c entails c and is a possible state of the constraint

store defined by the operational semantics. Moreover, upward-closed sets
of tellable constraints are closed under set union and set intersection. The
intersection corresponds to conjunction in the following sense: ↑c ∩ ↑d =
↑(c ∧ d). Hence, we will use an upward-closed set of tellable constraints as

an abstract store in our interface analysis. We typically use ~c, ~d, . . . to denote
upward-closed sets of tellable constraints; note that ~ is not an operator.
Intuitively, ~c ⊇ ~d can be read as ~d implies ~c.

Next, let us introduce a type constructor, an operator that maps a variable
to an upward-closed set of tellable constraints. For instance, assuming that
int(X) is a constraint representing X is bound to an integer, we define

the type constructor i by i(X)
def
= ↑int(X). Likewise, we define n(X)

def
=

↑func(X,[],0) for nil, and c(X)
def
= ↑func(X,.,2) for cons.

We have int(X) in Con but not in Con0. This is a subtle point in the
formalization and can be ignored in practice. Having two sets simplifies the
treatment of guards.

Next, we extend the hiding operator ∃X to an upward-closed set of tellable
constraints in a natural way:

∃X(
⋃

i∈I ↑ci)
def
=

⋃
i∈I ↑∃Xci.

For example, we have ∃X(i(X·1) ∩ c(α·2)) = c(α·2).
Finally, for variables X and Y , we define the operator {X 7→ Y } on

upward-closed sets of tellable constraints as follows:

(
⋃

i∈I ↑ci) {X 7→ Y } def
=

⋃
i∈I ↑((∃Xci)[Y/X])
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Interface E ::= ~c → ∃X1 . . . ∃Xk
∑m

j=1(~cj À Ej)
| A
| E ∧ E
| E ‖E

where k ≥ 0, m ≥ 1, X is a variable, A an agent,
and ~c is an upward-closed set of tellable constraints.

Figure 5.3: Syntax of interfaces

where ∃X(c) = ∃X1 . . . ∃Xn(c) and {X1, . . . , Xn} is the set of variables syn-
tactically occurring in c and different from X. This operator can be used
to represent the variable renaming on a predicate call by letting X be the
actual parameter and Y the formal parameter α. For example, we have
(i(X·1) ∩ c(α·2) ∩ i(Y·3)) {X 7→ α} = i(α·1), stating that the first argument
of a call is bound to an integer.

5.2.3 Formalization of Interfaces

Having defined preliminaries, we now formalize the notion of interfaces. The
formalization consists of two definitions: the syntax of interface, and the
relation ≥ on interfaces.

The syntactic class of interfaces is defined in Figure 5.3. The following
is the intended meaning of an interface F when we think of the relationship
B ≥ F for a given agent B. The interface ~c → ~d À E represents the property
that, for any input store c ∈ ~c, (a) the agent can make the store evolve into

some d ∈ ~d without suspension and then behave as E or (b) the agent

can diverge. More generally, ~c → ∃X1 . . . ∃Xk
∑m

j=1(
~dj À Ej) represents

the property that for any input store c ∈ ~c there exists some j such that
after declaring new variables X1, . . . , Xk the agent can make the store evolve
into some d ∈ ~dj without suspension and then behave as Ej unless the agent
diverges. Here, the choice of j is performed nondeterministically by the agent
itself and cannot be controlled from outside. For any agent A, the interface
A, which we call an agent interface, represents the property that the agent
can behave as A. E1 ∧E2 represents the property that the agent can behave
as E1 and also as E2. In E1 ∧ E2, the choice between E1 and E2 can be
controlled from outside. E1 ‖E2 represents the property that the agent can
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≥ ⊆ Agents × Interface ::

(I1)
B ∈ Agents A º B

A ≥ B

(I2)
A ≥ E1 A ≥ E2

A ≥ E1 ∧ E2

(I3)
B1 ∈ Agents B2 ∈ Agents A º (B1 ‖B2) B1≥E1 B2≥E2

A ≥ E1 ‖E2

(I4)

∀c ∈ ~c ( 〈A, c〉−→∞ or

∃j ∈ {1, . . . ,m} ∃d ∈ ~dj ∃B ≥ Ej

(ask(c)→A º ask(c)→∃X1 . . . ∃Xk(tell(d) ‖B)) )

A ≥ ~c → ∃X1 . . . ∃Xk
∑m

j=1(
~dj À Ej)

≥ ⊆ (Interface \ Agents)× Interface ::

(I5)
∀A ∈ Agents (A ≥ E implies A ≥ E ′)

E ≥ E ′

Figure 5.4: Definition of the relation ≥ on interfaces

behave as the parallel composition of the two agents each of which behaves
as E1 and E2, respectively.

After defining the syntax of interfaces, the relation ≥ on interfaces is
defined inductively as in Figure 5.4. The relation ≥ is firstly defined as
a relation between agents and interfaces, by (I1) through (I4), in terms of
the operational semantics. Then, the definition (I5) makes ≥ a relation on
interfaces that satisfies the reflexive and transitive laws. The rule (I5) embeds
agents into interfaces.

5.3 Interface Analysis

In this section, we describe our bottom-up method to analyze sequentiality
based on the call graph of predicates. The analysis is formulated as the
inference of interfaces.

In the analysis, we must analyze interfaces not of a goal but of the
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predicate itself. Hence, as we have said, we abbreviate Prog(p) to p and
analyze this agent. We assume that every pathed variable X · i that syn-
tactically occurs in an agent Prog(p) is guarded by some ask(c) such that
func(X,f,n) ≤ c with some f and n ≥ i if X is different from α.1 It is
also assumed that any call to p occurs in a term-abbreviated form having the
arity determined by p.

5.3.1 Linear Interfaces

In our interface analysis, we are interested in constructing the following two
forms of interfaces.

We call an interface of the form:

∧
i∈I(~ci → ∃G ∑

j∈J(i)(~di,j À qi,j(G))),

where I 6= {}, a linear interface. The union
⋃

i∈I ~ci is called the input as-
sumption of this linear interface. Intuitively, a linear interface represents
the possibility that the agent can be reduced to a single call qi,j(G) when
its input assumption is given. Here, we introduce a trick. We assume
Prog(halt) = stop in order to express the termination as a call. halt takes

one argument but simply discards it. We will abbreviate ∃G(~d À halt(G))

to ~d if ~d = ∃G
~d.

As a special case of linear interfaces, we call an interface of the form:

~c → ~d

a sequential interface. These two forms of interfaces, linear interfaces and
sequential interfaces, are used to formulate our bottom-up interface analysis.

Most of built-in predicates have their own sequential interfaces. For in-
stance, add that performs integer addition enjoys add ≥ i(α ·1) ∩ i(α ·2) →
i(α·3).

The qi,j(G) is called a tail call. Although the interface analysis is di-
rected by interfaces, we will also need to have access to the original, term-
abbreviated form of each tail call in order to perform the process interleaving
analysis. Our process interleaving analysis that makes use of interfaces will
be explained in Section 5.3.5.

1The condition X is other than α is not crucial; it only makes example programs
shorter. This is thanks to the assumption that every call has an appropriate arity.
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Figure 5.5: A call graph

5.3.2 Bottom-up Analysis of Predicates

The bottom-up interface analysis is performed in the following steps:

1. Build a call graph, namely, a directed graph whose nodes are predi-
cates and whose arcs represent the caller-callee relationship between
predicates (draw an arc from caller to callee).

2. Choose a node without outgoing arcs, remove it from the graph and
try to find a linear interface of the corresponding predicate. This step
is repeated until every node has outgoing arcs.

3. Choose a strongly connected component, which represents (mutually)
recursive predicates, remove it from the graph and try to find their
linear interfaces. Go back to step 2 if any node remains.

Each linear interface analysis of a predicate can be performed using known
linear interfaces of the predicates it calls. The details will be explained soon.

When the interfaces of the predicates it calls cannot be used in the
bottom-up analysis—this can happen when the analyzer is not powerful
enough or the input program contains a deadlock—we say the analysis fails
for this predicate and abandon the analysis for this predicate. This will re-
sult in the failure of the analysis of a predicate that may eventually call this
predicate. For these predicates, we will generate ‘general’ code that may
spawn many goals.

Example. The call graph of the program in Figure 5.2 is shown in Figure
5.5. We first remove the node add without any outgoing arcs. Since add is a
built-in predicate, its interface is known prior to the analysis. Then, we try
to find interfaces of intlist and of sum, and then of stair.
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5.3.3 Bottom-up Analysis of Agents

We describe how to compute a linear interface of an agent. This can be
performed systematically in a bottom-up manner using structural recursion.
The analysis directs intermediate code generation which is explained in Sec-
tion 5.4.

Inferring interfaces relies on abstract interpretation. We use an upward-
closed set of tellable constraints as an abstract store that represents (1) dy-
namic type information, including recursive data types, and (2) alias infor-
mation, that is, information on the unification between pathed variables.

Now, we explain how our interface analysis proceeds for agents. Receiving
a pair of an agent and an initial input assumption ~a, the analysis recursively
computes a linear interface for each subagent. As we have said, the analysis
may fail, which takes place in recursive calls (it becomes a tail call candidate)
and other cases such as deadlocks. For parallel composition agents, static
scheduling for the agents is also performed. The analysis is performed as
follows:

p(X): If a linear interface
∧

i∈I(~ci → ∃G ∑
j∈J(i)(~di,j À qi,j(G)))

has been computed for p where G is other than X, return
∧

i∈I(~ci {α 7→ X} → ∃G ∑
j∈J(i)(~di,j {α 7→ X} À qi,j(G))).

Otherwise, the analysis fails. We can safely rename G in order to resolve
a name collision with X. Note that p can be a built-in predicate such
as add.

tell(c): We may return ↑ true → ↑c. However, we can be more specific.
The agent tell(c) can be decomposed into a sequence of agents of the
forms tell(func(X,f,n)) and tell(X =Y ). For the former agent, re-
turn ↑ true → ↑func(X,f,n). For the latter agent, we have five inter-
faces to be returned depending on the instantiatedness and groundness
information in ~a:





τ(X) → τ(Y ) if X is ground,
τ(Y ) → τ(X) if Y is ground,
τ(X) → τ(Y ) ∩ ↑(X =Y ) if X is instantiated but not ground,
τ(Y ) → τ(X) ∩ ↑(X =Y ) if Y is instantiated but not ground,
↑ true → ↑(X =Y ) otherwise
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where τ is a type constructor that describes the dynamic type infor-
mation on either X or Y , entailed by every constraint in ~a.

A pathed term is said to be ground if it contains no pathed variables.
A pathed variable X is said to be ground in a constraint c if there exists
a ground term t such that (X = t) ≤ c.

∃X〈A, c〉: If c 6= true, retry assuming that the agent is ∃X〈tell(c) ‖A, true〉.
Hence, we assume that c = true. We first compute a linear inter-
face

∧
i∈I(~ci → ∃G ∑

j∈J(i)(~di,j À qi,j(G))) of A with the initial in-
put assumption ∃X~a. Then, if ∃X~ci = ~ci holds for each i, return∧

i∈I(~ci → ∃G ∑
j∈J(i)(∃X

~di,j À qi,j(G))). Otherwise, the analysis fails.

In the simplest case where we have computed a linear interface of A of
the form ~c → ∃G(~d À q(G)) such that ∃X~c = ~c, the above amounts to

returning ~c → ∃G(∃X
~d À q(G)).

∑
h∈Hask(bh)→Ah: First, we compute a subset H ′ of the branches H we

should consider. If ↑bh ⊇ ~a holds for some h ∈ H, in which case bh

is always entailed, let H ′ = {h} so that the local choice is eliminated.
Otherwise, let H ′ = {h ∈ H |~a ∩ ↑bh 6= ↑ false}, the set of all the pos-
sible branches consistent with ~a. Then, for each h ∈ H ′, we compute
a linear interface

∧
i∈I(h)(~ch,i → ∃G ∑

j∈J(h,i)(~dh,i,j À qh,i,j(G))) of Ah

with the initial input assumption ~a ∩ ↑bh. Return their conjunction
(use

∧
). We fail if H ′ = {}.

In the simplest case where H is a singleton of {h} and ~a∩↑bh 6= ↑ false,
the above amounts to computing a linear interface of Ah with the initial
input assumption ~a ∩ ↑bh. Observe that the constraint bh is extracted
from the agent and accumulated into what is returned. This resembles
the type inference of lambda abstraction in typed functional languages.

A1 ‖ . . . ‖An: We use abstract interpretation based on dynamic type infor-
mation to schedule subagents (i.e., Ai’s). Subagents not scheduled as
a tail call will be executed according to their sequential interfaces.

The algorithm for scheduling proceeds in the following steps. It will
return a linear interface of the form ~c → ∃G(~d À q(G)) if the subagents
are successfully scheduled. In the description of the algorithm, we
use ~c and ~d as assignable variables, both of which are initialized with
the initial input assumption ~a. The variable ~c remembers the input
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assumption to be returned while the variable ~d expresses the current
abstract store in the algorithm.

1. For each agent Ai, try to find a linear interface, and then a se-
quential interface (see Section 5.3.4), using ~d as the initial input
assumption.

2. Choose an agent Ai with a sequential interface ~ci → ~di whose
input assumption ~ci is entailed by the current abstract store ~d,
that is, ~ci ⊇ ~d. We should choose an agent with an interface that
contains no alias information, if any. Remove that agent from the
composition, and then strengthen the current abstract store ~d by
intersecting ~d with ~di. This step is repeated as many times as
applicable. If all the agents are removed, return ~c → ~d.

3. If no agent can be removed under the current abstract store, com-
pute again linear interfaces for the remaining agents using the
current abstract store as the initial input assumption.

4. If we have more than one agent with linear interfaces, we try to
interleave them by the method we will explain in Section 5.3.5. If
successful, we have an interleaved agent with a linear interface.

5. If we have exactly one agent with a linear interface, try to find
a sequential interface ~ci → ~di of it. If successful, remove that
agent from the composition. Let ~e be a ‘difference’ of the input
assumption ~ci from the current abstract store ~d, which means
that ~e is an arbitrary upward-closed set of tellable constraints
that satisfies ~ci ⊇ ~d ∩ ~e. We should choose ~e that has as little
information as possible. How to compute ~e is delegated to the
implementation of the algorithm. Lift up this difference ~e to the
input assumption of the interface to be returned, namely ~c, which
is done by intersecting ~c with ~e. After that, update the current
abstract store ~d, which is done by intersecting ~d with ~di ∩ ~e.

6. If exactly one term-abbreviated call remains, say q(t), we will

choose it as the tail call. Let G be a variable satisfying ∃G
~d = ~d

and not occurring in t. Compute an interface ~c0 → ~d0 of tell(G = t)

with the initial input assumption ~d. Since we have q(t) ≥ ~c0 →
∃G(~d0 À q(G)), return ~c ∩ ~c0 → ∃G(~d ∩ ~d0 À q(G)).

7. The analysis fails when this step is reached.
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Most agents without recursion or with a single tail-recursive call can
be sequentialized with this algorithm. To deal with other forms of re-
cursive predicates, other techniques such as conversion to tail-recursive
forms [2] should be used in conjunction with our method.

Subagents may return alias information in output. By applying it to
the remaining subagents, some pathed variables may be represented by
means of α, thus possibly eliminating the number of variables used.

It should be straightforward to prove by induction that every agent has
the interface that is returned by the method.

Example. Let L be the agent

tell(α·3 = [α·1|S]) ‖ add(α·1,1,K) ‖ intlist(K,α·2,S)

found in Prog(intlist). We show the interface analysis for the agent L with
the initial input assumption i(α·1) ∩ i(α·2), which comes from α·1 <α·2.

Step 2 requires us to find interfaces of each subagents. Let us first find an
interface of add(α·1,1,K), namely ∃G〈add(G), G = (α·1, 1, K)〉. To do this, we
should find an interface of ∃G(tell(G = (α ·1, 1, K)) ‖ add(G)). Since we know
add ≥ i(α·1) ∩ i(α·2) → i(α·3), we have add(G) ≥ i(G·1) ∩ i(G·2) → i(G·3).
Since we have tell(G=(α·1, 1, K)) ≥ i(α·1) → i(G·1)∩i(G·2)∩↑(G·3 = K), we have
(tell(G = (α·1,1,K)) ‖ add(G)) ≥ i(α·1) → i(K) ∩ i(G·1) ∩ i(G·2) ∩ ↑(G·3 = K),
thus add(α·1,1,K) ≥ i(α·1) → i(K). Seeing that this interface has no alias
information and that its input assumption i(α·1) is subsumed by the current
abstract store i(α·1)∩ i(α·2), we decide to schedule add(α·1,1,K) first. By
this scheduling, the abstract store is updated to i(α·1) ∩ i(α·2) ∩ i(K).

We will then schedule tell(α·3 = [α·1|S]), for which we obtain i(α·1) →
c(α ·3) ∩ i(α ·3 ·1) ∩ ↑(S =α·3·2). By this scheduling, the abstract store is
updated to i(α·1)∩ i(α·2)∩ c(α·3)∩ i(α·3·1)∩ i(K)∩ ↑(S =α·3·2). The alias
information ↑(S =α·3·2) is applied to the remaining call intlist(K,α·2,S),
replacing it with intlist(K,α ·2,α ·3 ·2) so that the number of variables
other than α occurring in the call will be reduced.

Now, it is easy to infer the relation L ≥ i(α·1) ∩ i(α·2) → ∃G( c(α·3) ∩
i(α·3·1)∩ i(K)∩ i(G·1)∩ i(G·2)∩↑(S =α·3·2)∩↑(G·3 =α·3·2) À intlist(G) ).

Likewise, we can derive that ∃S∃K(L) ≥ i(α·1) ∩ i(α·2) → ∃G( c(α·3) ∩
i(α·3·1) ∩ i(G·1) ∩ i(G·2) ∩ ↑(G·3 =α·3·2) À intlist(G) ).
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Finally, we have

intlist ≥ i(α·1) ∩ i(α·2) → ∃G( n(α·3)
+ ( c(α·3) ∩ i(α·3·1) ∩ i(G·1) ∩ i(G·2) ∩ ↑(G·3 =α·3·2)
À intlist(G) )).

Similarly, we have

sum ≥ n(α·1) → ↑(α·3 =α·2)
∧ c(α·1) ∩ i(α·1·1) ∩ i(α·2) → ∃G(

↑(G·1 =α·1·2) ∩ i(G·2) ∩ ↑(G·3 =α·3) À sum(G) ).

ut

5.3.4 Inferring Sequential Interfaces

We mention how to infer sequential interfaces from linear interfaces. Essen-
tially, it consists of two steps:

1. find an upward-closed set of input constraints sufficient to execute the
agent without suspension—usually the execution terminates but may
diverge—and

2. compute an upward-closed set of output constraints the agent can per-
form on termination.

Each of the above steps needs to compute a fixed point of simultaneous
equations translated from linear interfaces of predicates that form a strongly
connected component in the call graph. The basic idea of doing this can be
found, for example, in the paper [16]. To implement this, we must compute
a fixed point directly from recursive equations. Basically, this can be done
by computing least fixed points. However, some elaboration will be needed
to handle dynamic type information in output constraints.

