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Chapter 1

Introduction

1.1 Background and Motivation

In the silicon (Si) based metal-oxide-semiconductor (MOS) technology (Fig. 1.1),

dopant atoms are implanted into Si substrates for a variety of purposes, such as fab-

rication of p-wells and n-wells in complementary-MOS (CMOS) devices, adjust-

ment of conductivity of channel regions, and formation of source/drain electrodes.

Today ion implantation is the most commonly used technique for the doping method

because of the high reproducibility in the position and dose of dopants, which is de-

termined by host materials, acceleration energy of ions, and ion beam current. Since

the device performance depends on the distribution of activated dopants, precise

control of doping is needed.

As the dimensions of the MOS device are scaled down, several issues have

emerged in regard to the control of the doping. In order to avoid short-channel

effects, the junction depth of source/drain extension must be reduced. The re-

quired junction depth is about 10 nm for CMOS transistor for 22-nm generation

as stated in the International Technology Roadmap for Semiconductors (ITRS) edi-

tion 2007 [1]. Different techniques have been proposed to improve the junction
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CHAPTER 1. INTRODUCTION

depth, such as low-energy ion implantation and cluster-ion implantation followed

by flash and laser thermal annealing. Also, decrease of the total number of dopants

in the channel region could cause statistical fluctuation of each device performance.

One of the cutting edge technology demonstrated that the threshold voltage (VT)

can be controlled by the precise control in the number and position of dopants [2].

During ion implantation, dopants are scattered by the collision with host atoms.

Postimplant thermal process, which is required to recover the implantation damages

and to electrically activate the implanted dopants, also causes significant diffusion

of dopants. In addition, more size related effects such as dopant behavior in the

vicinity of surface become prominent since dopants tend to segregate in the vicinity

of surface. Thus, the interaction between implanted atoms and host materials need

to be understood in atomic and nm scale.

Dopant behavior is influenced by the presence of defects in the substrates. For

instance, diffusion of dopants in Si is mediated by point defects such as vacancies

and interstitials. When ions are implanted into a substrate, excess point defects are

generated (Fig. 1.2), so that the dopant diffusion is much affected by them. This

phenomenon is well known as transient enhanced diffusion (TED) [3], which causes

the unintentional spreading of the initial dopant profile. Also, dopants interact with

point defects to form complex defects. During thermal treatment, excess point de-

fects generated by ion implantation clusterize to form extended defects such as 311

defects [1–5], dislocation loops [4], vacant type cavities [6], etc. These defects act

as trap sites for dopants, which prevent a complete electrical activation. Further-

more solid surface is regarded as a sink for point defects, so that the dopants could

be trapped or segregated there. In order to address the dopant behavior, it is there-

fore important to reveal the behavior of point defects as control agents of dopants.

Recently there have been many studies to investigate behaviors of point defects.

So far to observe point defects directly has been believed to be hardly possible.

2



CHAPTER 1. INTRODUCTION

However, when point defects agglomerate to form clusters, they are visible by mi-

croscopy methods such as transmission electron microscope (TEM), scanning re-

flection electron microscope (SREM), and scanning tunneling microscope (STM).

The evolution and disappearance of implantation induced defects in bulk such as

311 defects, dislocation loops were observed using TEM [3–5]. Cross-section and

plan-view microscopy revealed the microstructure of the defects and the evolution

of the defects during annealing. Combination of the TEM observations and other

analysis such as secondary ion mass spectroscopy (SIMS) clarified the strong inter-

action between point defects and dopants. Watanabe’s group [7, 8] observed the

motion of atomic steps and vacancy islands during argon (Ar) ion irradiation using

high-resolution SREM. The kinetics of vacancy diffusion and annihilation on the

surfaces were derived from the behavior of defect structures such as retreat of steps

and evolution of vacancy islands on the surface. Invention of STM has contributed

to reveal the atomistic features of individual nm-size defects on solid surfaces. STM

is a powerful tool to investigate solid surface in real space with atomic resolution.