5.3.5 Process Interleaving

We must also consider a method of interleaving parallel composition, and
here is how to utilize the interface information to interleave producer and
consumer processes. The method is basically unfold/fold transformation [33]
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but is directed by the interfaces of the two agents, which enables us to di-
rectly justify the specialization of the parallel composition. Although we will
explain only the simplest case, it gives us a good insight into our method.

For the sake of simplicity of the explanation, we assume that the argument
of every call is a sequence of ground terms and distinct pathed variables. This
assumption can always be made true by introducing temporary variables,
though doing so may obscure alias information and lower the precision of the
analysis.

1. Let P and Q be agents to be interleaved. We assume that we have
computed a linear interface of P (and Q, respectively) that has exactly
one tail call to p (and q). We also assume that we have computed a
linear interface of the predicate p (and q, respectively) that has exactly
one tail call to p (and q) which corresponds to the agent p(X1,. . .,Xm)

(and q(Y1,. . .,Yn)) in the original, term-abbreviated form.

2. For each shared variable S between P and Q, we put an assumption
that the paths where S occurs are always aliased. Let (Y ′

1 , . . . , Y
′
n′) be

the list obtained by removing every Xi from (Y1, . . . , Yn). Every Yj is
either some Y ′

j′ or some Xi. Let θ be the syntactic substitution which
maps every α·j to α·(m + j′) if Yj is Y ′

j′ , and every α·j to α·i if Yj is
Xi. Then, introduce a new predicate q′ defined by Prog(q′) = Prog(q)θ.
We have q′ ≥ Fθ if q ≥ F .

3. Introduce a new predicate r defined by Prog(r) = Prog(p) ‖Prog(q′).
Then, try to find a linear interface of r from those of p and q′, by
replacing each pair of tail calls to p and q′ by a tail call to r.

Example. Let us interleave the two predicate calls in intlist(1,α·1,S) ‖
sum(S,α·2,α·3) in stair. Assume that we have computed linear interfaces
of intlist and stair as in the previous example.

Since S is a shared variable, the third argument of intlist and the
first argument of sum are assumed to be always aliased in the tail calls.
Accordingly, we introduce predicates by Prog(sum′) = Prog(sum)[α·3/α·1, α·
4/α·2, α·5/α·3] and Prog(r) = Prog(intlist) ‖Prog(sum′). Finally, we can
find a linear interface of r from the linear interfaces of intlist and sum:
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r ≥ i(α·1) ∩ i(α·2) ∩ i(α·4) → ∃G(
( n(α·3) ∩ i(α·5) )

+ ( c(α·3) ∩ i(α·3·1) ∩ i(G·1) ∩ i(G·2) ∩ i(G·4)
∩ ↑(G·3 =α·3·2) ∩ ↑(G·5 =α·5) À r(G) )).

5.4 Code Generation

In this section, we define an intermediate language and explain the code
generation in our framework.

5.4.1 Definition of Intermediate Code

Figure 5.6 summarizes our low-level, sequential intermediate code. There,
Atom and Variable correspond to function symbols and variable names, re-
spectively. This subsection defines the intermediate language and can be
skipped in the first reading, for it is not the subject of this chapter.

The intermediate language explicitly manipulates the memory. The mem-
ory consists of cells. Here, we assume a pointer-tag implementation of this
intermediate language, that is, each initialized cell is tagged with one of
FUNC, FUNCREF, or REF and a cell tagged with FUNC contains atomic
data (a functor) while a cell tagged with FUNCREF or REF contains a
pointer that points to a structure or a cell, respectively. A cell tagged with
REF works either as a reference to another cell, or as an uninstantiated
variable if the cell points to itself.

A path refers to a cell that implements (i.e., contains the content of) a
pathed variable. The syntax of a path is defined in Figure 5.6. A path that
is a variable X refers to the cell that implements X. The path X-i refers to
the cell containing the i-th element of the structure referenced by the path
X, which is to be located at offset i from the cell X points to.

The explanations for the other instructions follow.

• “var X” acquires a new cell that has a reference to itself with REF
tag, and assigns it to the location specified by X.

• “alloc X,n” acquires n+1 contiguous, uninitialized cells and assigns
the reference to its first cell with FUNCREF tag to the location speci-
fied by X.

80



• “copy X,Y ” assigns the content of the location specified by Y to the
location specified by X.

• “func X,f,n” assigns the atomic value ‘f/n’ with FUNC tag to the
location specified by X.

• “atom X,f” is shorthand for “func X,f,0”.

• “prim X,t” computes the primitive expression t and assigns the result
content to the location specified by X. A typical example of a primitive
expression is iadd(Y,Z), which performs integer addition.

• “test c [A] B” performs an entailment check of the constraint c with
the current store. A typical example of a constraint is int(A-1), which
is the translation of int(α ·1) to this intermediate language. In our
implementation scheme, the store is in fact implemented by the cells
corresponding to the paths occurring in c. If the entailment is observed,
the code B is executed. If the entailment is not yet observed, which
includes the case where c is inconsistent with the store, the alternative
code A is executed.

The instruction modifier t means that the consistency of the output by the
instruction is recursively checked with the current content of the destination
path (t stands for ‘tell’). The recursive case happens only in tcopy, which
exactly performs general unification.

Instructions are preceded by a jump label. A label p_I(~a) describes the
entry point of the predicate p with the input assumption ~a. We assume I(~a)
generates an Info text that is supposed to describe the dynamic type infor-
mation on the formal parameter α in ~a. For example, the code implementing
the built-in predicate add can have the input assumption i(α ·1) ∩ i(α ·2)
and it will be preceded by the label add_i1i2. Let us require that the input
assumption specified in each label argument of an instruction (for instance
in the argument of a goto instruction) is guaranteed to be always entailed.
Proofs of the entailment can be automatically extracted from the linear in-
terfaces we have computed for the agents.

A label can be in another form. A label that is just a predicate name p is
used for the entry point of the general (i.e., unspecialized) code for p. A label

of the form p_I(~c)_I(~d) can be used for explicitly expressing p ≥ ~c → ~d. We
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will omit the definition details of Info for they are not the subject of this
work.

The distinguished variable A is used as the actual argument register
throughout the code. Filling in A followed by a jump (goto) to a label is
the translation of a tail call to this intermediate language. The scopes of
variables other than A are confined between two labels.

The path A corresponds to the formal parameter variable α. The content
of A is assumed to be a FUNCREF reference to a non-shared structure, that
is, a structure referenced only by one cell. Any other structure, including the
one referenced by A-i, may be shared unless the corresponding path has the
type modifier d in the label (d stands for ‘destructive’). Type modifiers are
used only for optimization purposes.

The explanations for the other instructions follow.

• “spawn l,G” enqueues to the process pool a new goal goal(l,G) whose
entry point is l and whose actual argument is pointed to by G.

• “halt” means that the current process has been terminated. Another
process should be picked up from the process pool and be executed.

• “fail” means that the whole computation fails.

• “hook PathList,l” hooks a goal goal(l,A) to each path, which must
be initialized, in the list PathList. Every tell involving some path in
PathList causes the hooked goal to be spawned to the process pool.

• “goto l” jumps to the label l.

• “call l,G” is a non-suspending subroutine call to the label l. This
instruction is prepared for expressing a built-in call.

The following stuff is prepared for optimization purposes.

• “arg X,Y ,K” assigns the reference to the K-th argument of the struc-
ture pointed to by Y to the location specified by X.

• “deref X,Y ” fully dereferences a chain of REF pointers in the content
of the cell Y and then assigns the content of the found cell to the
location specified by X.
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Path ::= Variable | Path-Integer
Label ::= Atom[_Info[_Info]]
Info ::= (Tycon Integer+)+

Tycon ::= [d|x]( c|e|f|i|n|u|w | (l|v)Tycon
| z Atom Integer )

Term ::= Path | Atom(Term1,. . .,Termn)

Entry ::= Label: newline Inst
Inst ::= Inst newline Inst

| mtest Term [ Instalt ] Instok

| mprim [*]Path,Term
| mcopy [*]Path,Pathsrc

| mfunc [*]Path,Atom, Integer
| matom [*]Path,Atom
| var [*]Path
| box [*]Path
| unbox [*]Path
| alloc [*]Path, Integer
| [x]arg [*]Path,Pathsrc,Termofst

| deref Path,Pathref

| call Label,Path
| spawn Label,Path
| goto Label
| fail

| halt

| hook Paths,Label
m ::= |x|t

Figure 5.6: An intermediate language
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• The * that prefixes a destination path specifies that the destination
path is dereferenced by one level. For example, atom *A-3,[] assigns
a nil to the location referenced by A-3, not to the location of A-3. Such
explicit management of pointer dereferences enables several low-level
optimization including uninitialized variable optimization developed in
sequential logic languages like Prolog.

• “unbox X” and “box X” convert the content of X to its unboxed
and boxed value, respectively. The general status is being boxed. Once
unboxed, any arg, copy, prim or test instruction relevant to that path
must be prefixed with the instruction modifier x, and the type modifier
x must also be used for that path in a label (x stands for ‘unboxed’).

The formal semantics of the code, which is required to justify code opti-
mization formally, is omitted in this dissertation.

5.4.2 Code Generation Directed by Interface Analysis

In this subsection, we explain how to generate intermediate code directed by
interface analysis. We assume that we have computed a linear interface of
the agent Prog(p) for a predicate p. Let ~a be the input assumption of the
given linear interface. The code generation is defined by structural induction
on the syntax of the agent as follows:

p(X): If we have found a sequential interface of p whose input assumption
is entailed by ~a, we must also have the corresponding code B for p.
Built-in predicates fall under this case. In this case, we perform in-
line expansion of B to generate the code for p(X). Return the code
B with A replaced by X and other variable names replaced by fresh
variable names. Although inline expansion may cause code explosion,
in most cases code can be significantly compacted by subsequent code
specialization.

If no sequential interfaces have been found, we should return spawn

p_I(~a {X 7→ α}),X. If the goal is a tail call, it may be immediately
rewritten to copy A,X followed by goto p_I(~a {X 7→ α}).
Note that p can be a built-in predicate. For example, we have the code
for add corresponding to i(α·1) ∩ i(α·2) → i(α·3) as follows:
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add_i1i2:

tprim A-3,iadd(A-1,A-2)

halt

tell(c): This case is almost the same as the case of a built-in predicate call
explained above. As in the interface analysis, we can decompose tell(c)
into a list of agents of the forms tell(X = f(t1,. . .,tn)) and tell(X =Y ).

We first consider the case where X has been initialized.

• For tell(X =Y ) where ↑func(Y,f,0) ⊇ ~a, return tatom P(X),f .

• For tell(X =Y ) of the other cases, return tcopy P(X),P(Y ).

• For tell(X = f(t1,. . .,tn)), return the following code:

alloc W,n
func W-0,f,n
code for tell(W ·1 = t1) assuming W ·1 is uninitialized

...
code for tell(W ·n = tn) assuming W ·n is uninitialized
tcopy P(X),W

where W is a fresh variable.

We assume that P translates pathed variables into paths: P(α) = A,
P(X) = X for a variable X other than α, and P(X ·i) = P(X)-i.

When X has not been initialized, we modify the above three arrays of
code by removing the t instruction modifier from the last instruction
of each array and by replacing W by P(X).

Finally, add a halt instruction to the tail of the code to be returned.

∃X〈A, c〉: For c 6= true, return the code for the agent ∃X〈tell(c) ‖A, true〉.
For c = true, we firstly build the code B for A. Then, return the code
new X followed by B with all X replaced by a fresh variable name.

∑m
h=1ask(ch)→Ah: Choose an h according to the interface. Return a test

instruction that performs the entailment check of ch (a portion of which
may be statically done using ~a) followed by the code for Ah. The code
argument of the test instruction, which is executed when the check
does not pass, is the code for the remaining branches. If the check is
found to pass always, we can simply return the code for Ah.
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intlist_i1i2: intlist_i1i2:
test ilt(A-1,A-2) [ test ilt(A-1,A-2) [

tatom A-3,[] tatom A-3,[]
halt halt

] ]
var S alloc G,2
var K func G-0,.,2
tprim K,iadd(A-1,1) copy G-1,A-1
alloc G,2 var G-2
func G-0,.,2 tcopy A-3,G
copy G-1,A-1 prim A-1,iadd(A-1,1)
copy G-2,S copy A-3,G-2
tcopy A-3,G goto intlist_i1i2
alloc H,3
copy H-1,K
copy H-2,A-2
copy H-3,S
copy A,H
goto intlist_i1i2

(a) Before Optimization (b) After Optimization

Figure 5.7: Generated intermediate code

A1 ‖ . . . ‖An: Return the code for the subagents concatenated in the sched-
uled order. The halt instructions between subagents must be removed.

For efficiency reasons of the code optimization, we should maintain a list
of unconstrained paths in the above code generation procedure. Such a list
enables us to early remove many t instruction modifiers and var instructions.

Figure 5.7 (a) shows the generated code for intlist.

5.5 Code Optimization

We will briefly mention the optimization on the sequential intermediate code
though it is not the subject of this work.

Optimization in our framework consists of two stages: one is to generate
sequential intermediate code, and the other is to optimize the generated code.
The former is primarily concerned with process scheduling, together with lo-
cal choice elimination, for suspension avoidance and process fusion, and is
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directed by the sequentiality analysis. The latter relates to both the source-
level optimization such as copy propagation and the implementation-level
optimization including tag elimination and update-in-place. Our framework
can straightforwardly justify the safety of these kinds of low-level optimiza-
tion using the semantics of the intermediate language. We stress that such
justification cannot be done systematically through source-level optimization
in the original concurrent language.

We should mention that other analysis frameworks that justify particular
optimization techniques can be peacefully incorporated into our framework
to build a more powerful and efficient compiler. For instance, the linearity
analysis [37] can be incorporated so as to statically guarantee the safety of
update-in-place optimization. Mode analysis [34] can statically determine
which interface should be used for each tell of a unification.

Example. The code shown in Figure 5.7 (a) can be optimized into Figure
5.7 (b). General (i.e., unspecialized) code for stair after moderate opti-
mization can be like Figure 5.8 (a), which can be specialized and optimized
as in Figure 5.8 (b). We can see that the specialization by sequentialization
has significant importance in accelerating the code optimization. Further
low-level optimization, such as tag elimination and uninitialized variable op-
timization, can be applied to the code but is not shown because it is out of
the scope of this dissertation.

5.6 Related Work

Van Roy [39] demonstrates an optimizing compilation framework for Pro-
log that uses low-level intermediate language, rather than WAM (Warren’s
Abstract Machine), to make code specialization more effective. The opti-
mization techniques explained there can be systematically applied to con-
current logic programs only if sequentiality is extracted from the program.
Our sequentiality analysis contributes to the sequentialization phase in an
optimizing compilation framework for concurrent logic languages (and other
fine-grained concurrent languages).

Related work on optimizing compilers for fine-grained concurrent lan-
guages include [12], [13], and [31].

Debray [12] describes a sequentializing compiler for the concurrent con-
straint language Janus. It shares many concepts with our work including
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stair: stair_i1i2:
alloc G,3 copy A-4,A-2
var G-1 copy A-2,A-1
copy G-2,A-2 copy A-5,A-3
copy G-3,A-3 var A-3
spawn sum,G atom A-1,1
copy A-2,A-1 goto r_i1i2i4
copy A-3,G-1
atom A-1,1 r_i1i2i4:
goto intlist test ilt(A-1,A-2) [

tatom A-3,[]
sum: tcopy A-5,A-4

test wait(A-1) [ halt
hook [A-1],sum ]
halt prim A-4,iadd(A-4,A-1)

] var A-3
test func(A-1,.,2)[ prim A-1,iadd(A-1,1)

test func(A-1,[],0)[ goto r_i1i2i4
fail

]
tcopy A-3,A-2
halt

]
alloc G,3
copy G-1,A-1-2
var G-2
copy G-3,A-3
spawn sum,G
copy A11,A-1-1
copy A-1,A-2
copy A-2,A11
copy A-3,G-2
goto add

(a) General Code (b) Specialized Code

Figure 5.8: General code vs. specialized code

88



the extraction of sequentiality of predicates using instantiatedness analysis.
However, since their compiler uses Prolog as its sequential intermediate lan-
guage, optimization on memory management is completely delegated to an
underlying Prolog compiler. It means that the implementation techniques
unique to fine-grained concurrent language that require the analysis of pro-
cess interleaving cannot be achieved.

Debray et al. [13] explain top-down non-suspension analysis and its ap-
plication to an optimizing compiler for Janus that uses C as its sequen-
tial intermediate language. Fixed-point dataflow analysis, however, becomes
complicated in the presence of complex message flow, which is the raison
d’être of concurrent logic programming. We believe that bottom-up analy-
sis can compute fixed points with better precision and modularity, and can
smoothly connect the extracted sequentiality to the runtime system.

Overton [31] discusses mode analysis and optimizing compilation for the
moded and typed concurrent logic language Mercury. Mercury provides sev-
eral kinds of declarations useful for optimizing compilation, among which the
instantiatedness declaration roughly corresponds to our sequential interfaces.
The author thinks that the notion of linear interfaces can enhance their dec-
larations by enabling an appropriate treatment of reactive goals. It should
also be noted that our framework itself does not require that the program is
moded.

5.7 Conclusion and Future Work

We have presented a framework for extracting sequentiality in concurrent
logic programs and for generating corresponding sequential intermediate code.
The proposed framework is based on bottom-up analysis using interfaces that
formalize non-suspending fragments of agents, and hence can justify the in-
termediate code it generates.

A major advantage of our framework is that the bottom-up analysis of
interfaces ensures the correctness of the intermediate code generated at the
same time during the interface analysis.

Although the specialization of an agent by sequentialization using the
notion of interfaces could be axiomatized as a type system without relying
on the relation º which is defined in terms of the operational semantics, we
have proposed formalizing an interface of an agent in terms of the operational
semantics, which enables us to directly justify the inference of interfaces that
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takes place in the program analysis. The way of formalizing types in this way
for justifying process specialization is one of the contributions of this work.

Future work includes a definition of the formal semantics of the inter-
mediate language, which enables us to guarantee the correctness of various
intermediate code optimization. Although this dissertation itself does not
aim to present efficient implementation, it is also important to implement
and evaluate an optimizing compiler for concurrent logic programs based on
our framework.
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Chapter 6

Occurs-Check Analysis under
Cooperative Modings

6.1 Introduction

6.1.1 Background

Occurs-check is a task in unification that tests whether the unification gener-
ates an infinite structure. For example, the unification X = f(X) does not pass
the occurs-check since this unification requires that X be bound to the infinite
data structure f(f(f(. . .))). Infinite structures are not allowed to exist if
we need to justify the soundness of a runtime system of logic programming
as a prover of first-order logic. Furthermore, they can also be a cause of
unexpected infinite computation since they can be passed to recursive predi-
cates that are only intended to terminate on finite input. Nonetheless, since
runtime occurs-check is costly, most language systems of logic programming
intentionally omit the test unless explicitly specified and grant unification to
be successful even if it does not pass the test. The omission of occurs-check
also incurs extra overheads in the runtime system itself for manipulating po-
tential infinite structures. Thus, the study of static occurs-check is asked
for.

6.1.2 Related Work

Static occurs-check has two approaches [4, 8]: occurs-check reduction, and
NSTO (Not Subject To Occurs-check) tests. The former tries to find those
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unification operations performed in a program that require no occurs-check.
On the other hand, the latter attempts to guarantee that a program generates
no infinite structures. The occurs-check reduction approach aims to improve
the efficiency of program execution while admitting infinite structures in
the program. On the other hand, the NSTO approach mainly attempts to
guarantee the soundness and termination of a program.

Finite-tree analysis [4] belongs to the former approach; it finds out pro-
gram variables that will never hold infinite structures and guarantees the
omission of occurs-check in the related unification. Since their analysis is
based on abstract interpretation for obtaining correct and accurate results,
it is difficult to apply their method to general logic programming languages
that have no predetermined reduction strategies, including concurrent logic
programming languages that are equipped with suspension and resumption
of goals.

For such languages, we must perform some analysis that does not depend
on any specific reduction strategy. In fact, instead of abstract interpretation,
analysis methods based on some static information of a program, such as
input/output modes of usage, are considered to be more suitable.

The existing methods of mode-based approach, however, cannot guaran-
tee that programs with bidirectional communication, for example the con-
current logic program shown in Figure 6.1, do not produce infinite structures
in any finite time. The reason is that they all have exploited only top-level
mode information of each argument of a predicate. [3, 8]

6.1.3 Our Method

This chapter proposes an algorithm that ensures the NSTO property of a
well-moded logic program. The algorithm exploits precise mode information
of the program in the sense explained in the paper [34]. A mode inference
algorithm for concurrent logic programs adapted from the one in the above
paper is also presented, so that our NSTO test can be implemented in prac-
tice.

Our NSTO test attempts to assert that each clause is not a cause of infi-
nite structures. Each clause is tested whether the mode information related
to that clause can be strengthened without introducing inconsistency so that
a particular characteristic described using the notion of ‘asymptotic equality’
is observed. We will explain how infinite structures are related to asymptotic
equality and prove that our algorithm is correct.
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:- print(Hs0), Hs0 = [1|Hs1],

mul(2,Hs0,L2), mul(3,Hs0,L3), mul(5,Hs0,L5),

merge(L2,L3,L23), merge(L23,L5,Hs1).

merge([A|As1],[B|Bs1],Ms) :- A < B |

Ms = [A|Ms1], merge(As1,[B|Bs1],Ms1).

merge([A|As1],[B|Bs1],Ms) :- A > B |

Ms = [B|Ms1], merge([A|As1],Bs1,Ms1).

merge([A|As1],[B|Bs1],Ms) :- A=:=B |

Ms = [A|Ms1], merge(As1, Bs1,Ms1).

mul(N,As0,Ms) :- As0 = [A|As1] |

Ms = [M|Ms1], M := N*A, mul(N,As1,Ms1).

Figure 6.1: Program with bidirectional communication

The rest of this chapter is organized as follows. Section 6.2 formalizes
the NSTO property. Section 6.3 reduces the property to the problem on
initial graphs. Section 6.4 explains how to use mode information in checking
that initial graphs do not generate cycles. Section 6.5 shows an analysis
example. Section 6.6 discusses the limitations of our analysis, and Section
6.7 concludes.

6.2 Problem Formalization

This section defines an abstract transition system and formalizes the NSTO
property. In principle, any logic language, including the one defined in Chap-
ter 2, can be embedded into this abstract transition system. This means that
a logic program is NSTO if the embedded abstract program is NSTO.

6.2.1 Terms and Paths

Here, we define notations used in this chapter.

Definition 6.1 We assume that the set Var of variables and the set Term
of terms of first-order logic are given. We denote by Vars(t) the set of
variables occurring in term t. We write s ≡ t to mean that terms s and t
are syntactically equal. A term is said to be linear if and only if it does not
contain duplicate variables. ut
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Definition 6.2 We denote by Func the set of signatures f/n, pairs of a
function symbol f and a non-negative integer n, used for constructing terms

from variables. We call each element of Func a functor. We define by Path
def
=

{〈f/n, i〉 | f/n ∈ Func, i ∈ 1..n}∗ the set of paths. We write ε for the empty

path and p ./ q
def⇔ p = ε ∨ q = ε. For integers m and n, we write m..n to

denote the set {m,m + 1, . . . , n}. ut
We use a path to describe a specific term position within a term. For

example, the path 〈f/3, 1〉 represents the first argument of a term constructed
with the function symbol f of arity 3. The empty path ε represents a term
itself.

In this work, we will use function symbols also as predicate symbols in
order to simplify the formalization. It means that a goal is represented as a
term. Hence, a nonempty path also describes a specific term position within
a goal. For instance, the path 〈merge/3, 1〉 represents the first argument of
a call to the predicate merge of arity 3.

Definition 6.3 Let ⊥ 6∈ Term. For every path p, we define the function
−→p : Term → Term ∪ {⊥} as follows:





−→ε (t)
def
= t−−−−−−→〈f/n, i〉p (f(t1, . . . , tn))
def
= −→p (ti)−−−−−−→〈f/n, i〉p (t)
def
= ⊥ otherwise.

ut

6.2.2 Equation Sets

Next, we formalize alias information accumulated during program execution
as equation sets. An alias refers to the unification between two term positions
within two variables. For example, the unification Y = f(X,a) makes X and
the first argument of Y be an alias. We will formalize an alias as an equation
over equation targets.

Definition 6.4 For every pair of a variable X and a path p, we call Xp
an equation target. We mean by Xp ≡ Y q the syntactic equality of the
two equation targets Xp and Y q. For equation targets Xp and Y q, we call
Xp = Y q an equation. ut
Definition 6.5 For an equation set C and a variable X, we denote by ∃X(C)
the set of those equations in C which do not contain X. ut
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Example. ∃Y({X=X, X=Y, Y〈f/3, 2〉=Z}) = {X=X}. ut
The definition of ∃X(C) makes sense only if C is closed by some notion

of transitivity. For example, the input to ∃Y(·) in the above example should
have contained X〈f/3, 2〉=Z to obtain a meaningful result.

Definition 6.6 For n ≥ 0 we call a dot-separated sequence of positive inte-
gers i1.i2. ... .in a goal identifier (typically written as w), and i1.i2. ... .in a head
identifier, and each of them a node identifier (typically written as u). For

goal identifier w, we define w
def
= w. We assume that we have a one-to-one

map u 7→ 〈u〉 from node identifiers to variables. We denote by ε0 the empty
goal identifier.

For every variable X, we define |X| def
= 〈w〉 if there exists a goal identifier

w such that X ≡ 〈w〉; otherwise we define |X| def
= X. ut

We must explain the intention of the above definition. We use a goal
identifier to express a particular goal in the program execution; the integer
sequence denotes the history of subgoal indices within the clauses. Similarly,
we use a head identifier to express a particular head matched in the program
execution. The mapping 〈 · 〉 is a device for encoding node identifiers as
variables so that we can use them in an equation set.

We can think of | · | as a function that returns the ‘absolute value’ of the
specified node identifier. For example, we have that |〈1.3〉| ≡ |〈1.3〉| ≡ 〈1.3〉.

Example. The equation (〈1.3〉〈p/3, 1〉 = 〈1.3.2〉〈q/2, 2〉) can express the
alias introduced by the variable A in a clause p(A,B,C) :- p(X,B,C), q(X,A)
used in the reduction of a call to p. The goal identifier 1.3 expresses that
this call to p was the third body goal of the clause used in the reduction of
the first body goal of the clause used in the reduction of the initial goal. We
consider that the empty goal identifier ε0 expresses the initial goal. ut
Definition 6.7 We define the equation set ID and the functions Sat , S, −?
on equation sets as follows:

Sat(C)
def
=

⋃∞
k=0 Sk(ID ∪ C?)

S0(C)
def
= C

Sk+1(C)
def
= S(Sk(C)) for all k ≥ 0

ID
def
= {Xp = Xp | X ∈ Var , p ∈ Path}

C?
def
= {Y q = Xp | (Xp = Y q) ∈ C} ∪ C

S(C)
def
= C ∪ {e ∗ f | e ∈ C, f ∈ C, e ∗ f 6= ⊥}
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where




(Xp=Y q) ∗ (Y ′r=Zs)
def
= (Xpq′ = Zsr′) if |Y |qq′ ≡ |Y ′|rr′ and q′ ./ r′

e ∗ f
def
= ⊥ otherwise.

ut

The equation set ID contains no information. The set C? is the symmet-
ric closure of the equation set C. The equation (Xp = Y q) ∗ (Y ′r = Zs)
represents the application of the ‘transitivity’ law to these equations, whose
result is defined when there exists q′ such that |Y |qq′ ≡ |Y ′|r, in this case
(Xpq′ = Y qq′) and (Y ′r = Zs) give (Xpq′ = Zs), or when there exists r′

such that |Y |q ≡ |Y ′|rr′, in this case (Xp = Y q) and (Y ′rr′ = Zsr′) give
(Xp = Zsr′). The equation set Sat(C) is obtained by closing an equation
set C with reflexivity, symmetry and transitivity.

Definition 6.8 An equation of the form (Xp = Y pq) that satisfies |X| ≡ |Y |
and q 6= ε is called an infinite equation. We say that an equation set C has an
infinite structure if there exists some infinite equation in Sat(C); otherwise
we write fin(C). ut

6.2.3 Abstract Transition System

This subsection defines an abstract transition system in terms of which we
formalize the NSTO property. The system to be defined accumulates every
alias information and, on the other hand, abstracts away any information on
instantiation of variables and hence any consistency checks (functor match-
ing tests) performed in ordinary logic programming languages. This setting
ensures that the transition system we will define is the abstraction of the
original language.

Definition 6.9 For n ≥ 0 and terms h, b1, . . . , bn, we call (h ← b1, . . . , bn) a
clause. The term h is called its head and each bi is called its body. A set of
clauses whose heads are all linear is called a program. ut

For simplicity, we have formalized a goal (an atomic formula) as a term.

Unification goals are considered to be polymorphic, that is, each unifica-
tion goal in a program has its own mode of usage. To formalize this, we will
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subscript each unification in the program with a distinct positive integer k
and treat them as different predicates, though their semantics are the same.
To this end, we define as follows.

Definition 6.10 For k ≥ 1, we assume there exists a function symbol writ-

ten as =k. Let Uk
def
= (X =k X) where X is some arbitrary variable. A clause

of the form (Uk ← ) is called a unification clause. ut
Next, we define configurations of our abstract transition system.
We refer to a pair w : b of a goal identifier w and a term b as a labeled

goal. A labeled goal uniquely determines a goal that appears in the program
execution. A configuration of the abstract transition system is a pair of a set
of labeled goals and an equation set that accumulates alias information. We
give two formulas for describing alias information as follows.

Definition 6.11 For every clause w and a term c, we define two equation
sets as follows:

G(w, (h ← b1, . . . , bn))
def
= {〈w〉〈=k/2, 1〉 = 〈w〉〈=k/2, 2〉 |h ≡ Uk} ?
∪ {〈w.i〉p = 〈w〉q | −→p (bi) ≡ −→q (h) ∈ Var} ?
∪ T (w, (h ← b1, . . . , bn)),

T (w, (h ← b1, . . . , bn))
def
= {〈w.i〉p = 〈w.j〉q | −→p (bi) ≡ −→q (bj) ∈ Var} \ ID .

ut
The formula G(w, c) defines the equation set generated in a reduction of

a w-labeled goal, say w : b, with the clause c. Each of the three parts in the
definition of G describes multiple occurrences of variables between head-head,
head-body, and body-body positions, respectively. Multiple occurrences of
variables between heads take place only for unification clauses. The formula
T (w, c) describes the multiple occurrences between body goals.

We define the second component of a configuration as an equation set of
the form

⋃n
i=1 G(wi, ci).

Finally, the abstract transition system is defined as follows.

Definition 6.12 For program P , we define the abstract transition system
−→ as follows:

(R1) 〈{w : a} ∪Q, G〉−→〈{w.i : bi | i ∈ 1..n} ∪Q, G ∪ G(w, c)〉
if c = (h ← b1, . . . , bn) ∈ P

(R2) 〈{w : (s =k t)} ∪Q, G〉−→〈Q, G ∪ G(w, (Uk ← ))〉
ut
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Definition 6.13 (NSTO) A program P is said to be NSTO if and only if:

∀Q,G( 〈{ε0 : main} , {}〉−→〈Q,G〉 implies fin(G) ).

ut

Notes on the Linear Head Condition.

Since the existence of clauses that are not linear headed, including unification
clauses (Uk ← ), is apparently one of the fundamental sources of infinite
structures, the linear head condition in the definition of programs may seem
too restrictive. However, assuming the cooperativeness condition we will
define later, one can transform clauses so that every head of a program clause
is linear. Intuitively, cooperativeness means that each variable in a clause
has exactly one output occurrence.

Let us forget for now about the input/output mode of usage and the co-
operativeness. Logically, we can make a program linear headed by rewriting
every multiple occurrence of a variable in a clause head into unification goals
in the body. For example, we can transform

p(A,A) :- body(A,A).

into

p(A,B) :- A =1 B, body(A,A).

The real issue is that the resulting program is possibly not well moded in a
moding system even if the original program is well moded. Before proceeding
to the case of our moding system, we introduce a taxonomy for unification.

Each unification that takes place at runtime is either active or passive:
active one unifies a variable with a term while passive one unifies two non-
variable terms. Performing passive unification may require unification be-
tween corresponding subterms, each of which is again either active or passive.

In Section 6.4, in order to perform mode inference, we will require the
following two assumptions. Firstly, we will assume that whether each unifi-
cation is active or passive is determined statically. Secondly, we will assume
that every unification goal is active unification. Then, every passive unifica-
tion should be represented in terms of head matching, not as a unification
goal. For example, if the A’s in the head are intended to express passive
unification, we should transform
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p(A,A) :- body(A,A).

into

p(A,B) :- A ==1 B, body(A,A).

together with the clause

f(A1,. . .,An) ==1 f(A1,. . .,An) :- .

for each possible functor f/n where ==1 is a fresh name for a predicate.
In general, performing such transformation appropriately is difficult to

automate. Nonetheless, we will show in Section 6.5.1 how to perform this
transformation automatically by assuming the cooperativeness condition.

6.3 Reduction to Initial Graphs

In this section, we will reduce the NSTO property to a property of ‘initial
graphs’ of the program. An initial graph will be defined as an equation set
T (w, c) in Section 6.3.3.

6.3.1 Chains

Definition 6.14 (Chains) A chain is a nonempty sequence of semicolon-
separated pairs of an equation and a path of the form

〈〈v0〉q0 = 〈u1〉p1; r1〉 . . . 〈〈vn−1〉qn−1 = 〈un〉pn; rn〉

such that
∀i ∈ 2..n( |〈ui−1〉|pi−1ri−1 ≡ |〈vi−1〉|qi−1ri )

holds. We call n its length.

For any chain H, we define E(H)
def
= {〈vi−1〉qi−1 = 〈ui〉pi | i ∈ 1..n} and

the object equation of H by O(H)
def
= (〈v0〉q0r1 = 〈un〉pnrn). ut

Theorem 6.1 Let |Xp = Y q| def
= (|X|p = |Y |q). For every equation set G

and equation e ∈ Sat(G) \ ID , there exists a chain H such that |O(H)| = |e|
and E(H) ⊆ G? hold.
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Proof. We define that πL(Xp = Y q)
def
= Xp and πR(Xp = Y q)

def
= Y q. We

also define that 〈ei; ri〉ni=1 ·s def
= 〈ei; ris〉ni=1 and that (Xp = Y q)·s def

= (Xps =
Y qs). We prove this theorem by constructing a function M that maps each
equation e ∈ Sat(G) \ ID to a chain M(e) such that |O(M(e))| = |e| and
E(M(e)) ⊆ G? hold.

Here, we extend the domains of M and E as follows. Let λ be an empty

sequence. We define that M(e)
def
= λ for every e ∈ ID and that E(λ)

def
= {}.

For each e ∈ ID , we have E(M(e)) ⊆ G? and e ∈ Sat(G). Now, we will
construct M(e) for each e ∈ Sat(G) \ ID using mathematical induction on k
where k is the smallest integer such that e ∈ Sk(ID ∪G?).

If k = 0, we have e ∈ G?. Let M(e) = 〈e; ε〉. We have O(M(e)) = e and
E(M(e)) = {e} ⊆ G?.

Let k ≥ 1 and assume that the proposition holds for any integer less
than k. There exist p, q, r, s,X, Y, Y ′, Z, a, b such that e = (Xpa = Zsb) and
(Xp = Y q), (Y ′r = Zs) ∈ Sk−1(ID∪G?) and |Y |qa ≡ |Y ′|rb, a ./ b hold. Let
M(e) = (M(e1) · a)(M(e2) · b) where e1 = (Xp = Y q) and e2 = (Y ′r = Zs).
By induction hypothesis, we have E(M(e)) = E(M(e1) · a)∪E(M(e2) · b) =
E(M(e1))∪E(M(e2)) ⊆ G?∪G? = G?. We also have that |O(M(ei))| = |ei|
for i = 1, 2 if ei 6∈ ID .

We have three cases.
If (Xp = Y q) 6∈ ID and (Y ′r = Zs) 6∈ ID , it is the case that

|O(M(e))| = |O((M(e1) · a)(M(e2) · b))|
= |πLO(M(e1) · a) = πRO(M(e2) · b)|
= (πL|O(M(e1))|a = πR|O(M(e2))|b)
= (πL|e1|a = πR|e2|b)
= (|X|pa = |Z|sb)
= |Xpa = Zsb|
= |e|.

If Y ′r ≡ Zs, we have |O(M(e))| = |O(M(e1) · a)| = |O(M(e1))| · a =
|e1| · a = (|X|pa = |Y |qa) = (|X|pa = |Y ′|rb) = (|X|pa = |Z|sb) = |e|.

If Xp ≡ Y q, we have |O(M(e))| = |O(M(e2) · b)| = |O(M(e2))| · b =
|e2| · b = (|Y ′|rb = |Z|sb) = (|Y |qa = |Z|sb) = (|X|pa = |Z|sb) = |e|.

It follows that the proposition holds for k. ut
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6.3.2 Cycles

Definition 6.15 (Connection Graphs) We assume a program P is given.
For any n ≥ 0, clauses c1, . . . , cn ∈ P , and distinct goal identifiers w1, . . . , wn,
we call the equation set

⋃n
i=1 G(wi, ci) a connection graph. ut

Every second component of a configuration of the abstract transition
system is a connection graph.

Definition 6.16 (Cycles) Let n ≥ 1 and u1, . . . , un be node identifiers. A
cycle is a chain H = 〈〈ui−1〉qi−1 = 〈ui〉pi; ri〉ni=1 such that (1) ∃q(〈un〉pnrn ≡
〈u0〉q0r1q), and (2) E(H) is a subset of some connection graph. We define

L(H)
def
= {πL(e) | e ∈ E(H)} and R(H)

def
= {πR(e) | e ∈ E(H)}. ut

Note that cycles are defined only after a program P is given. Note also
that the expression ui can represent a goal identifier, which happens if and
only if the node identifier ui is a head identifier.