This probing technique has been used for direct observation of ion irradiation ef-

fects on solid surfaces modified with energetic He, Ar and Xe ions. Observations

in atomic scale reveal the detailed features of vacant-type surface defects (vacancy

clusters) such as shape and size and their evolution after thermal treatments [9–17].

The sizes of vacancy clusters correspond to the number of vacancies near the sur-

faces, so that their changes by heat treatment can be attributed to migration of point

defects [16].

These pioneering works, however, did not focus on the surfaces modified by

dopant irradiation. In addition, their STM observations are not in real-time but after

the ion irradiations. In order to start STM observation following ion irradiation,

it usually takes a few tens of minutes at least until the STM tip reaches the ther-

mal equilibrium with the sample surface. STM observation can not be performed
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CHAPTER 1. INTRODUCTION

during the period. This will obscure some of the dynamical aspects of behavior of

implanted atoms and point defects.

In order to observe directly the dynamical changes in surface morphologies, our

group [18] realized the real-time observation of ion-irradiation effects on solid sur-

faces by combining the ion-gun and STM (IG/STM) (see Fig. 1.3). The IG/STM

with an ion source of rare gas has revealed various interesting features such as for-

mation of vacancy type defects and Si islands on high-temperature Si(111)-7× 7

surfaces [18, 19]. One of the most typical results is the direct observation of nu-

cleation, growth, and decay of a vacancy type defect induced by a single Ar ion

impact [18]. The evolution of such defects occur as a result of agglomeration and

dissolution of vacancies and Si atoms on the surfaces, which are supplied by dif-

fusion of point defects from clusters of point defects generated by ion irradiation.

Consequently the IG/STM provided us with a mean to directly observe the behavior

of point defects in the vicinity of the surfaces.

However, ion species used in our previous works using the IG/STM was limited

to only gas elements such as Ar and Xe due to the lack of capability of implanting

dopants, and real-time observation of doping effects had not been realized.

The purpose of the dissertation is to address the atomistic behavior of implanted

atoms and point defects by realizing real-time STM observation method for dopant

ion irradiation effects (Fig. 1.4). Three aims are included;

The first aim is to develop the system for real-time STM observation of dopant-

ion irradiation effects. In order to observe in real-time solid surfaces modified by

dopant ion beam, STM observation needs to be continued during the ion gun opera-

tion. In addition, dopant ion beam need to be aligned in the STM observation area.

Therefore, we have implemented a liquid-metal-ion-source (LMIS) ion gun in the

STM observation system, and we have also developed an alignment system suited

for dopant-ion beam.
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The second aim is to demonstrate that the developed real-time observation sys-

tem is actually an effective tool for addressing the atomistic picture of implant

atoms. In order to see directly the behavior of impurities, Si(111) substrates and

gold (Au) atoms are chosen as host materials and impurities, respectively. Since

Au atoms in Si diffuse rapidly and Au atoms chemically react with Si atoms on

Si(111)-7× 7 surface to form reconstructions such as Si(111)-5× 2 and
√

3×
√

3,

behavior of implanted Au atoms can be expected to be distinguished within a short

time after ion irradiation. Therefore, we have performed real-time observations of

surfaces modified with Au atoms.

The third aim is to discuss the behavior of point defects in the vicinity of solid

surfaces which are irradiated with dopant ions. Implantation induced defects pro-

vide an important clue to understand the behavior of point defects. The growth and

decay of the defects during thermal treatment could be determined by the balance

between vacancy flow and interstitial flow. We have observed phosphorus (P) ion

irradiation effects on Si surfaces in real-time.
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Figure 1.1: Architecture of Si-based MOS transistor (n-type).
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Figure 1.2: Implantation-induced defects.
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Figure 1.3: Real-time STM observation of ion irradiation effects. Real-time ob-

servation means that (a) the surface modification with ions can be observed just

after ion irradiation, and (b) the observation area can be kept before and after ion

irradiation.
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1.2 Overview of Dissertation

The dissertation is composed of five chapters, which sum up our studies on address-

ing the atomistic behavior of dopants and point defects in nm scale by realizing

real-time STM observation of dopant ion irradiation effects on Si surfaces.