Theorem 6.2 If there is a connection graph with infinite structure, then
there exists a cycle.

Proof. Let G be a connection graph that has an infinite structure. By the
definition of a connection graph, it holds that G = G?.

By Theorem 6.1, we can choose a shortest chain H such that (a) O(H)
is an infinite equation, and (b) E(H) ⊆ G. We prove that this H is a cycle.

Let H = Σ1,n and Σa,b = 〈〈vj−1〉qj−1 = 〈uj〉pj; rj〉 b
j=a for any 1 ≤ a ≤ b ≤

n. By the definition of chains, we have |〈ui〉| = |〈vi〉| for each 1 ≤ i ≤ n− 1.
Assume, hypothetically, that ui = vi. Then, there exist terms t1, t2, t3 such
that −−−→qi−1 (t1) ≡ −→pi (t2) ∈ Var and −→qi (t2) ≡ −−−→pi+1 (t3) ∈ Var hold. Since
piri = qiri+1, we have pi = qi; therefore −−−→qi−1 (t1) ≡ −−−→pi+1 (t3). Thus, from
the definition of G and the condition that the head of each clause is linear,
we have e = (〈vi−1〉qi−1 = 〈ui+1〉pi+1) ∈ ID ∪ G, and we have ri = ri+1.
Let H ′ = Σ1,i−1Σi+2,n if e ∈ ID ; otherwise let H ′ = Σ1,i−1〈e; ri〉Σi+2,n. We
can confirm H ′ is a chain that satisfies the conditions (a) and (b), which
contradicts the shortestness of H. Hence, we have ui = vi.

What remains to prove is that un = v0. Since H satisfies (a), there exists
q 6= ε such that |〈un〉|pnrn ≡ |〈v0〉|q0r1q. Let H ′′ = Σ2,n〈〈v0〉q0 = 〈u1〉p1; r1q〉.
It is easy to show that H ′′ is a chain that again satisfies (a) and (b) as well
as the shortestness condition. Hence the previous paragraph ensures that
un = v0. ut

101



Theorem 6.3 If no cycles exist, the program is NSTO.

Proof. Assume program P is not NSTO. Then there is a connection graph
G such that 〈{ε0 : main} , {}〉−→∗ 〈Q,G〉 with some Q and that G has an
infinite structure. By Theorem 6.2 there is a cycle. ut

6.3.3 Initial Graphs

Definition 6.17 (Initial Graphs) For a goal identifier w and a clause c ∈
P , we call T (w, c) an initial graph. ut

The following theorem is the motivation of introducing initial graphs. It
states that every cycle contains an alias between two body goals of a clause.

Theorem 6.4 For any cycle H there exists an initial graph T (w, c) such
that E(H) ∩ T (w, c) 6= {}.

Proof. Let w.m be a shortest goal identifier occurring in H where m is an
integer. There exist e, p, q, u such that e = (〈w.m〉p = 〈u〉q) ∈ E(H) or
e = (〈u〉q = 〈w.m〉p) ∈ E(H). By definition of cycles, there exists a clause c
such that e ∈ G(w, c). If u = w then the goal identifier w occurs in H, next
to e, which contradicts the shortestness of w.m. Thus, by the definition of
G(w, c) we have u = w.k with some k; therefore e ∈ T (w, c). ut

Now we define a predicate named fingen, which states that the initial
graph of a clause (or its subset) is not a cause of generating infinite structures.

Definition 6.18 Let T be a subset of some initial graph. We write fingen(T )
if and only if every cycle H satisfies E(H) ∩ T = {}. ut

Theorem 6.5 If ∀w∀c(fingen(T (w, c))), the program is NSTO.

Proof. Assume the program is not NSTO. By Theorem 6.3, we know that
there exists a cycle H. By Theorem 6.4, there exist some w, c such that
E(H) ∩ T (w, c) 6= {}. This contradicts the hypothesis that fingen(T (w, c)).
ut
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6.4 Using Moding Functions

In this section, we explain how to use mode information in checking that an
initial graph T satisfies fingen(T ), that is, T does not generate cycles.

6.4.1 Moding functions

Definition 6.19 (Modes) We call the symbols in and out modes. We call
a function from Path to {in, out} a moding function. For every moding

function s and every path p, we define the moding function s/p by (s/p)(q)
def
=

s(pq). We define the moding function s so that ∀p ∈ Path ({s(p), s(p)} =
{in, out}) holds. ut

The mode in represents that the caller instantiates the value of a path,
while the mode out represents that the callee instantiates it.

Definition 6.20 (Mode Constraints) We call a logical formula that con-
strains the values of the distinguished moding function m a mode constraint,
or constraint1 in short. For a set E of mode constraints, we denote by M (E)
the set of all the moding functions m that satisfy E. A set E of mode
constraints is said to be consistent if and only if M (E) is not empty. ut

Definition 6.21 We consider that any clause (h ← b1, . . . , bn) imposes the
following mode constraints:

(BU) m/〈=k/2, 1〉 = m/〈=k/2, 2〉 if bi ≡ (s =k t)

(BV+) ∀X ∈ Vars(h) ∀p(−→p (h) ≡ X) (R({|m/p |}+ {|m/q | −→q (bi) ≡ X |}))
(BV0) ∀X ∈ Vars(b1, . . . , bn) \ Vars(h) (R({|m/q | −→q (bi) ≡ X |}))

where {| . . . |} denotes a multiset and R(S) denotes the cooperativeness con-
dition for S defined by:

R(S)
def⇔ ∀p ∈ Path ∃s ∈ S ( s(p) = out ∧ ∀s′ ∈ S−{|s |} (s′(p) = in) ).

For a program P , we denote by M(P ) the set of all mode constraints
imposed by the clauses in P . We say that P is cooperatively moded if M(P )
is consistent. ut

1The term constraint is used in this chapter differently from in the other chapters.
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(BU) stands for body unification and says that (the two moding functions
representing) the two arguments of a unification goal are cooperative—note
that R({|s, s′ |}) is equivalent to s = s′. (BV+) and (BV0) stand for body
variables and say that all the body occurrences of a particular variable in a
clause, together with the inverse of its head occurrence if any, are cooperative.

The three rules for imposing mode constraints are a subset of those pro-
posed in the paper [34], which defines well-moded concurrent logic programs.
They additionally require a pointwise mode constraint m(p) = in for each
occurrence of a function symbol at the path p in a clause so that m be com-
patible with the operational semantics of concurrent logic programs. We have
discarded the imposition of pointwise constraints because our occurs-check
analysis is not based on such compatibility.

Definition 6.22 For moding functions s and s′, we define s ↔ s′ def⇔ ∀r ∈
Path(s(r) = in ∨ s′(r) = in). ut

The relationship m/p ↔ m/p′ represents that the moding functions m/p
and m/p′ together do not break the cooperative condition. It is obvious that
m/p ↔ m/p′ implies m/pq ↔ m/p′q.

For any node identifier u, we define the operator I(u) on moding functions
depending on whether u is a goal identifier or a head identifier:

Definition 6.23 For any goal identifier w and any moding function s, we

define I(w)(s)
def
= s and I(w)(s)

def
= s. ut

Proposition 6.1 Let P be a program. Every equation (〈u〉p = 〈v〉q) ∈
G(w, c) satisfies I(u)(m/p) ↔ I(v)(m/q) for any moding function m ∈
M (M(P )).

Proof. Let e = (〈u〉p = 〈v〉q) ∈ G(w, c). As we will see, there exists a
multiset S of moding functions such that R({|I(u)(m/p), I(v)(m/q)|}+ S);
therefore we have I(u)(m/p) ↔ I(v)(m/q).

We have three sources of e, corresponding to the three parts in the defi-
nition of G. When it has been generated in the first part, we have v = u and
there exists k such that {p, q} = {〈=k/2, 1〉, 〈=k/2, 2〉}. Therefore, we have
m/p = m/q, which is equivalent to R({|I(u)(m/p), I(v)(m/q)|}). When it
has been generated in the second or third part, we have terms s and t in a
clause such that −→p (s) ≡ −→q (t) ∈ Var . It follows that there exists some S. ut
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6.4.2 Asymptotic Equality

Next, we will introduce the notion of the asymptotic equality of two moding
functions. This notion has been devised by the author in order to formulate
a sufficient condition of the NSTO property in our occurs-check analysis.

Definition 6.24 We define two moding functions IN and OUT by ∀p ∈
Path(OUT (p) = out) and IN

def
= OUT . These two moding functions IN

and OUT are said to be uniform. For any moding function s and a uniform
moding function u, we write s → u to mean that ∀q∃r( s/qr = u ) and call
this formula a convergence constraint. ut

Intuitively, s → u represents that s converges to u. It is easy to confirm
that s → u implies s/p → u.

Definition 6.25 For moding functions s and s′, we write s ' s′ to mean that
∃u ∈ {IN ,OUT} (s → u ∧ s′ → u) and say that s and s′ are asymptotically
equal if and only if s ' s′. ut

Note that it is not always the case that s ' s.

6.4.3 Moding and Infinite Structures

Now, we can express a sufficient condition for guaranteeing that a program
cannot generate infinite structures, in terms of moding functions.

Definition 6.26 Let G be an equation set of the form

{〈u2i−1〉p2i−1 = 〈u2i〉p2i | i ∈ 1..n} .

We define Nodes(G)
def
= {u2i−1 | i ∈ 1..n}∪ {u2i | i ∈ 1..n} and for every vari-

able X we define GX def
= {p2i−1 | 〈u2i−1〉 ≡ X} ∪ {p2i | 〈u2i〉 ≡ X}. ut

Nodes and −X extract nodes and paths from equation sets, respectively.

The following proposition intuitively states that every goal appearing in
a cycle appears twice in that cycle.

Proposition 6.2 For every cycle 〈〈ui−1〉qi−1 = 〈ui〉pi; ri〉ni=1 it is the case
that {u0, . . . , un−1} = {u1, . . . , un}.
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Proof. Let pnrn = q0r1q. Since 〈〈ui−1〉qi−1 = 〈ui〉pi; ri〉ni=2〈〈un〉q0 = 〈u1〉p1; r1q〉
is also a cycle and un = u0, we only have to prove that (a) if u1 is a goal
identifier then there exists some k such that uk = u1, and (b) if un−1 is a
goal identifier then there exists some ` such that u` = un−1. For any integer
m, We can repeatedly perform this index rotation so that either (a) or (b)
can be used to prove the inclusion um ∈ {u0, . . . , un−1} or um ∈ {u1, . . . , un}.
Note that (b) covers the case where um is a head identifier and vice versa.
We will prove (a) first.

For each node identifier u, we define |u| by 〈|u|〉 = |〈u〉|.
Let k be the maximum integer in 1..n such that ∀i ∈ 1..k ∃δi( |ui| = u1.δi ).

If k = n, we have un = u1 because of (〈un〉q0 = 〈u1〉p1) and |un| = u1.δn.
Assume k < n. If δk is not empty, |uk+1| also begins with u1, which violates
the assumption. Thus |uk| = u1. If uk = u1, we have ∃δ( uk+1 = uk.δ )
because of (〈uk〉qk = 〈uk+1〉pk+1), which violates the assumption.

In the above proof of (a), we did not use the defining condition (1) of a
cycle other than un = u0. Hence, replacing in the previous paragraph the
cycle by 〈〈ui〉pi = 〈ui−1〉qi−1; ri〉1i=n, we obtain a proof of (b). ut

The following theorem states that two paths of a goal appearing in a cycle
cannot be strengthened as asymptotically equal.

Theorem 6.6 (Circulation Theorem) Let P be a program and H be a
cycle. For any 〈u′〉p′ ∈ L(H), 〈u′′〉p′′ ∈ R(H), and m ∈ M (M(P )), we have
I(u′)(m/p′) 6' I(u′′)(m/p′′).

Proof. Let H = 〈〈ui−1〉qi−1 = 〈ui〉pi; ri〉ni=1 and 〈un〉pnrn ≡ 〈u0〉q0r1q. Let
m ∈ M (M(P )). By Proposition 6.1, we have for i ∈ 1..n

I(ui−1)(m/qi−1ri) ↔ I(ui)(m/piri) (6.1)

and for i ∈ 2..n we have I(ui−1)(m/pi−1ri−1) ↔ I(ui)(m/piri) since pi−1ri−1 =
qi−1ri. Moreover, since 〈un〉pnrn ≡ 〈u0〉q0r1q we have I(un)(m/pnrn) ↔
I(u1)(m/p1r1q).

Now, choose arbitrarily X ′p′ ∈ L(H) and X ′′p′′ ∈ R(H). There ex-
ist j and k such that X ′p′ ≡ 〈uj−1〉qj−1 and X ′′p′′ ≡ 〈uk〉pk. Let m′ =
I(uj−1)(m), m′′ = I(uk)(m), q′ = rj, and q′′ = rk. For any i ∈ 1..n, we have

I(ui)(m/piri) ↔ m′/p′q′q. (6.2)
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Let r ∈ Path.
If ∀i ∈ j..n(I(ui)(m)(pirir) = in) and ∀i ∈ 1..k(I(ui)(m)(piriqr) =

in), then we have in = m′(p′q′r) 6= m′′(p′′q′′qr) = out . If there exists
some i ∈ j..n such that I(ui)(m)(pirir) = out , then from (6.2) we have
m′/p′q′q(r) = in, that is, I(uj−1)(m)(qj−1rjqr) = out . From (6.1), we have
I(uj)(m)(pjrjqr) = in, that is, I(uj)(m)(pjrjqr) = out . Thus there exists
some i ∈ 1..n s.t. I(ui)(m)(piriqr) = out . In such a case, from (6.2), we have
m′/p′q′q(qr) = in, that is, m′(p′q′qqr) = out . From m′(p′q′) ↔ m′′(p′′q′′q),
we have m′′(p′′q′′qqqr) = in 6= m′(p′q′qqr).

Thus, for every r ∈ Path, we have m′(p′q′r) 6= m′′(p′′q′′qr) or m′(p′q′qqr) 6=
m′′(p′′q′′qqqr).

Assume, hypothetically, that m′/p′ ' m′′/p′′. Then, for the path p′q′,
there exist u ∈ {IN ,OUT} and a path s such that m′/p′q′s = u. Then, for
the path p′′q′′qs, there exists a path s′ such that m′′/p′′q′′qss′ = u. Then,
for p′q′qss′, there is s′′ such that m′/p′q′qss′s′′ = u. Then, for p′′q′′qqqss′s′′,
there is s′′′ such that m′′/p′′q′′qqqss′s′′s′′′ = u. Let r = ss′s′′s′′′. We have
m′/p′q′r = m′′/p′′q′′qr and m′/p′q′qqr = m′′/p′′q′′qqqr, which contradicts the
previous paragraph. ut

The following theorem states that we can reduce the proof of fingen of an
initial graph T to that of a subset of T .

Theorem 6.7 (Graph Reduction Theorem) Let P be a program and T
be a subset of some initial graph. For every w ∈ Nodes(T ) we have:

( ∃m ∈ M (M(P ))∀p, p′ ∈ T 〈w〉(m/p ' m/p′) )
⇒ ( fingen(∃〈w〉(T )) ⇒ fingen(T ) ).

Proof. Let m ∈ M (M(P )) and assume that ∀p, p′ ∈ T 〈w〉(m/p ' m/p′).
Let H be a cycle and that E(H)∩ T 6= {}. It is sufficient for us to prove

that ∃〈w〉(T ) = T , for it gives the contrapositive proof of fingen(∃〈w〉(T )) ⇒
fingen(T ).

Assume, hypothetically, that there exists some p ∈ T 〈w〉. We have 〈w〉p ∈
R(H)∪L(H). By Proposition 6.2, there exist i, j such that 〈w〉pi ∈ L(H) and
〈w〉pj ∈ R(H). By Theorem 6.6, we have m/pi 6' m/pj, which contradicts
∀p, p′ ∈ T 〈w〉(m/p ' m/p′). Hence, we have T 〈w〉 = {}, and ∃〈w〉(T ) = T . ut

Finally, we can show the main theorem that states the correctness of our
algorithm.
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Variable: a boolean variable modular ;
Input: a finite program P ;
E ←M(P );
if E is inconsistent return ‘Analysis failed’;
for each c ∈ P do

T ← T (ε0, c);
repeat
W ← Nodes(T );
for each w ∈ W do
E ′ ← {m/p ' m/p′ | p, p′ ∈ T 〈w〉};
if E ∪ E ′ is consistent then
if (modular) E ← E ∪ E ′;
T ← ∃〈w〉(T )

end if
end for

until W = Nodes(T );
if W 6= {} return ‘Analysis failed’

end for;
return ‘P is NSTO’

Figure 6.2: Our occurs-check algorithm

Theorem 6.8 (Main Theorem) Let P be a finite program. P is NSTO
if the algorithm in Figure 6.2 returns ‘NSTO’.

Proof. Note that every success of the consistency check in the innermost
loop ensures that there exists some moding function that satisfies the mode
constraints E ∪ E ′ and consequently also one of its subsets M(P ) ∪ E ′. By
Theorem 6.7, we have fingen(∃〈w〉(T )) ⇒ fingen(T ). Thus, if ‘NSTO’ is
returned, for each clause c, we have fingen(T (ε0, c)) since fingen({}). In fact,
by the same reason, we have fingen(T (w, c)) for all w and c. By Theorem
6.5 we know that P is NSTO. ut

In the algorithm, modular is a boolean variable specifying the modularity
of the analysis. When it is set to false, the variable E does not change after
initialization. When it is set to true and ‘NSTO’ is returned, E contains the
mode constraints imposed by the program P together with extra, asymptotic
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equality constraints artificially introduced in order that the algorithm can
finish the analysis of P . We shall call such a pair (P , E) as a modular result.
Every modular result (P , E) satisfies M(P ) ⊆ E. Modular results satisfy
the following property:

Proposition 6.3 (Modular Analysis) Let (P 1, E1) and (P 2, E2) be mod-
ular results. If E1∪E2 is consistent, then (P 1∪P 2, E1∪E2) is also a modular
result.

Proof. We can apply the occurs-check algorithm to P 1 ∪P 2 in the exactly
same order as prescribed by (P 1, E1) and then by (P 2, E2). The consistency
check of E ∪ E ′ in the innermost loop always succeeds because we have
E ∪E ′ ⊆ E1 ∪E2. This inclusion is obvious since we have E = E1 ∪M(P 2)
at the end of visiting P 1. ut

6.5 Example of the Analysis

In this section, we demonstrate how to perform our occurs-check algorithm
toward Guarded Horn Clauses (GHC) programs, taking as an example the
GHC program in Figure 6.1. This program contains bidirectional commu-
nication between goals. To the knowledge of the author, there has been no
algorithm that can analyze this program.

GHC is essentially the same as the concurrent logic programming lan-
guage defined in Chapter 2. The left-hand side of ‘|’ in a clause specifies the
guard of that clause, expressing the condition for the clause to be used in a
reduction.