In Chapter 2, a newly developed system for real-time scanning tunneling micro-

scope (STM) observation of ion-irradiated solid surface is described: Development

of a liquid-metal-ion-source ion gun and STM (LMIS-IG/STM) combined system,

and development of a beam alignment system especially for“ dopant-ion-beam”

are explained in detail.

Our original LMIS-I/STM is composed of an ultra-high-vacuum high-

temperature STM (UHV HT-STM) and a low-energy ion-gun with an LMIS. The

ion gun is originally designed so that dopant ions are irradiated at the energies lower

than 5 keV. After the description of the principle of operation, some basic perfor-

mances are shown such as mass spectrum of ion beam using a gold (Au) and silicon

(Si) LMIS and ion current at a sample position. In addition, as a preliminary ex-

periment, a real-time STM observation of a high-temperature Si(111)-7× 7 surface

irradiated with Si2+ is demonstrated. Next, beam alignment system for“ dopant”

ion beam is described in detail as a key technique for real-time STM observation

especially using LMISs containing dopant elements like P. Since such LMISs have

low emission current and short lifetime, we faced a difficulty in aligning the dopant-

ion beam in the STM observation area. The beam alignment system is composed

of two setups: the absorbed current image (AEI) unit to visualize an ion-irradiated

area, and the dummy target as an ion beam alignment mark. Installing the beam

alignment system enables us not only to align a dopant-ion beam accurately but

also to save the time for preparation of the experiment. Finally, the author realized

a real-time STM observation of Si(111)-7× 7 surfaces irradiated with P2+ for the

first time.
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In Chapter 3, the author will describe results of a real-time STM observation

of Au+ ion irradiation effects on Si surface. The STM based method enables us

to track the change of the surface structures with atomic resolution. For example,

Au atoms on Si(111)-7× 7 dimer-adatom-stacking fault (DAS) surface are known

to form several kinds of reconstructions such as 5× 2 and
√

3 ×
√

3 on topmost

surface and the atomic arrangements and their composition per each unit cell are

well defined. By using these reconstructions as the“ rulers in nature”, we can

estimate the number of Au atoms involved in the reconstructed domains.

In Chapter 4, some of our results archived up to now are summed up on the sur-

faces modified with P ion irradiation using Si(111) and Si(001) substrates. There

are two major achievements. First, surface modification of Si(111)-7× 7 with P

ions are reported. Real-time STM observation of P ion irradiation effects are shown

for the first time. Ion irradiation causes nucleation of vacancy islands and retreat of

step edges, resulting in removal of surface atoms. Behavior of point defects is dis-

cussed in terms of number of diffused point defects toward surface. Second, surface

modification of Si(001)-2× 1 with P ions are reported. After the ion irradiation,

vacancy islands and Si-P hetero-dimers seems to appeared on the surface. Since

there is no signature of P on the initial surface, the observed P atoms is supplied

from the substrate after the ion irradiation. Segregation of P atoms at surface and

interface is generally supposed to degrade of device performance so that the mecha-

nism needs to be clear from the technological view point. The results in the section

are positioned as an early stage to address the atomistic behavior of dopants and a

future subject is presented.

In Chapter 5, the author concludes the dissertation.
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Figure 1.4: Purpose of this work. By realizing real-time STM observation for

dopant ion irradiation effects such as morphological and electrical change on sur-

face, the atomistic behavior of implanted atoms and point defects are addressed.
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Chapter 2

Development of the System for

Real-time Scanning Tunneling

Microscope Observation of Dopant

Ion Irradiation E ffects on Solid

Surface

In this chapter, a newly developed system for real-time observation of dopant ion ir-

radiation effects of solid surfaces is described. We have added some new features to

the original IG/STM. Development of a beam alignment system is also explained as

a key technique for real-time STM observation especially using LMISs containing

dopant elements such as P.
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CHAPTER 2. DEVELOPMENT OF THE SYSTEM FOR REAL-TIME
SCANNING TUNNELING MICROSCOPE OBSERVATION OF DOPANT ION

IRRADIATION EFFECTS ON SOLID SURFACE

2.1 Development of Liquid-Metal-Ion-Source Low-

Energy Ion Gun / High-Temperature Ultrahigh

Vacuum Scanning Tunneling Microscope Com-

bined System (LMIS-IG/STM)