Logically, guard goals and body goals have the same meaning. However,
we can exploit some characteristics of the guard to enhance the precision of
the analysis. Specifically, the variables in a clause known to be ground when
the reduction takes place can be statically eliminated from the clause, by
means of replacing those variables by ground terms, for those variables have
nothing to do with infinite structures. We will see this in the example.

The analysis proceeds as follows:

1. Preprocess : Translate the input program into the abstract language
defined in Section 6.2.3. We must make the program linear headed.
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2. Building Initial Graphs : For each clause, build the list of the variables
that occur more than once. In addition, we compute for each variable
in the list, a list of labeled paths at which the variable occurs.

3. Mode Inference: Collect the mode constraints imposed by the program,
consulting Definition 6.21.

4. Graph Reduction: Apply the occurs-check algorithm in Figure 6.2 to
the initial graphs and the mode constraints computed above.

In the following, we will explain each of these steps in a detail.

6.5.1 Preprocessing

We will translate source programs into our abstract language defined in Sec-
tion 6.2.3. Let us assume that the source program is written in a concurrent
logic programming language where the guard of a clause consists of guard
goals. A guard goal in a clause is said to be read only if it does not bind
terms to any variables occurring in the head of that clause.

First of all, we introduce a clause (main ← B) if there is a query B to
be executed. Then, each clause is translated into the abstract language as
follows:

1. Every read-only guard goal X = t where X does not occur in t is stati-
cally executed in the clause. Specifically, the goal is removed and every
X in the clause is replaced with t.

2. Every read-only guard goal that confirms some variables have been
instantiated to particular ground term tuples, such as int(X) and
numeric comparison, is expanded in the clause. In general, expanding
a guard goal requires the use of metavariables for specifying the set of
the tuples of terms that together can replace the variables occurring in
the goal. Examples of guard expansion can be found in Figure 6.3.

While guard expansion may generate unbounded number of clauses,
they all have the same alias information and hence the same initial
graph. Thus, the algorithm can handle those clauses at once by simply
ignoring those variables.

3. Every remaining guard goal is converted into an appropriate body goal.
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main ← print(Hs0), Hs0 =0 [1|Hs1],
mul(2,Hs0,L2), mul(3,Hs0,L3), mul(5,Hs0,L5),
merge(L2,L3,L23), merge(L23,L5,Hs1). % main-1

merge([a|As1],[b|Bs1],Ms) ←
Ms =1 [a|Ms1], merge(As1,[b|Bs1],Ms1).
(for all a, b such that a < b) % merge-1

merge([a|As1],[b|Bs1],Ms) ←
Ms =2 [b|Ms1], merge([a|As1],Bs1,Ms1).
(for all a, b such that a > b) % merge-2

merge([a|As1],[a|Bs1],Ms) ←
Ms =3 [a|Ms1], merge(As1,Bs1,Ms1).
(for all number a) % merge-3

mul(N,[A|As1],Ms) ←
Ms =4 [M|Ms1], M :=5 N * A, mul(N,As1,Ms1). % mul-1

Figure 6.3: Program translated from Figure 6.1

4. Every multiple occurrence of a variable in the head is renamed into
a fresh variable, and a body goal that performs passive unification
between them is introduced to the clause. In short, we assume that
multiple head occurrences of a variable always express passive unifi-
cation. This assumption makes sense if the program is cooperatively
moded.

5. For each body goal calling a built-in predicate, including a unification
goal, the top-level function symbol is subscripted by its own integer
number, thus introducing mode polymorphism to built-in predicates.
This subscripting is essential for gaining the precision of the analysis;
for otherwise the left-hand side of all the unification goals must have
the same moding function.

Example. The GHC program in Figure 6.1 is translated into our language
as in Figure 6.3. In the translation process, we make use of the property of
guard numeric comparison goals that they reduce only if both the arguments
have been instantiated to numbers.
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main-1:: Hs0 1:<print,1>, 2:<u0,1>, 3:<mul,2>,
4:<mul,2>, 5:<mul,2>

Hs1 2:<u0,2><.,2>, 7:<merge,3>
L2 3:<mul,3>, 6:<merge,1>
L3 4:<mul,3>, 6:<merge,2>
L5 5:<mul,3>, 7:<merge,2>
L23 6:<merge,3>, 7:<merge,1>

merge-1:: Ms1 1:<u1,2><.,2>, 2:<merge,3>
merge-2:: Ms1 1:<u2,2><.,2>, 2:<merge,3>
merge-3:: Ms1 1:<u3,2><.,2>, 2:<merge,3>
mul-1:: M 1:<u4,2><.,1>, 2:<is5,1>

Ms1 1:<u4,2><.,2>, 3:<mul,3>
N 2:<is5,2><*,1>, 3:<mul,1>

Figure 6.4: Initial graphs of Figure 6.3

6.5.2 Generating Initial Graphs

We will explain how to represent equation sets in the implementation. A close
look at the algorithm reveals that any subset of the initial graph of a clause
c = (h ← b1, . . . , bn) that takes place in the algorithm is always of the form
∃〈ik〉 . . . ∃〈i1〉T (ε0, c). For each variable X, let us denote by Z(X) the set of
the labeled paths at which X occurs, that is, let Z(X) = {i :p | −→p (bi) ≡ X}.
Then, every equation set of the form ∃〈ik〉 . . . ∃〈i1〉T (ε0, c) can be represented
by a function N that maps each variable X to a subset of Z(X) as follows:
{〈i〉p = 〈j〉q | i :p ∈ N(X), j :q ∈ N(X)} \ ID . Thus, we can represent each
equation set that appears in the algorithm by {〈X, N(X)〉 |N(X) 6= {}}.

We assume that initial graphs for built-in predicates are empty and that
the mode constraints imposed by built-in predicates are known prior to the
analysis. For instance, we know that the built-in predicate := that computes
an integer expression imposes no constraints.

Example. Figure 6.4 shows the initial graphs of the program in Figure 6.3.
Observe how the set {〈X, N(X)〉 |N(X) 6= {}} is written in the text repre-
sentation. Each pair 〈X, N(X)〉 is written as X followed by a list of the
elements i :p contained in N(X). In the text representation, we have abbre-
viated f/n to f , =k/2 to uk, and :=5/2 to is5.
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6.5.3 Mode Inference

Mode inference consists of two phases: (1) generate mode constraints, and
(2) check their consistency. Generation is straightforward from the definition.
In what follows, we may abbreviate m/p to p, and s to -s.

The consistency check can be performed as constraint simplification. The
reader can see that the generated constraint can be described as a set of
equality constraints of the forms of p = q, p = -q, p = OUT or p = IN ,
convergence constraints of the forms of p → u or p → -u, or R-constraints
where p and q are paths and u is a variable ranged over uniform moding
functions satisfying u = IN ∨ u = OUT .

Clauses with more than two occurrences of a variable impose non-binary
R-constraints. Most R-constraints can be iteratively simplified into equality
constraints, using for instance the following properties:

• R({|s, s′ |}) ⇔ s = s′

• R({|OUT |}+ S) ⇔ ∀m ∈ S(m = IN )

• R({|IN |}+ S) ⇔ R(S).

However, in general, there is a case where some R-constraints remain and
they cannot be simplified any more. In this case, the consistency check of the
constraints becomes expensive. The simplest solution for overcoming this is
to strengthen the remaining R-constraints so that they are removed. For
example, assume we have R({|m/p|} + S). If we by some reason know that
m(p) = out , we can strengthen with the constraint m/p = OUT so that this
R-constraint is removed. This solution is sound because the consistency of
the strengthened constraints ensures that of the original constraints. When
all the R-constraints are successfully removed, the mode information in the
program can be represented in the form of a feature graph. Readers are
referred to the paper [34] for more information.

When every constraint is either an equality constraint or a convergence
constraint, the consistency check is easy. This is because, in this case, the
check amounts to remembering for each path p constrained with convergence
constraints a single variable u ranging over uniform moding functions such
that m/p → u.
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IN = <mul,2>
IN = <is5,2><*,2>
<merge,1> = <merge,1><.,2>
<merge,1> = <merge,2>
<merge,1> = -<merge,3>
<merge,1> = -<mul,3>
<merge,1> = -<u0,1><.,2>
<merge,1> = -<u1,1>
<merge,1> = <u1,2>
<merge,1> = -<u2,1>
<merge,1> = <u2,2>
<merge,1> = -<u3,1>
<merge,1> = <u3,2>
<merge,1> = -<u4,1>
<merge,1> = <u4,2>
<merge,1><.,1> = -<is5,1>
<merge,1><.,1> = -<u5,1>
<merge,1><.,1> = <u5,2>
<mul,1> = <is5,2><*,1>
<print,1> = -<u0,1>
<print,1> = <u0,2>

Figure 6.5: Mode constraints imposed by Figure 6.3

Example. Figure 6.5 shows the result of simplifying the mode constraints
imposed by Figure 6.3. Fortunately, all the R-constraints have been reduced
into equality constraints and hence we can easily confirm the consistency. ut

6.5.4 Applying the Algorithm

We apply the algorithm in Figure 6.2 to each initial graph of a clause and
confirm that every variable 〈i〉 in the graph, which corresponds to the i-th
body goal of that clause, can be removed.

Example. First, we arbitrarily choose the clause merge-1. The initial graph
{〈1〉〈=1/2, 2〉〈./2, 2〉 = 〈2〉〈merge/3, 3〉, 〈2〉〈merge/3, 3〉 = 〈1〉〈=1/2, 2〉〈./2, 2〉}
has the text representation Ms1 1:<u1,2><.,2>, 2:<merge,3>. Of the two
goals in the graph, namely 1:Ms=1[a|Ms1] and 2:merge(As1,[b|Bs1],Ms1),
let us arbitrarily choose the goal 2. The goal happens to have only one vari-
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able occurrence in the graph, that is, only Ms1 occurs at <merge,3>. We
want to prove that <merge,3> ' <merge,3> is consistent with E. To this
end, we introduce a uniform moding function U1 ∈ {IN ,OUT} and test the
consistency of E strengthened with <merge,3> → U1. We know that the
strengthened E entails <merge,1> → -U1 and is still consistent. Hence, the
goal 2 is removed. This removal lets us remove the variable Ms1 from the
text representation of the graph since it has now only one occurrence, which
means that we have no equations from Ms1 in the graph. Since the removal
of Ms1 makes the graph empty, the analysis for merge-1 is finished.

Assuming that the variable modular is set to true, E is now strengthened
with the constraint <merge,1> → -U1.

Next, we choose the clauses merge-2 and merge-3. As you can see, the
current E is strong enough to remove the goal 2 of the graph of each of these
clauses, because E already entails that <merge,3> → U1. Therefore, the
analysis for these clauses is finished.

Next, let us choose the clause mul-1. Using Figure 6.5, you can easily
confirm that we already have <u4,1> → U1, which entails <u4,1><.,1> →
U1 and <u4,1><.,2> → U1. Therefore, the goal 1 is removed from the
graph. This removal changes the variables M and Ms1 into singletons and
hence we can remove them, leaving solely N in the graph. Then, introducing
a U2 ∈ {IN ,OUT}, we can strengthen E with <is5,2><*,1> → U2 without
causing inconsistency and the goal 2 is removed. Thus, the analysis for mul-1
is finished.

Finally, we tackle the clause main-1. Choose the goal 1, introduce a U3 ∈
{IN ,OUT} and try <print,1> → U3. Letting U3 = -U1, it is consistent
with <u0,1><.,2> → U1, and the goal 1 is removed. Next, choose the goal
3, introduce a U4 ∈ {IN ,OUT}, and try <mul,2> → U4 and <mul,3> →
U4. Since <mul,2> = IN, we have U4 = IN. Since <mul,3> → U1, we have
U1 = IN. Now, we can check the consistency, and the goal 3 is removed.
Then, the variable L2 is removed because it is now a singleton. Since we
already have <mul,3> → IN, the goal 4 and L3, the goal 5 and L5, the goal
6 and L23, the goal 7 and Hs1, and then the goal 2 can all be removed in
this order. Thus, the analysis for main-1 is finished.

These ensure that the program is NSTO.
At the end of the analysis, the mode constraints <merge,3> → IN and

<mul,1> → IN and <mul,3> → IN have been added to E. The strength-
ened set of mode constraints has sufficient information to perform modular
analysis. ut
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6.6 Detection Power of our Analysis

Input programs that can be handled by our analysis are cooperatively moded
concurrent logic programs. These include programs with bidirectional com-
munication between goals, a typical example of which is the one in Figure
6.1. Our algorithm can also detect the NSTO property of some programs
with bidirectional communication that use only one program variable be-
tween goals.

Our algorithm may fail for some programs. In particular, our analysis
has inherent limitations in detecting the NSTO property of programs having
a clause such that variables that connect between body goals have aliases.

For example, consider the following program:

main(Xs,Xs0) :- Xs =1[accept(As,As0)|Xs0], echo(As,As0).

echo(Es,Es0) :- Es =2[hello|Es0].

The goal main(Xs,Xs0) sends to the difference list Xs \ Xs0 an accept

message. This difference list is sent by the first unification goal. The
accept message contains another difference list As \ As0 to which echo

sends a message of hello. Here, the goal echo(As,As0) contains an alias
since As0 is returned as a part of As. This is formalized by the constraint
m/〈echo/2, 2〉 = m/〈echo/2, 1〉〈./2, 2〉, imposed due to (BU) applied to =2.

Now, our algorithm attempts to reduce the initial graph of the first clause,
which is {〈2〉〈echo/2, k〉 = 〈1〉〈=1/2, 2〉〈./2, 1〉〈accept/2, k〉 | k = 1, 2} ?, to
the empty graph. To do this, we need to coerce As and As0 into being asymp-
totically equal, by strengthening either with m/〈echo/2, 1〉 ' m/〈echo/2, 2〉
or with m/〈=1/2, 2〉〈./2, 1〉〈accept/2, 1〉 ' m/〈=1/2, 2〉〈./2, 1〉〈accept/2, 2〉.
However, such strengthening is not consistent with the mode information of
the program and therefore the analysis fails.

6.7 Conclusion

We have proposed a mode-based occurs-check algorithm that can handle pro-
grams with bidirectional communication. The algorithm iteratively removes
body goals from each initial graph that represents a clause, whose correctness
relies on the strengthening of mode constraints by asymptotic equality con-
straints. The notion of asymptotic equality is devised by the author in order
to formulate a sufficient condition of the NSTO property in the analysis.
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The restriction on the input programs is that the clauses must have linear
heads and that the program is cooperatively moded. Although the transfor-
mation into linear-headed programs cannot be automated for general logic
programs, we have shown how to automate this for cooperatively moded
programs.

The main contribution of this work is that our algorithm can prove the
NSTO property of a program with bidirectional communication between
goals, which cannot be handled by existing analysis.
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Chapter 7

Assigning Types to LMNtal
Language

7.1 Introduction

Graph rewriting provides a framework for modeling various computation as
concurrent transformation of graph structures [1]. It is known that graph
structures and rewrite rules for them have mathematical foundations that
facilitate the analysis of the described computation. By putting restrictions
on the classes of graph structures and rewrite rules, the analysis of the com-
putation can be formulated elegantly. One of the early examples of such at-
tempts is Interaction Nets [24]. As a framework for modeling computation,
the computation model should be as simple as possible. On the other hand,
graph rewriting can also serve as a model of programming languages. Since
programs should be written succinctly, the languages must devise some conve-
nient syntax. For example, attaching a name and attributes to a graph node
is particularly useful for practical programming. Such extensions can also be
useful for optimizing the implementation of the language system. However,
extending the syntax can complicate the formalization of languages.

Strong type systems provide a bridge between the simplicity of the lan-
guage and its practical usefulness. There is various work on providing strong
type systems for particular practical language systems based on graph rewrit-
ing, for example AGG [27]. However, there has been little work on how to
offer relatively simple graph rewriting as a practical programming language.
By relatively simple, we mean that processes and data are treated in a unified
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way. In our terminology, most of practical graph rewriting languages with
implementation, including AGG, are not relatively simple since they allow
attribute values to be attached to a graph node. The setting of relatively
simple graph rewriting greatly simplifies the formalization of the language.

In this chapter, we take LMNtal (pronounced “elemental”) [38] as an
instance of a relatively simple graph rewriting language, and introduce a
strong type system into LMNtal. In LMNtal, graph nodes called atoms are
connected together with links. The type system is introduced by firstly clas-
sifying atoms into active atoms (seen as procedures) and the others (seen as
data) and then by formalizing what kind of atoms can be connected to active
atoms. We will explain how our type system can be used for describing sev-
eral static properties of a program as well as for optimizing implementation.

The rest of this chapter is organized as follows. Section 7.2 defines an
LMNtal language, and Section 7.3 shows a program example and objectives
of our type system. Section 7.4 and 7.5 introduce the type system, and
Section 7.6 shows examples of type inference. Section 7.7 explains some
theoretical results including type safety, and Section 7.8 gives concluding
remarks, discussing related work.

7.2 The Language

In this section, we define a relatively simple graph rewriting language, based
on LMNtal. LMNtal is a hierarchical graph rewriting language where graph
nodes called atoms are connected together with one-to-one links. LMNtal
provides a feature called membranes that allows us to group atoms in a graph
structure hierarchically. The language we will define in this section differs
from the original one advocated in the paper [38] in that ours is simplified
with respect to ‘process contexts’ and extended with membrane names.

7.2.1 Syntax

The syntax of our LMNtal language is defined in Figure 7.1. p is an atom
name, m is a membrane name, and X is a link name (or a link in short). We
assume that these names are taken from disjoint sets. We have two syntactic
classes in the language: processes P and process templates T .

A process represents a graph structure that rewrites itself. 0 is an empty
process; p(X1, . . . , Xn) is an atom; P, P is parallel composition of processes;
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P ::= 0 | p(X1, . . . , Xn) | P, P | m{P} | (T :- T )
T ::= 0 | p(X1, . . . , Xn) | T, T | m{T} | (T :- T ) | @p | $p

Figure 7.1: Syntax of LMNtal

m{P} is a process grouped by a membrane { }; and (T :- T ) is a rewrite
rule for processes that are located in the same membrane as this rule. Each
argument of an atom is called as a port. An atom of the form X =Y , called
a connector, is used for connecting the other occurrences of the links X and
Y together.

A process template is a component of a rule. Intuitively, it represents
the processes to be rewritten. A rule context @p matches sequences of rules,
while a process context $p matches sequences of atoms and membranes.

In what follows, we will always consider a process as a process template
to simplify the formulation.

The part of a process template not included in any rule is called the
non-rule part of it. The formal operational semantics will be given later.

Syntactic Conditions.

P and T must enjoy the following syntactic conditions:

(L1) (Link condition) No links occur more than twice in the non-rule part
of a process template.

(L2) (Link condition for rules) Each link occurring in a rule occurs exactly
twice in that rule.

(L3) Every process context occurring in a rule occurs exactly twice in that
rule.

(L4) Every process context and rule context occurring in a rule occurs ex-
actly once in the left-hand side of that rule and does not occur in other
rules inside the rule.

(L5) All process or rule contexts of the same name always occur at mem-
branes of the same name.
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(L1) is one of the characteristic conditions of LMNtal. Link condition
enables us to find a linked atom quickly. (L2) and (L3) are to preserve (L1)
over rewritings. (L4) ensures that process contexts and rule contexts provide
pattern matching in a rewriting.

A link occurring exactly once in the non-rule part of a process template
T is called a free link of T . We denote by fv(T ) the set of free links of T . A
link occurring in a process template T is called a local link of T if it is not a
free link.

An LMNtal program is written as a process. It is convenient to consider
that the process representing the entire program is located in some virtual
membrane. Let us denote the name of that membrane by root.

In this work, to make the formulation simple, we will assume that the
arguments of an atom are all distinct. It can easily be checked that this
limitation does not make any essential difference to the language. This is
because every local link of an atom can be expressed as two free links together
with a connector atom between them. For example, the atom p(X,X) can be
expressed as the process p(X,Y), X = Y. The equivalence between these two
processes can be stated in terms of the operational semantics defined later.

Notes on Membrane Names.

Only membrane names and its related syntactic condition (L5) are the exten-
sion to the original LMNtal language. We have learned from the experience of
writing many LMNtal programs that each membrane that appears in a pro-
gram has its statically determined role, and found it useful to give names to
such roles by introducing membrane names. Membranes with different names
can have different implementation with respect to data representation of their
contents. Assigning names to membranes does not affect the language power
since m{P} is essentially nothing more than anonymous{name(X),m(X), P}
where name is assumed not to be used for other purposes.

In some occasions, (L5) requires too many membranes to have the same
name. For example, consider a program that uses several membranes in order
to describe sequential execution of tasks. Each task is executed in a separate
membrane and the result is sent to another membrane. Then, if the result
is transferred using process contexts, these membranes must have the same
name, which can be a cause of lower precision of analysis. We anticipate
that the subtyping of membranes can address this issue, but it is beyond the
scope of this work.
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(E1) 0, P ≡ P
(E2) P,Q ≡ Q,P
(E3) P, (Q,R) ≡ (P, Q), R
(E4) P ≡ P [Y/X] if X is a local link of P
(E5) P ≡ P ′ ⇒ P, Q ≡ P ′, Q
(E6) P ≡ P ′ ⇒ m{P} ≡ m{P ′}
(E7) X =Y, Y =X ≡ 0
(E8) X =Y ≡ Y =X
(E9) X =Y, P ≡ P [Y/X] if P is an atom and X occurs in P
(E10) m{X =Y, P} ≡ X =Y, m{P} if exactly one of X and Y

is a free link of P

Figure 7.2: Structural congruence on LMNtal processes

7.2.2 Structural Congruence

In order to formulate the operational semantics, we first define the structural
congruence (≡) and then the reduction relation (−→).

We define the relation ≡ on processes as the minimal equivalence relation
satisfying the rules shown in Figure 7.2. Two processes related by ≡ are
essentially the same and are convertible to each other in zero steps. Here,
[Y/X] is a link substitution that replaces X with Y .

(E1)–(E3) are the characterization of processes as multisets. (E4) allows
the renaming (α-conversion) of local links. Note that the link Y cannot occur
free in P for the link condition on P [Y/X] to hold. (E5)–(E6) are structural
rules that make ≡ a congruence. (E7)–(E9) are concerned with =. (E7)
says that a self-absorbed loop is equivalent to 0, while (E8) expresses the
symmetry of =. (E9) is an absorption law of =, which says that a connector
can be absorbed by another atom, which can again be a connector. Because
of the symmetry of ≡, (E9) says that an atom can emit a connector as well.

7.2.3 Reduction Relation

Computation proceeds by rewriting processes using rules collocated in the
same “place” of the nested membrane structure.

We define the reduction relation −→ on processes as the minimal relation
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(R1)
P −→ P ′

P, Q −→ P ′, Q
(R2)

P −→ P ′

m{P} −→ m{P ′}

(R3)
Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′

(R4) m{X =Y, P} −→ X =Y, m{P}
if X and Y are distinct and do not occur in P

(R5) X =Y, m{P} −→ m{X =Y, P}
if X and Y occur in the non-rule part of P

(R6) Tθ, (T :- U) −→ Uθ, (T :- U)

Figure 7.3: Reduction relation on LMNtal processes

satisfying the rules in Figure 7.3. Note that the right-hand side of −→ must
observe the link condition of processes.

Of the six rules, (R1)–(R3) are structural rules. (R4) and (R5) deal
with the interaction between connectors and membranes. (R4) says that,
when a connector in a membrane connects two links coming from outside,
the membrane can expel the connector. (R5) says that, when a connector
connects two links coming from the same membrane, the connector itself can
go into that membrane.

(R6) is the key rule of LMNtal. The substitution θ is to represent what
has been received by each process context and rule context. The whole
resulting process, namely U, (T :- U) and its surrounding context, should
observe the link condition, but this can always be achieved by α-converting
T :- U before use so that the new local links don’t cause name clashes
with the context. The substitution θ in (R6) is represented as a finite set of
substitution elements of the form βi/αi (meaning that αi is replaced by βi),
and should map every @p in T to a sequence of rules and every $p in T to a
sequence of atoms and membrane processes.
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7.3 A Motivating Example

7.3.1 Concatenating Lists

In LMNtal, the skeleton of a list can be represented, using element processes
c(ons) and a terminal process n(il), as c(A1, X1, X0), . . . , c(An, Xn, Xn−1),
n(Xn). Here, Ai is the link to the i-th element from the skeleton, and X0

is the link to the whole list from somebody else. This corresponds to a list
formed by the constraints X0 = c(A1, X1), . . . , Xn−1 = c(An, Xn), Xn = n in
constraint logic programming languages, except that the LMNtal list is a
resource rather than a value.

Two lists can be concatenated using the following two rules:

append(X0,Y,Z), c(A,X,X0) :- c(A,Z1,Z), append(X,Y,Z1)

append(X0,Y,Z), n(X0) :- Z=Y

These rules can be applied to the following process:

append(X0,Y0,Z), res(Z),

c(A1,X1,X0),c(A2,X2,X1),c(A3,X3,X2),n(X3),1(A1),2(A2),3(A3),

c(B1,Y1,Y0),c(B2,Y2,Y1),n(Y2), 4(B1),5(B2)

Figure 7.4 shows a graphical representation of the program and its execution.
Numbers in small letters are to clarify argument positions. In the final state,
the concatenated list is connected to a unary atom res.

The above rules have clear correspondence with the append predicate
written in a concurrent logic programming language:

append(X0,Y,Z) :- X0=c(A,X) | Z=c(A,Z1), append(X,Y,Z1).

append(X0,Y,Z) :- X0=n | Z=Y.

The difference is that LMNtal has eliminated syntactic distinction between
processes (i.e., append), and data (i.e., list skeleton).

7.3.2 Objectives of Our Type System

Consider the list concatenation program above. We know the argument of
res can connect only to a list of integers. This kind of static type anal-
ysis has various applications. For instance, it justifies data representation
optimization in the runtime system. Moreover, it allows us to describe and
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Figure 7.4: List concatenation
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understand program specification. It is not clear, however, how we can rep-
resent and analyze such a property systematically. Previous work could not
handle such a property using strong typing. This is because we had no guide-
lines on how to neglect the append atom initially connected to res in the
analysis.

Probably the most well-known method for typing rewriting graphs is to
give a graph homomorphism from process graph structures to a type graph,
which is used in the graph rewriting system AGG [27]. This method, how-
ever, does not allow the distinction between processes and data within the
graph structure, and hence properties like the one mentioned above cannot
be handled well.

Interaction Nets [24] provide a partial solution to this, though the lan-
guage is much restricted. They provide a type system that can type the
above example of list concatenation by requiring for each argument of an
atom a fixed description of its datatype such as lists or integers given prior
to the analysis. Hence, they are not suitable for analyzing arbitrarily com-
plex process structures in the program, in the sense as explained in Section
7.6.3. Moreover, what they provide is essentially a type checking algorithm,
rather than type inference as we will provide in this work.

In the following two sections, we propose a type system as a solution to
the above issues. In our type system, a programmer only needs to classify
atoms into active atoms and data atoms in order to obtain by inference a
type graph that describes complex process structures in the program.

7.4 Formalization of Types

In this section, we formalize our type system for LMNtal processes that ex-
press which atoms can be connected to the ports of active atoms. Recall that
a port means an argument of an atom. We first define paths that represent
ports. Next, we define a polarized path as a path with an optional polar-
ity inversion symbol. Then, we define types as constraints on the polarized
paths.

7.4.1 Principles of our Type System

In this work, we will adopt the following principles to introduce a strong type
system to LMNtal:
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• Every active atom of the same name (and arity) located in a membrane
of the same name has the same type.

• Every data atom of the same name (and arity) connected directly from
a port of the same type has the same type.

Here, we say that atoms having the same name (and arity) are typed the
same if their corresponding ports have the same types.

The former is justified when we consider an active atom as a procedure call
in other languages since most procedures have fixed usage of their arguments.
This principle means that active atoms are not treated as polymorphic.

The latter pertains to the treatment of complex type information, saying
that the corresponding ports of two data atoms do not always have the same
type just because those atoms have the same name. This principle is justified
when we consider a data atom as a constructor of data structures in other
typed languages since the declarations of most datatypes specify what their
components are like. In LMNtal, the relationship of being a component is
often described as a link between ports.

There are some circumstances where active atoms should not be regarded
as procedures. This happens when active atoms are data structure construc-
tors rewriting by themselves.

7.4.2 Specification of Activeness

We now formalize the activeness of atoms. Our type system requires a map-
ping, written as out, that specifies whether an atom is active and which port
of the atom is the output port if it is not active (i.e., data).

Assumption 7.1 Let N denote the set of all positive integers and define

Func
def
= {p/n | p is an atom name and n ≥ 0 is an integer}. We assume that

a mapping out : Func → N ∪ {⊥} is given and out (=/2) = ⊥. ut

Definition 7.1 (Activeness) Assume a mapping out is given. If u ∈ N,
out (p/n) = u means that atoms of name p with n arguments are considered
as a data atom having the u-th argument as their output port. An atom that
is neither a data atom nor a connector =/2 is said to be active. ut
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Example. We can assume the following setting for analyzing Figure 7.4:

out (c/3) = 3, out (n/1) = 1,
out (append/3) = ⊥, out (res/1) = ⊥.

This specifies lists are taken as data while append and res are active. ut
We assume that out is given by the programmer prior to type inference.

Since there are many ways of giving the mapping out , the corresponding
types inferred from a program vary according to the different settings of out.
We will see this in Section 7.6.3.

There are some general criteria on what kind of atoms should be con-
sidered as active. Atoms representing procedures (e.g., append) are usually
considered as active. On the other hand, atoms representing integer numbers
should be data atoms in almost every occasion. This is because not doing so
would compel all ports that carry integers to have the same type due to our
type principle, which would result in a practically useless outcome. For the
same reason, list constructors should usually be data atoms. Atoms react-
ing by themselves need to be active. Atoms representing messages between
processes can be either active atoms or data atoms.

7.4.3 Traceability Condition

We introduce two syntactic conditions for programs: one is called as the ac-
tive head condition for a rule in the program, and the other is the traceability
condition for a process template in the program.

Definition 7.2 (Traceability #1) An atom P is traceable from an active
atom if and only if:

1. P is an active atom, or

2. P is an atom connected directly to an atom traceable from an active
atom. ut

Links occurring in the both sides of a rule are not considered as connected.

Assumption 7.2 (Active Head Condition) Any atom occurring in the
left-hand side of a rule must be traceable from an active atom. ut
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Intuitively, the active head condition states that data atoms do not rewrite
themselves. For example, the rule 4(X) :- 5(X) is prohibited when 4/1 is
data. It also excludes the rule X = Y :- f(X,Y). The operational semantics
ensures that the active head condition is preserved under reductions. We
take the active head condition as mandatory.

Definition 7.3 (Traceability #2) An atom P occurring in the non-rule
part of a process template T is traceable from a free link of T if and only if:

1. P contains a free link of T , or

2. P is an atom connected directly to an atom traceable from a free link
of T . ut

Assumption 7.3 (Traceability Condition) Any atom occurring in the
non-rule part of a process template T in the program must be traceable from
an active atom or a free link of T . ut

These two conditions can always be satisfied if we consider more atoms
active, though doing so can lower the usefulness of our analysis.

Example. Consider the rule inc(X,Y) :- s(X,Y). Let inc/2 be active and
s/2 data. The process inc(A,B),inc(B,A),(inc(X,Y) :- s(X,Y)) satisfies
both of the active head condition and the traceability condition. On the other
hand, the process after reductions s(A,B),s(B,A),(inc(X,Y) :- s(X,Y))

does not satisfy the traceability condition. ut
A group of data atoms having all of their ports connected to themselves

are called garbage. For example, the process s(A,B),s(B,A) is garbage when
s/2 is a data atom. Garbage does not observe the traceability condition,
which means that those data atoms are not captured by our typing scheme
and are ignored. However, this does not pose a fundamental problem when
every rule satisfies the active head condition, since in this case garbage can
only be received by a process context and cannot be compared to something
or decomposed into parts.

Note that the traceability condition is not preserved under reductions,
as shown in the above example. Hence, we do not take the traceability
condition as mandatory. Nonetheless, when the program is well typed in our
type system, we can prove that unary data atoms preserve the traceability
condition over reductions.
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Garbage corresponds to vicious circles in Interaction Nets [24]. Their type
system provides the notion of partitions between ports in order to statically
ensure that no vicious circles, or garbage, can happen in the execution.

7.4.4 Applications of Our Type System

Several practical applications are known that make use of our type system.
Here we outline some of them.

One of the simplest and most important is the space-efficient implemen-
tation of unary data atoms, such as integers and other symbolic values like
yes or no. Since unary data atoms are guaranteed to preserve the traceabil-
ity condition over reductions, every unary data atom is always linked from
some atom other than a unary data atom. Hence, we can replace a pointer
to a unary data atom by the content it points to, saving the memory space.
This optimization of data representation is quite beneficial in implementing
a graph rewriting language system in small memory environments such as
embedded devices and the active head condition is essential for this purpose.

The other application is the acceleration of finding applicable rules in a
membrane. Active atoms can be stored in a queue or a stack so that they can
be used to drive the matching, as in some efficient implementations [5, 19]
of symbolic concurrent languages. Since LMNtal has no distinction between
processes and data and also allows nested membrane structures unlike these
languages, more consideration is needed in order to achieve comparable effi-
ciency.

As usual, types can be used for guaranteeing the type safety of the trans-
ferred data through foreign language interfaces.

7.4.5 Polarized Paths

Here, we define polarized paths, which are a large portion of what is typed
in our type system. The rest of what is typed are membranes of whatever
names, for which the names of submembranes and active atoms they can
contain will be collected.

Definition 7.4 (Polarized Paths) A polarized path is an element of the
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set PPath defined as follows:

Root ::= 〈r : p/n, i〉 | X
Path ::= Root | Path〈f/n, i〉

PPath ::= Path | −Path

where r is a membrane name, X is a link name, p/n is an active atom, f/n
is a data atom, and i = 1, . . . , n. ut

A polarized path consists of a path and an optional polarity inversion
symbol −. A path corresponds to a port. To begin with, we explain the
notion of a root, which is a special case of a path.

A root is either a port of an active atom, if it is of the form 〈r : p/n, i〉,
or a link name X. The root 〈r : p/n, i〉 represents the i-th argument of an
active atom p/n located in a membrane of the name r. On the other hand,
the root that is a link name X represents the atom argument filled with the
link X occurring in a process template where X is a free link of that process
template.

A path represents a port of an atom satisfying the traceability condition.
The construction of a path corresponds to the two traceability definitions
and expresses how to reach the represented port from a root. A path that is
a root represents the port specified by the root itself. On the other hand, for
any path p, the path p〈f/n, i〉 represents a port that is the i-th argument of a
data atom f/n whose output port is connected directly to a port represented
by p.

Applying a polarity inversion symbol − to a path or a polarized path
corresponds to finding the other side of a link, which is uniquely determined
due to the link condition. Hence, let −(−p) mean p and (−p)〈f/n, i〉 mean
−(p〈f/n, i〉) for any path p. The need for − in the definition of polarized
paths will become clear in Section 7.4.6. It is used for expressing the re-
lationship between a sender and a receiver of the same data as an equality
between polarized paths.

Example. The polarized path 〈root : append/3, 1〉〈c/3, 2〉〈c/3, 1〉 represents
the port containing a link to the second element of a list where the list is
received through the first argument of append at a membrane named root.
The polarized path −X〈c/3, 2〉〈c/3, 1〉 represents the port containing a link
to the second element of a list where the list is to be received through the free
link X of another process template, for example append(X,Y,Z). This is not
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to be confused with the polarized path X〈c/3, 2〉〈c/3, 1〉, which represents
the port containing a link to the second element of a list sent through the
free link X of a process template, for example append(A,B,X). ut

Constraints not only over roots but over paths enables us to formulate
the analysis of recursive and cyclic data structures. The way of extending
roots by 〈f/n, i〉’s is borrowed from the research [34] on the static analysis
of concurrent logic programs that has also been referred to in Chapter 6.

In the formalization, we have omitted the names of membranes a data
atom can be located in. This is not only for simplicity but originated from
our experience of writing programs in LMNtal.

7.4.6 Type Constraints

As we have said, we will assign a type to each port in terms of constraints1 on
the polarized paths. We will also assign a type to each membrane name. The
result of the type inference for a program is represented by a type constraint.

Definition 7.5 (Type Constraints) We define the syntax of type con-
straints E, or constraints in short, as follows:

E ::= true ; no constraints
| E ∧ E ; conjunction
| ∃X(E) ; localization of a link name
| (PPath = PPath) ; polarized paths have the same type
| (PPath : f/n) ; polarized path receives data atom f/n
| (r : p/n) ; membrane has active atom p/n
| (r : m) ; membrane has submembrane m

where X is a link name, and r and m are membrane names. ut

Let p and q be paths. The constraint (p = q) expresses that the two paths
are either senders or receivers of the same data, in which case we say that
they have the same type as each other, while (p = −q) expresses that the
two paths are a pair of a sender and a receiver of the same data, in which
case we say that they have the inverse types.

1The term constraint is used in this chapter differently from in the other chapters.
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For a path p, the constraint (p : f/n) expresses that the path p can receive
a data atom f/n, while the constraint (−p : f/n) expresses that the path p
can send a data atom f/n.

We have two kinds of constraints for membranes. Let r be a membrane
name. The constraint (r : p/n) expresses that the membrane r can contain
an active atom p/n. On the other hand, the constraint (r : m) expresses that
the membrane r can contain a direct child membrane of the name m.

Intuitively, the constraint ∃X(E) expresses a partial constraint obtained
from E by ignoring the information on the link name X. Formally, the
meaning of the construct ∃X is defined using the axioms for the equivalence
between constraints which are defined in the next paragraph.

Equivalence on Constraints

Finally, we define the equivalence on constraints. We write D = E if and only
if two constraints D and E are equivalent in the following sense. First of all,
we assume that ∧ is idempotent, commutative and associative and absorbs
true as its identity. We also assume that E = E ′ implies D∧E = D∧E ′ and
∃X(E) = ∃X(E ′). The rest of the assumptions on the equivalence are listed
in the following axiom. We will write D ⇒ E to mean that D = D ∧ E.