The replacement of ion gun for rare gases with LMIS ion gun has enabled the im-

plantation of various ion species. Improvement in ion optics and pumping system

has made possible the low energy implantation and improved evacuation speed. In

this section, development of our original liquid-metal-ion-source ion gun/ high-

temperature ultrahigh vacuum scanning tunneling microscope combined system

(LMIS-IG/STM) is described. After the necessity for the LMIS-IG/STM is ex-

plained, the performance of the LMISIG/STM and the Si ion self-implantation ef-

fects, which as a preliminary experiment of P ion implantation, are reported.

2.1.1 Description of the System

The LMIS-IG/STM is composed of the low-energy LMIS ion gun (Biemtron Co.

Ltd., UNSYS) and the high-temperature UHV STM unit (JEOL JSPM-4610S). A

schematic and a picture of the LMIS-IG/STM are shown in Fig. 2.1 and Fig. 2.2,

respectively. A special feature of this system is that LMIS-IG is installed. Our

LMIS-IG has a“ U-shape”refractory metal frame to which a sharp metal tip is

spot welded (Fig. 2.3). The LMIS-IG can hold a metal alloy that contains dopant

ion species. In the ionization chamber, an LMIS can emit various ions from a sharp

metal tip by applying high voltage. The ion acceleration voltage is controlled within

the range of 0-5 kV by changing the electrostatic potential of the cathode. The ions

extracted from the ionization chamber are selected by anE × B mass separator,

decelerated by the retarding lens system and irradiated onto a sample surface. A
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Faraday cage is inserted into an ion beam path for measuring ion beam current.

The ion incident angle is tilted to 60◦ with respect to the surface normal in order

to minimize channeling in crystalline Si substrates. The implanted specimens can

be flash annealed by resistive heating, and kept at a high temperature (400-600C̊)

during STM observation [1]. This system enables us to observe real-time STM

images of sample surfaces at high temperatures during ion irradiation.

The special features of LMIS-IG/STM system are compared with the IG/STM

as shown in Table 2.1.1. A variety of ions come from various alloys that contain

required ion species. One special feature of the LMIS-IG/STM is the capability

of hitting the selected target area with various ion species just by changingE × B

parameters, which enables the in-situ investigation of, for example, co-doping effect

of donor and acceptor ions. In addition, LMIS is effective in keeping the ionization

chamber at high vacuum because a source gas is not necessary. Even better vacuum

can be achieved by choosing a metal alloy for a particular ion species with keeping a

proper vapor pressure, which results in higher ion emissivity. All these features have

made a differential pumping unnecessary and made it possible to keep good vacuum

without using turbo-molecular pump (TMP) and rotary pump (RP) that inevitably

induce high mechanical noise. One more merit of the LMIS is the lower fluctuation

in initial energy. Compared to a gas source type that has the fluctuation of 20-50 eV

due to the fluctuation in ion position upon extraction, LMIS has eventually a point

source and has the fluctuation of 10 eV or less.

The drawbacks of LMIS are the lower ion current and shorter life compared to a

gas source. Lifetime of LMIS is one of our greatest concerns, because it is essential

for long use without changing ion optics. The factors that deteriorate LMIS are the

preferential sublimation of an element for particular ion species from the alloy and

corrosion of filament frame metal by the alloying. Good choice of the alloys is the

only solution to solve the problem.
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In order to understand the mechanism of solid surface modification with each

ion in terms of electrical activation of the implanted ions, shallow ion distribution

is necessary for STM observation. We have designed the ion acceleration energy

to be 100 eV and the ion incident angle to be 60◦ from surface normal. By doing

it this way, the projected range (Rp) of most metal ions stays within a range of

0.3-1.1 nm. The low acceleration energy of 100 eV, however, tends to spread ion

beam. For compatibility between low acceleration energy and not too wide spread

of ion beam, we have electrically floated the whole ion optics and prepared a special

ground in the ion gun [2–4]. This ground can be biased -5 kV to the earth potential.