Axiom 7.1 We assume the following:

(EN1) (n = n) = true
(EN2) (m = n) = (n = m)
(EN3) D ∧ (m = n) = D[n/m] ∧ (m = n)

where D is a constraint not containing ∃X for any X
(EX1) E ⇒ ∃X(E)
(EX2) D ⇒ E implies ∃X(D) ⇒ ∃X(E)
(EX3) ∃X∃Y (D) = ∃Y ∃X(D)
(EX4) ∃X(D ∧ ∃X(E)) = ∃X(D) ∧ ∃X(E)
(EX5) ∃X(D) ⇒ E implies E = ∃X(E)
(EX6) ∃X((Xp = n) ∧ E) = ∃X(E[n/Xp])
(EX7) ∃X(

∧
i(Xpi : fi/ki) ∧ ∧

j(−Xqj : gj/mj) ∧ E) = E
where pi and qj are distinct for any i and j, and
E is a constraint in which X does not occur syntactically

where [n/m] replaces every m by n. ut
In (EX7), the condition that pi and qj are distinct is to avoid eliminating

the inconsistency.
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7.5 Formalization of Type Inference

In this section, we formalize our type inference.

7.5.1 Abbreviations

Here, we introduce abbreviations to make the formalization concise.

Definition 7.6 Let us denote the sequence X1, . . . , Xn of already-known
n ≥ 0 distinct links by ~X. In particular, we write { ~X} to mean {X1, . . . , Xn}.

For any constraint D, we define

∇ ~X(D)
def
= D[(−X1)/X1] . . . [(−Xn)/Xn].

ut
Example.

∇Y, Z((X = Y) ∧ (−Y〈f/2, 1〉 : g/3)) = ((X = −Y) ∧ (Y〈f/2, 1〉 : g/3)).

ut
The operator ∇ ~X is used for coupling two occurrences of a free link.
In addition, we will abbreviate ∃X1 . . . ∃Xn(D) to ∃X1, . . . , Xn(D).

7.5.2 Constraints Imposed by Process Templates

Finally, we can introduce our type system.

Definition 7.7 Assume a mapping out is given. We denote by C[r : T ] the
constraint imposed by the process template T at membrane r, defined as in
Figure 7.5. ut

A local link composed on parallel composition requires that its occur-
rences have the inverse types, while a link occurring in both sides of a rule
requires that its occurrences have the same type.

We may abbreviate C[r : T ] to C[T ] when r is irrelevant.

Definition 7.8 A polarized path n is said to have an input polarity in a
constraint E if and only if E ⇒ (n : f/k) holds with some data atom
f/k. A polarized path n is said to have an output polarity if and only if
−n has input polarity. We say a program P is well typed if there are no
polarized paths having both of the input polarity and the output polarity in
C[root : P ]. ut
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C[r : 0] = C[r : @p] = C[r : $p] = true
C[r : (m {T})] = (r : m) ∧ C[m : T ]

C[r : (T, U)] = ∃ ~X(C[r : T ] ∧∇ ~XC[r : U ])

where { ~X} = fv(T ) ∩ fv(U)

C[r : (T :- U)] = ∃ ~X(C[r : T ] ∧ C[r : U ])

where { ~X} = fv(T ) ∩ fv(U)
C[r : p(X1, . . . , Xn)] = (r : p/n) ∧ ∧

i(〈r : p/n, i〉 = Xi)
if p/n is active

C[r : p(X1, . . . , Xn)] = (−Xu : p/n) ∧ ∧
i6=u(−Xu〈p/n, i〉 = Xi)

if out (p/n) = u ∈ N
C[r : (X =Y )] = (X = −Y )

Figure 7.5: Constraints imposed by process templates

We should mention that the link condition of process templates is essential
in our typing scheme because it uses a link name to express its free occurrence
that is uniquely determined due to the link condition. However, this does not
mean that our typing scheme precludes a general graph rewriting language
without the link condition. Some other type inference may statically detect
those links in the program which always obey the link condition. To integrate
such type inference with our typing scheme is beyond the scope of this work.

7.5.3 Type Graphs

Constraints can be visualized in the form of type graphs. For instance, type
graphs for some basic constraints are shown in Figure 7.6 and Figure 7.7.

A type graph contains three kinds of larger objects: rounded rectangles
for membranes, ellipses for active atoms, and circles for data atoms. Formally,
a type graph consists of two parts: the upper part and the lower part.

The upper part of a type graph has active atoms and membranes as the
vertices. Active atoms and membranes have outgoing arrows, in dashed lines,
to the membranes in which they may reside.

The lower part of a type graph has paths as the vertices. Paths that are
just link names are written as themselves. The other paths are placed on
ellipses and circles with the labels describing their argument positions. Each
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Figure 7.6: Type graph for the constraint (r : m)
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(b) p/n is a data atom whose u-th argument is output

Figure 7.7: Type graphs for C[r : p(X1, . . . , Xn)]

path can have a polarity sign (+ for input or - for output) as an additional
label attached to it. Labels for link names can be omitted in the graph, for
they are usually redundant. The path of the output port of each data atom
must have the polarity sign - (a filled triangle can be drawn for emphasizing
the output port). If two paths have the same type, they are connected to-
gether with lines and have the same polarity sign on them. If two paths have
the inverse types, they are connected together and have different polarity
signs on them. Polarity signs may be replaced by metavariables, such as q,
when the polarity is not known but constrained. In that event, we write −q
to denote the inverse polarity sign for q. We sometimes draw arrowheads to
emphasize the polarity sign +.
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Figure 7.8: Type graph for list concatenation program

7.6 Inference Examples

7.6.1 List Concatenation

Consider the list concatenation program in Section 7.3.1 and Figure 7.4. For
the first rule, we can infer the following constraints by structural induction:

C[root : (append(X0,Y,Z),c(A,X,X0):- c(A,Z1,Z),append(X,Y,Z1))]
= (root : append/3) (line 1)
∧ (〈root : append/3, 1〉 : c/3) (line 2)
∧ (−〈root : append/3, 3〉 : c/3) (line 3)
∧ (〈root : append/3, 1〉〈c/3, 1〉 = −〈root : append/3, 3〉〈c/3, 1〉) (line 4)
∧ (〈root : append/3, 1〉 = 〈root : append/3, 1〉〈c/3, 2〉) (line 5)
∧ (〈root : append/3, 3〉 = 〈root : append/3, 3〉〈c/3, 2〉) (line 6)

This says that append at membrane root receives from the first argument
a stream, namely a list of an unbounded length (at lines 2 and 5), sends
another stream to the third argument (at lines 3 and 6), and the elements of
one of these streams are transferred to the other (at line 4). Similar inference
can be done for the rest of the program. Then, we can merge the results,
by taking their conjunction, to obtain the whole result. The result of type
inference for this program is visualized as the type graph in Figure 7.8.
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7.6.2 Stream Merging

In LMNtal, a stream can serve as a message channel between two processes.
When the communication is n-to-1, an arbitrary number of streams should
be merged into one. The rule for stream merging can be described as follows:

merge{i(X0),o(Y0),$p},c(A,X,X0) :- c(A,Y,Y0),merge{i(X),o(Y),$p}

Here, a membrane of the name merge is assumed to contain n (≥ 1) atoms
of the name i linked to input streams and one atom of the name o linked
to an output stream. The process context $p is to match the i atoms other
than the one that happens to be chosen as i(X0). Figure 7.9 shows this rule
and a process to which the rule is applied. The result of type inference for
this program is visualized in Figure 7.10. We can observe that elements of
the two streams have the same type and their polarity is not yet constrained.

7.6.3 Cyclic Data Structures

Graph rewriting languages are good at handing cyclic data structures. For
instance, a bidirectional circular buffer with n elements can be represented
as:

b(S, Xn, X0), n(A1, X0, X1), . . . , n(An, Xn−1, Xn)

where b is a header process, Ai’s are links to the elements, and S is the link
from the client process to this buffer. Figure 7.11 shows an example of such
a circular buffer with five elements.

Operations on the buffer are sent through S from the client as messages
such as left, right and put. The rewrite rules describing the reaction
between messages and the buffer can be written as follows:

left(S,S0), n(A,L,C0), b(S0,C0,R) :- b(S,L,C1), n(A,C1,R)

right(S,S0), b(S0,L,C0), n(A,C0,R) :- n(A,L,C1), b(S,C1,R)

put(A,S,S0), b(S0,L,R) :- n(A,L,C1), b(S,C1,R)

Figure 7.12 shows two type graphs for these rules according to the choice
of which of b and messages we take as active. The former corresponds to
object oriented programming while the latter corresponds to procedural pro-
gramming. We have let out (b/3) = 1 when we take b as data, and let
out (right/2) = 2 and out (put/3) = 3 when we take these messages as data.
These specifications of out reflect what we think of data in the left-hand side
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Figure 7.9: Stream merging for n-to-1 communication
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Figure 7.10: Type graph for stream merging
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Figure 7.11: A circular buffer
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(b) Consider messages to be active.

Figure 7.12: Type graphs for circular buffer
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of rules, that is, data are sent to the receiver through their output ports. For
simplicity, we have ignored the first rule, for left, in the analysis.

7.7 Theoretical Results

This section provides some theoretical results including type safety.

7.7.1 Properties on Free Links

We prove some basic properties on free links used in the subsequent proofs
in Sections 7.7.2 and 7.7.3.

Definition 7.9 For any constraint D, we define

vars(D)
def
= {X ∈ Links | ∃X(D) 6= D} .

where Links denotes the set of all the link names. ut

Intuitively, vars(D) describes the set of links constrained in D. Now, we are
going to prove that fv(T ) = vars(C[r : T ]) for any membrane name r.

Lemma 7.1 X 6∈ fv(T ) implies ∃XC[r : T ] = C[r : T ] for any r.

Proof. By structural induction on T .

• Case T = 0.

We have ∃XC[0] = ∃Xtrue = true = C[0].

• Case T = p(X1, . . . , Xn).

Since X 6= Xi for every i, we have ∃XC[T ] = C[T ].

• Case T = (T1, T2).

Let {~Z} = fv(T1) ∩ fv(T2).

– Case X ∈ {~Z}.
We have ∃XC[T1, T2] = ∃X∃~Z(C[T1] ∧ ∇~ZC[T2]) = ∃~Z(C[T1] ∧
∇~ZC[T2]) = C[T1, T2].
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– Case X 6∈ {~Z}.
Since for each i we have X 6∈ fv(Ti) , by induction hypothesis we
have ∃XC[Ti] = C[Ti] for each i. Hence, we have

∃XC[T1, T2] = ∃X∃~Z(C[T1] ∧∇~ZC[T2])

= ∃~Z∃X(∃XC[T1] ∧∇~ZC[T2])

= ∃~Z(∃XC[T1] ∧ ∃X∇~ZC[T2])

= ∃~Z(C[T1] ∧∇~ZC[T2]) = C[T1, T2].

• Case T = (T1 :- T2).

Similar to the case of (T1, T2) with the difference that∇~Z’s are removed.

• Case T = m {U}.
Since X 6∈ fv(U), by induction hypothesis we have ∃XC[m : U ] =
C[m : U ], and therefore ∃XC[r : m {U}] = ∃X((r : m) ∧ C[m : U ]) =
(r : m) ∧ ∃XC[m : U ] = (r : m) ∧ C[m : U ] = C[r : m {U}]. ut

Lemma 7.2 If X ∈ fv(T ), we have ∃XC[r : T ] 6= C[r : T ] for any r.

Proof. To prove the lemma, it is sufficient to construct for each T a con-
straint D such that C[T ] = (D ∧ ∃XC[T ]) and D 6= ∃X(D) hold, since this
refutes ∃XC[T ] = C[T ]. This is because, if it holds, we have ∃XC[T ] ⇒ D
and hence D = ∃X(D), which contradicts the assumption. We can construct
such D by structural induction on T .

• Case T = 0.

X ∈ fv(T ) is inconsistent with the assumption.

• Case T = p(X1, . . . , Xn).

Let X = Xi. We have three cases:

– Case where p/n is active.

Let D = (〈r : p/n, i〉 = Xi).

– Case where p/n is a data atom.

Let u = out (p/n). If i = u, let D = C[T ]. If i 6= u, let D =
(−Xu〈p/n, i〉 = Xi).
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– Case where p/n = =/2.

Let D = (X1 = −X2).

• Case T = (T1, T2).

Let {~Z} = fv(T1)∩fv(T2). We first consider the case where X ∈ fv(T1).

In this case, we have X 6∈ fv(T2) and X 6∈ {~Z}. By induction hypothesis
there exists E such that C[T1] = (E∧∃XC[T1]) and E 6= ∃X(E). Let φ
be a substitution that replaces every Zi occurring in C[T1] to a polarized

path whose root is not in {~Z} and satisfies ∃XC[T1] ∧ ∇~ZC[T2] ⇒
Zφ = Z for all Z ∈ {~Z}. By Lemma 7.1 we have ∃XC[T2] = C[T2].
Hence,

C[T1, T2] = ∃~Z(C[T1] ∧∇~ZC[T2])

= ∃~Z(E ∧ ∃XC[T1] ∧∇~ZC[T2])

= ∃~Z(Eφ ∧ ∃XC[T1] ∧∇~ZC[T2])

= Eφ ∧ ∃~Z(∃XC[T1] ∧∇~ZC[T2])

= Eφ ∧ ∃~Z∃X(C[T1] ∧∇~ZC[T2])

= Eφ ∧ ∃X∃~Z(C[T1] ∧∇~ZC[T2])
= Eφ ∧ ∃XC[T1, T2].

Thus, we can let D = Eφ.

The case where X ∈ fv(T2) is almost the same.

• Case T = (T1 :- T2).

Similar to the case of (T1, T2) with the difference that∇~Z’s are removed.

• Case T = m {U}.
Since X ∈ fv(U), by induction hypothesis there exists D such that
C[m : U ] = (D ∧ ∃XC[m : U ]) and D 6= ∃X(D).

Hence, we have C[r : m {U}] = (r : m) ∧ C[m : U ] = (r : m) ∧ D ∧
∃XC[m : U ] = D ∧ ∃X((r : m) ∧ C[m : U ]) = D ∧ ∃XC[r : m {U}]. ut

Proposition 7.1 fv(T ) = vars(C[r : T ]) for any r.
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Proof. From Lemmas 7.1 and 7.2. ut

Definition 7.10 A context is either a process context $p or a rule context
@p. Let T be a process template located in a membrane of the name r.
The expression context(m : α, r : T ) means that T contains a membrane
of the name m such that the context α occurs in the non-rule part of that
membrane. ut

Given r, T and α, the syntactic condition (L5) guarantees that there is
at most one of such m’s, since membranes that have the same context must
have the same name.

The following two propositions are fundamental in LMNtal.

Proposition 7.2 P ≡ Q implies fv(P ) = fv(Q).

Proof. By induction on the derivation of the relation ≡. Let ⊕ be the
operator that computes the symmetric difference.

(E1) fv((0, P )) = {} ⊕ fv(P ) = fv(P ).

(E2) fv((P,Q)) = fv(P )⊕ fv(Q) = fv((Q,P )).

(E3) fv((P, (Q,R))) = fv(P ) ⊕ fv((Q,R)) = fv(P ) ⊕ (fv(Q) ⊕ fv(R)) =
(fv(P )⊕ fv(Q))⊕ fv(R) = fv((P,Q))⊕ fv(R) = fv(((P, Q), R)).

(E4) If X ∈ lv(P ), we have fv(P ) = fv(P [Y/X]).

(E5) If P ≡ P ′, by induction hypothesis fv(P ) = fv(P ′), we have fv((P, Q)) =
fv(P )⊕ fv(Q) = fv(P ′)⊕ fv(Q) = fv((P ′, Q)).

(E6) If P ≡ P ′, by induction hypothesis fv(P ) = fv(P ′), we have fv(m{P}) =
fv(P ) = fv(P ′) = fv(m{P ′}).

(E7) fv(X =Y, Y =X) = {} = fv(0).

(E8) fv(X =Y ) = {X} ⊕ {Y } = fv(Y =X).

(E9) The case (X =Y, P ) ≡ P [Y/X] where X ∈ fv(P ) and P is an atom.

Since Y 6∈ fv(P ), we have fv(P [Y/X]) = (fv(P ) \ {X}) ∪ {Y } =
{X, Y } ⊕ fv(P ) = fv(X =Y )⊕ fv(P ) = fv(X =Y, P ).
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(E10) fv(X =Y, m{P}) = fv(X =Y )⊕ fv(P ) = fv(m{X =Y, P}).
ut

Proposition 7.3 P −→Q implies fv(P ) = fv(Q).

Proof. By induction on the derivation of the relation −→. Let ⊕ be the
operator that computes the symmetric difference.

(R1) Case P, Q−→P ′, Q where P −→P ′.

By induction hypothesis fv(P ) = fv(P ′), we have fv(P, Q) = fv(P ) ⊕
fv(Q) = fv(P ′)⊕ fv(Q) = fv(P ′, Q).

(R2) Case m {P} −→m {P ′} where P −→P ′.

By induction hypothesis fv(P ) = fv(P ′), we have fv(m {P}) = fv(P ) =
fv(P ′) = fv(m {P ′}).

(R3) Case Q−→Q′ where Q ≡ P −→P ′ ≡ Q′.

By induction hypothesis fv(P ) = fv(P ′) and by Proposition 7.2, we
have fv(Q) = fv(P ) = fv(P ′) = fv(Q′).

(R4) Case m {X =Y, P} −→X =Y, m {P}.
We have fv(m {X =Y, P}) = fv(X =Y )⊕ fv(P ) = fv(X =Y, m {P}).

(R5) Case X =Y, m {P} −→m {X =Y, P}.
The proof is the same as (R4).

(R6) Case Tθ, (T :- U)−→Uθ, (T :- U).

Since fv(T :- U) = {}, we only have to prove that fv(Tθ) = fv(Uθ).

The link condition of a rule ensures that fv(T ) = fv(U). Each $p occurs
once in T and once in U if it occurs in the rule. For any @p, we have
fv(@pθ) = {}. Putting it all together, we have

fv(Tθ) = fv(T )⊕⊕
context(m:α, r:T ) fv(αθ)

= fv(T )⊕⊕
context(m:$p, r:T )

fv($pθ)

= fv(U)⊕⊕
context(m:$p, r:U)

fv($pθ)

= fv(U)⊕⊕
context(m:α, r:U) fv(αθ)

= fv(Uθ).
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Here, the operator
⊕

in the first line takes as arguments the family
of fv(αθ)’s prescribed by all α’s such that context(m : α, r : T ) holds
with some m. ut

7.7.2 Adequacy

Now, we can prove that the constraints for structurally equivalent processes
coincide. In order to give a concise proof of it, we introduce the following
operator over constraints. This operator enables us to express the coupling
of local links between constraints. The resulting constraint obtained with
this operator does not contain any information on the coupled links.

Definition 7.11 We define the operator # on constraints by

D # E
def
= ∃ ~X(D ∧∇ ~XE)

where { ~X} = vars(D) ∩ vars(E). ut
We have that C[r : (T, U)] = C[r : T ] # C[r : U ]. Moreover, we have

D # E = D ∧ E if vars(D) = {}. In particular, we have true # E = E.

Lemma 7.3 D # E = E # D.

Proof. Let { ~X} = vars(D)∩ vars(E). We have D # E = ∃ ~X(D ∧∇ ~XE) =

∃ ~X∇ ~X(E ∧∇ ~XD) = ∃ ~X(E ∧∇ ~XD) = E # D. ut
Lemma 7.4 If vars(D) ∩ vars(E) ∩ vars(F ) = {}, we have D #(E # F ) =
(D # E) # F .

Proof. Let { ~X} = vars(D)∩vars(E), {~Y } = vars(D)∩vars(F ), and {~Z} =

vars(E) ∩ vars(F ). By assumption we have ∃~ZD = D and ∃ ~XF = F .
Therefore, we have

D #(E # F ) = ∃ ~X~Y (D ∧∇ ~X~Y ∃~Z(E ∧∇~ZF ))

= ∃ ~X~Y ~Z(D ∧∇ ~X~Y (E ∧∇~ZF ))

= ∃ ~X~Y ~Z(D ∧∇ ~X~Y E ∧∇ ~X~Y ~ZF ))

= ∃ ~X~Y ~Z(D ∧∇ ~XE ∧ ∃ ~X∇~Y ~ZF )

= ∃~Y ~Z(∃ ~X(D ∧∇ ~XE) ∧∇~Y ~ZF )
= (D # E) # F.
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ut
In the practical use of this operator, the link condition often ensures the

condition part of Lemma 7.4.
Lemma 7.3 and Lemma 7.4 ensure that we can safely extend # so that

it takes an arbitrary number of arguments. Let D1, . . . , Dn be a family of
constraints such that for any X ∈ ⋃n

i=1 vars(Di) there are at most two indices
i satisfying X ∈ vars(Di). Then, we can define #n

i=1 Di as follows:

n

#
i=1

Di
def
=

{
true if n = 0(
#n−1

i=1 Di

)
# Dn if n ≥ 1.

Lemma 7.5 If vars(D) = vars(D′) and D ⇒ D′ then D # E ⇒ D′ # E.

Proof. Since D ⇒ D′ we have D ∧ ∇ ~XE ⇒ D′ ∧ ∇ ~XE and therefore
∃ ~X(D ∧∇ ~XE) ⇒ ∃ ~X(D′ ∧∇ ~XE). This means that D # E ⇒ D′ # E. ut

Before going on to the main theorems, we must observe the following
lemma which states that our typing contains full information on the free
links of process templates.

Lemma 7.6 Assume that one of the following holds:

• assumption 1: X ∈ fv(T ) and Y 6∈ fv(T ).

• assumption 2: X 6∈ fv(T ).

Then, we have C[T [Y/X]] = C[T ][Y/X].

Proof. Let δ = [Y/X]. By structural induction on T .

• Case T = 0.

C[0δ] = C[0] = C[0]δ.

• Case T = p(Z1, . . . , Zn).

Since X 6∈ lv(T ), we have X 6∈ {~Z} or X ∈ fv(T ). The rest is straight-
forward by definition of C[T ].
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• Case T = m {U}.
By induction hypothesis on U , we have C[m : U ]δ = C[m : Uδ]. Hence,
we have

C[r : m {U}]δ = (r : m) ∧ C[m : U ]δ
= (r : m) ∧ C[m : Uδ]
= [r : m {Uδ}].

• Case T = (T1, T2).

Let {~Z} = fv(T1) ∩ fv(T2).

– Case where assumption 1 holds.

Let X ∈ fv(Ti). We have X 6∈ fv(T3−i). By induction hypoth-
esis with assumption 1, we have C[Tiδ] = C[Ti]δ. By induction
hypothesis with assumption 2, we have C[T3−iδ] = C[T3−i]δ.

– Case where assumption 2 holds.

∗ Case X ∈ {~Z}.
By the link condition of (T1, T2)δ, for i = 1, 2 we have Y 6∈
fv(Ti) and therefore by induction hypothesis with assumption
1, we have C[Ti]δ = C[Tiδ].

∗ Case X 6∈ {~Z}.
For i = 1, 2 we have X 6∈ fv(Ti) and therefore by induction
hypothesis with assumption 2, we have C[Ti]δ = C[Tiδ].

Hence, we have

C[T1, T2]δ = (∃~Z(C[T1] ∧∇~ZC[T2]))δ

= ∃~Zδ(C[T1]δ ∧ (∇~ZC[T2])δ)

= ∃~Zδ(C[T1]δ ∧∇~Zδ(C[T2]δ))

= ∃~Zδ(C[T1δ] ∧∇~ZδC[T2δ])
= C[T1δ, T2δ]
= C[(T1, T2)δ].

• Case T = (T1 :- T2).

Almost the same as the above case. ut
Now, we can prove the following important property, namely that our

typing is preserved under the structural congruence.

Theorem 7.1 (Adequacy) P ≡ Q implies C[r : P ] = C[r : Q].
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Proof. By induction on the derivation of the relation ≡.

(E1) Case (0, P ) ≡ P .

Since fv(0) = {}, we have C[0, P ] = C[0]∧C[P ] = true∧C[P ] = C[P ].

(E2) Case P, Q ≡ Q,P .

We have C[P, Q] = C[P ] # C[Q] = C[Q] # C[P ] = C[Q,P ].

(E3) Case P, (Q, R) ≡ (P,Q), R.

By the link condition we have fv(P ) ∩ fv(Q) ∩ fv(R) = {}. By Lemma
7.1, we have vars(C[P ]) ∩ vars(C[Q]) ∩ vars(C[R]) = {}. Hence, by
Lemma 7.4, we have

C[P, (Q,R)] = C[P ] # C[Q,R]
= C[P ] #(C[Q] # C[R])
= (C[P ] # C[Q]) # C[R]
= C[(P, Q), R].

(E4) Case P ≡ P [Y/X] where X ∈ lv(P ).

By Lemma 7.1, C[P ] = ∃XC[P ] = ∃Y C[P [Y/X]]. By Lemma 7.1,
∃Y C[P [Y/X]] = C[P [Y/X]]. And by Lemma 7.6 with assumption 2,
we have C[P [Y/X]] = C[P ][Y/X].

(E5) Case P, Q ≡ P ′, Q where P ≡ P ′.

By Theorem 7.2 we have fv(P ) = fv(P ′). By induction hypothesis
C[P ] = C[P ′], we have C[P,Q] = C[P ] # C[Q] = C[P ′] # C[Q] =
C[P ′, Q].

(E6) Case m {P} ≡ m {P ′} where P ≡ P ′.

By induction hypothesis C[m : P ] = C[m : P ′], we have C[m {P}] =
(r : m) ∧ C[m : P ] = (r : m) ∧ C[m : P ′] = C[m {P ′}].

(E7) Case (X =Y, Y =X) ≡ 0.

We have

C[X =Y, Y =X] = ∃XY ((X = −Y ) ∧∇XY (Y = −X))
= ∃XY ((X = −Y ) ∧ (−Y = X))
= ∃XY (X = −Y ) = true = C[0].
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(E8) Case (X =Y ) ≡ (Y =X).

We have
C[X =Y ] = ∃XY (X = −Y )

= ∃XY (Y = −X) = C[Y =X].

(E9) Case X =Y, P ≡ P [Y/X] where X ∈ fv(P ) and P is an atom.

By the syntactic condition of P [Y/X], the link Y does not occur in P .
Hence, by Lemma 7.6 with assumption 1, we have

C[X =Y, P ] = ∃X(X = −Y ∧∇XC[P ])
= ∃X(X = −Y ∧ C[P ][−X/X])
= ∃X(X = −Y ∧ C[P ][Y/X])
= C[P ][Y/X] = C[P [Y/X]].

(E10) Case X =Y, m {P} ≡ m {X =Y, P}.
We assume X ∈ fv(P ) and Y 6∈ fv(P ). We have

C[r : (X =Y, m {P})] = ∃X(∇X(X = −Y ) ∧ (r : m) ∧ C[m : P ])
= (r : m) ∧ ∃X(∇X(X = −Y ) ∧ C[m : P ])
= (r : m) ∧ C[m : (X =Y, P )]
= C[r : m {X =Y, P}].

ut

7.7.3 Type Safety

The main result of this chapter is that the constraints imposed by processes
are monotonically weakened along rewritings. This means that the constraint
imposed by the initial configuration of a program does not conflict with any
possible future configuration of that program. Thus, our type system can
be used not only for describing specification but also as a foundation of
optimized implementation whose correctness hinges on the type safety. A
typical example of such optimization is data representation optimization.

Theorem 7.2 (Type Safety) P −→P ′ implies C[r : P ] ⇒ C[r : P ′].
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Proof. By induction on the derivation of the relation −→.

(R1) Case P, Q−→P ′, Q where P −→P ′.

By theorem 7.3 we have fv(P ) = fv(P ′). By induction hypothesis
we have C[P ] ⇒ C[P ′]. Hence, we have C[P, Q] = C[P ] # C[Q] ⇒
C[P ′] # C[Q] = C[P ′, Q].

(R2) Case m {P} −→m {P ′} where P −→P ′.

By induction hypothesis we have C[m : P ] ⇒ C[m : P ′]. Hence, we
have C[r : m {P}] = (r : m) ∧ C[m : P ] ⇒ (r : m) ∧ C[m : P ′] = C[r :
m {P ′}].

(R3) Case Q−→Q′ where Q ≡ P −→P ′ ≡ Q′.

By induction hypothesis we have C[P ] ⇒ C[P ′]. Hence, by Theorem
7.1, we have C[Q] = C[P ] ⇒ C[P ′] = C[Q′].

(R4) Case m {X =Y, P} −→X =Y, m {P}.
Let {~Z} = fv(X =Y ) ∩ fv(P ). We have

C[r : (X =Y, m {P})] = ∃~Z(∇~Z(X = −Y ) ∧ (r : m) ∧ C[m : P ])

= (r : m) ∧ ∃~Z(∇~Z(X = −Y ) ∧ C[m : P ])
= (r : m) ∧ C[m : (X =Y, P )]
= C[r : m {X =Y, P}].

(R5) Case X =Y, m {P} −→m {X =Y, P}.
The proof is the same as (R4).

(R6) Case Tθ, (T :- U)−→Uθ, (T :- U).

Let { ~X} = fv(T )∩ fv(U). Let C[T ] = C[T ]∧∧
i(Xiφ = Xi) where φ is

a substitution whose domain is fv(T ) and whose codomain is a set of
polarized paths that have active atoms as their roots. Note that such
φ always exists because of the active head condition.

Let
B = #context(m:α, r:T ) C[m : αθ]

and
B′ = #context(m:α, r:U) C[m : αθ].
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The operator # in B takes as arguments the family of C[m : αθ]’s
prescribed by all the pairs of m and α such that context(m : α, r : T )
holds.

Note that Condition (L5) ensures that context(m : α, r : T ) and
context(m′ : α, r′ : U) together imply that m = m′. Since rules have
no free links, we have vars(C[m : (@p)θ]) = {} and hence E # C[m :
(@p)θ] = E ∧ C[m : (@p)θ] for any E. Moreover, since every rule con-
text occurring in the non-rule part of U occurs also in T , we have∧
∃r(context(m:@p, r:T )) C[m : (@p)θ] ⇒ ∧

∃r(context(m:@p, r:U)) C[m : (@p)θ].
On the other hand, since every process context in T occurs exactly
once in the non-rule part of U , we have #

context(m:$p, r:T )
C[m : ($p)θ] =

#
context(m:$p, r:U)

C[m : ($p)θ]. Putting it all together, B ⇒ B′ holds.

This implication states that rules may be removed from a membrane
upon a reduction, which weakens the constraints imposed by that mem-
brane. In fact, this is the exact reason we only have a monotonicity
theorem rather than a preservation theorem.

Since
C[T :- U ] = ∃ ~X(C[T ] ∧ C[U ])

= ∃ ~X(C[T ] ∧ C[U ]φ)

= ∃ ~X(C[T ] ∧ C[U ]φ) ∧ ∃ ~X(C[U ]φ)

= C[T :- U ] ∧ ∃ ~X(C[U ]φ)
= C[T :- U ] ∧ C[U ]φ,

we have

C[Tθ, (T :- U)]
= C[Tθ] ∧ C[T :- U ]
= C[Tθ] ∧ C[T :- U ] ∧ (C[T ] # B)
⇒ C[Tθ] ∧ C[T :- U ] ∧ (C[T ] # B′)
= C[Tθ] ∧ C[T :- U ] ∧ (C[T ] # B′) ∧ (C[T ] # B′) ∧ C[U ]φ
= C[Tθ] ∧ C[T :- U ] ∧ (C[T ] # B′) ∧ ((C[T ] # B′) # C[U ]φ)
= C[Tθ] ∧ C[T :- U ] ∧ (C[T ] # B′) ∧ ((C[T ] # C[U ]φ) # B′)
= C[Tθ] ∧ C[T :- U ] ∧ (C[T ] # B′) ∧ ((C[T ] ∧ C[U ]φ) # B′)
= C[Tθ] ∧ C[T :- U ] ∧ (C[T ] # B′) ∧ ((C[T ] ∧ C[U ]) # B′)
⇒ C[Tθ] ∧ C[T :- U ] ∧ (C[T ] # B′) ∧ (C[U ] # B′)
= C[Tθ] ∧ C[T :- U ] ∧ C[Uθ]
= (C[Tθ] ∧ C[T :- U ]) ∧ (C[Uθ] ∧ C[T :- U ])
= C[Tθ, (T :- U)] ∧ C[Uθ, (T :- U)]
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and this means that C[Tθ, (T :- U)] ⇒ C[Uθ, (T :- U)]. ut

7.8 Concluding Remarks

We have proposed a method for introducing a strong type system in relatively
simple graph rewriting where by relatively simple we mean that processes
and data are treated in a unified way. Specifically, we have built a type
system for the hierarchical graph rewriting language LMNtal that has atoms
as graph nodes. In our type system, a programmer only needs to classify
atoms into active atoms and data atoms in order to infer a type graph that
describes complex process structures in the program. The application of
our type system includes data representation optimization for unary data
atoms like integers in the runtime system. The author believes that the
unified treatment of these two kinds of atoms in the language together with
a type inference mechanism as our type system provides can serve as a bridge
between theoretical research and running language systems.

Among related work on typing concurrent graph rewriting languages are
Shape Types [17]. They provide strong typing to graph rewriting. Since
they do not have the notion of activeness, its range of practical application
can be limited. Typed graphs are another standard approach to typing graph
structures by giving a graph morphism from concrete graphs to a type graph,
see for example [27]. However, it also does not have the notion of activeness.

In this chapter, we have proposed a type system based on classifying
graph nodes into active atoms and data atoms. Our method can be thought
of as generalization and extension of the analysis [34] for concurrent logic
programming we have introduced in Chapter 6, when an active atom in LM-
Ntal is regarded as a predicate call in the concurrent logic programming. In
their formulation, the type of a port is expressed as a moding function from
paths to polarities and two ports have the same type when they have the
same moding function. In our formulation, on the other hand, the type of a
port is expressed in terms of type constraints themselves, not as a moding
function, and two ports have the same type when they are constrained to
be the same polarized path. Our formulation is more general than theirs in
that it can distinguish the types of irrelevant nodes that happen to have the
same moding function, especially a uniform moding function. Anyhow, the
constraint-based approach toward reconstructing data types taken by [34]
and us has an advantage that it can handle data structures other than trees
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such as non-terminating streams and cyclic structures, which are character-
istic of concurrent and graph rewriting languages.

Research in the opposite direction of our work includes the paper [7],
which explains how to regard logic programs as hypergraph replacement.
They make distinction between predicate symbols and function symbols, as in
our work, and moreover they consider shared, uninstantiated logic variables
in the hypergraph. Although it may be very fruitful to incorporate their logic-
program point of view toward graph rewriting to the typing scheme of graph
rewriting languages, they are fundamentally devoted to tree-like structures
and cyclic data structures and graph hierarchization are not considered. In
fact, the type graphs depicted in this chapter are similar to the hypergraphs
explained there, but our type graphs are extended by membranes and polarity
information and can represent cyclic data structures that rewrites themselves.
It may be an interesting research topic to formalize our type graph as a
hypergraph.
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Chapter 8

Conclusions

We have introduced several semantics-based static analysis techniques for
concurrent programs and presented the proofs of their correctness. These
analysis techniques offer a theoetical justification for optimizing compilation
of the concurrent programs. In the following, we will summarize the result
of this dissertation.

Firstly, we have introduced the following analysis techniques for concur-
rent logic programming languages:

• the safety of moving synchronization points,

• sequentiality analysis, and

• occurs-check analysis under cooperative modings.

Then, for the graph rewriting language LMNtal we have proposed:

• process structure analysis.

In the work of the motion of synchronization points, we have proved
that our program transformation preserves the denotational semantics that
takes into account not only interaction with the store but the divergence and
termination, which is a new theoretical result of this work.

In the work of sequentiality analysis, we have introduced the notion of
interfaces that formalize portions of concurrent processes that can be exe-
cuted sequentially. We have also demonstrated that inferring interfaces in a
bottom-up manner can derive code generation and optimizing compilation.

In the work of occurs-check analysis, we gave a new algorithm for guar-
anteeing the absence of cyclic data structures in a program. The algorithm
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uses cooperative modings and the linear head condition in the program. The
analysis had an instance program that had not been covered by the existing
methods.

In the work of typing LMNtal processes, we described a way of introduc-
ing to LMNtal types that can be practically used by programmers and for
optimizing compilation. The type system was based on discriminating the
graph nodes into active ones and data and the type inference was formalized
as constraint simplification. The advantage of the constraint-based approach
was that the types in a program could be systematically inferred from the
program, which could be helpful in the implementation of the optimizing
compilation of a wide range of graph rewriting programs.

These analysis techniques can be applied to other concurrent languages.
For instance, the notion of interfaces introduced in the work of sequential-
ity analysis can be applied to the analysis of other fine-grained concurrent
languages so that the runtime overhead on concurrent operations will be re-
duced. These languages include the pi-calculus, lazy functional languages,
functional languages with a future primitive, and concurrent object-oriented
languages. A justiciation of this claim is that sequentialization is known
to be important to the optimizing compilation of fine-grained concurrent
languages. Another justification is that the formalism of interfaces offers
semantics-based analysis for extracting sequentiality in the concurrent pro-
grams, provided that the communication between processes can be expressed
as monotonically strengthening constraints as in concurrent logic program-
ming. In the other languages where communication is not based on con-
straints, the formalism of interfaces may require some modification. For
instance, the pi-calculus relies on name-based communication and would re-
quire a careful treatment in expressing communication as constraints.

The author believes that concurrent languages will be more and more
important as a means to describe concurrent, parallel and distributed systems
when they are supported with useful language systems. The usefulness of the
systems should include efficiency and correctness as well as just usability. To
this end, the semantics-based approach provides a promising way of proving
the correctness of the optimizing compilation of concurrent programs.
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