The potentials necessary for extraction, focusing, and deflection of the ion beam are

supplied to the ground. This enables high-speed ion transport in the ion gun and the

subsequent deceleration by the potential difference between the exit of ion gun and

the target at the earth potential.

Figure 2.4 shows the ion beam current as a function of acceleration voltage,

which is measured at a sample position of the LMIS-IG/STM. In order to observe

the ion incidence and the subsequent phenomena in-situ with STM, one ion inci-

dence per second in the area of 20× 20nm2 is required. This corresponds to a dose

rate of 2.5 × 1011cm−2s−1 and the ion current of 1.2 nA. As shown in Fig. 2.4, the

lowest Si+ ion current exceeds the necessary value even at the extremely low ac-

celeration voltage of 10 V. The beam diameter is about 3 mm at the acceleration

voltage of 300 eV. This value is good enough for irradiating a whole target area.

Observation of a selected target area with STM can also be done without any prob-

lems.
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Figure 2.1: Schematic diagram of the LMIS-IG/STM.
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Figure 2.2: Picture of the LMIS-IG/STM.
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Figure 2.3: Our home-made LMIS. (a) Illustration of an LMIS, and (b) an actual

LMIS (P-Pt-Ni).
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Figure 2.4: Accelerating voltage dependence of an ion beam current at a sample

position of LMIS-IG/STM.
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Table 2.1: Comparison of LMIS-IG/STM with IG/STM.
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2.1.2 Preliminary Observations of the Irradiated Si(111)-7 × 7

Surface with Si2+ Ions at High Temperature

There are two reasons for choosing Si as an implant species in the preliminary

observation. Firstly a Si LMIS has a long lifetime and a high intensity, hence is

convenient of experimental conditions such as ion optics and ion beam current. In

order to ensure the observation of the irradiation effects, Si2+ ions with a high ion

beam current (Fig. 2.4) were used instead of Si+ ions. Secondly Si has a similar

mass with an important dopant, P, and the surface structural changes are expected to

be similar. Figure 2.5 shows STM images of Si(111)-7× 7 surface at 510C̊ before,

during and after Si2+ irradiation at 500 eV. In Fig. 2.5(a), three patches of lower

terrace are seen together with step edges with irregular shapes. In Fig. 2.5(c), all

the step edges retreat to the lower left direction. The initial edge distribution is

overlapped in Fig. 2.5(c). The three patches disappear and result in deeply indented

step edges. This indicates that the original patches are lower by one atomic layer.

Figure 2.6 shows the successive high resolution STM images of Si(111)-7× 7

surface at 500 C̊ after Si2+ irradiation at 500 eV. The induced surface defects in the

figure after 80 s is already reshaped, which can be seen by the fact that the bottom

of the surface defects are one bilayer deep and the periphery tend to be parallel to

dimer rows. One of the surface defects is annealed out after 960 s. All these STM

figures indicate that the features of surface defects are similar to the ones found

in the previous work based on the IG/STM [5]. One big advance is that a similar

in-situ observation has been done using the novel LMIS-IG/STM.

In conclusion, we have developed an LMIS-IG/STM in order to investigate

ion beam modification processin-situ based on our previous IG/STM. Various ion

species from a liquid-metal-ion-source can be well separated with theE × B sepa-

ration system. Current density is high enough for the successive STM observation.

Preliminary observation of Si(111) surface irradiated with Si2+ ions has revealed the
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similar behavior of surface defects induced by Ar+ irradiation with IG/STM.
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Figure 2.5: Successive STM images of the Si(111) surface at 510C̊; (a) 80 s before,

(b) during, and (c) 80 s after 500 eV Si2+ ion irradiation. The images were taken

with constant current mode and at a scan speed of 80 s/image (Dose: about 3×

1014cm−2, It: 0.06 nA, Vs: 1 V).
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Figure 2.6: Successive STM images of the Si(111) surface at 500C̊; 80 s, 240 s, 720

s, 880 s, and 960 s after 500 eV Si2+ ion irradiation (Constant current mode, It: 0.03

nA, Vs: 1V, Dose: 1.3× 1012cm−2).
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2.2 Development of an Ion Beam Alignment System

for Real-Time Scanning Tunneling Microscope

Observation of Dopant-Ion Irradiation E ffects

In section 2.1 the author implemented the LMIS-IG/STM in order to aim at observ-

ing doping effects, and Si2+ ion irradiation effects on high-temperature Si surfaces

were demonstrated as preliminary results [6]. However, real-time STM observation

of“ dopant”ion irradiation has not been realized yet because of the difficulty in

aligning the dopant-ion beam in the STM observation area. This difficulty derives

from the LMISs with low emission and short lifetime, which makes it difficult to

align the beam just at a nano-scale region between an STM tip and a sample surface

within the time limited by the short lifetime of the LMIS. Therefore, in order to

realize the STM observation of dopant ion irradiation, it is required the quick and

accurate ion beam alignment and the subsequent STM observation within a time as

short as possible.

In this section, we report a highly improved ion-beam alignment system which

enables us to aim accurately at an STM observation area in short time without dam-

aging a sample surface. The author describes the details of the ion beam alignment

system and demonstrate the results of real-time STM observation of P ion irradia-

tion onto Si(111)-7× 7 surfaces for the first time.
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2.2.1 Ion Beam Alignment System Using Absorbed Current Im-

age

We introduced a new ion beam alignment system into our original LMIS-IG/STM.

The LMIS-IG/STM system is composed of an UHV high-temperature STM and

a low-energy ion gun using an LMIS [6]. A variety of ions can be emitted by

changing the metal alloys for the LMIS. The ion gun and an STM tip are facing

a sample surface in the observation chamber, and the same observation area can

be kept during ion irradiation. Each STM image is taken with time interval from 6

second to several tens seconds. This enables us to keep observing the ion irradiation

effects with the time resolution of the STM scan period.

The newly developed ion beam alignment system is schematically shown in Fig.

2.7. The system is composed of two setups: (1) the absorbed current image (AEI)

unit to visualize an ion-irradiated area and (2) the dummy-target as an ion beam

alignment mark.

The AEI unit is a tool for visualizing the ion-irradiated region. The principle

of operation is as follows. First, a raster-scan signal is output from the scan-signal

generator and is sent to two paths: the ion gun and the oscilloscope. On the ion

gun path, the signal is amplified by the voltage amplifier and applies to each x/y-

deflection electrode of the ion gun. Thus the ion beam is raster-scanned with a

frame rate of 12 or 24 frame/s. The area size of ion irradiation can be changed

by controlling the amplitude of the deflection voltage from 0 to 300 voltage peak-

to-peak (Vp−p). The number of the horizontal scanning line is 512 line and the

area of raster-scan is designed to cover 10mm× 10mmat maximum at the sample

position. Then, the ion beam current absorbed into ion-irradiated objects such as

a sample, an STM tip and the alignment mark, is detected and amplified by an I/V

amplifier. Finally, the signal is input to an oscilloscope with applying the raster-scan

signal as a synchronizing signal. In this way, the absorbed current is mapped on
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the oscilloscope. The two-dimensional picture on the oscilloscope is the absorbed

current image (AEI). The contrast of AEI reflects the difference in the absorbed

current intensity. Fig. 2.8(a) illustrates the sample and the STM tip viewed from the

direction of the axis of ion gun. The ion beam incident angle is tilted by 60 degrees

with respect to the sample surface normal. Figure 2.8(b) shows an actual AEI of the

sample and the STM tip taken by irradiation of P+ ions with an acceleration voltage

of 5 keV. The AEI clearly reflects the arrangement of the sample and STM tip. The

beam spot size on the sample is estimated about 0.5 mm in diameter. This value is

large enough for covering the areal interval of scanning lines (about 0.02 mm) so

that ions are irradiated uniformly on the raster-scan area. Thus we can grasp the

area to be irradiated with ions from the AEI.

The dummy-target is a movable metal plate with an alignment mark for the beam

alignment. The dummy target can be inserted even when an STM tip is approached

to the sample and protects the sample surface from the damage during the beam

alignment. This enables us to align the beam after the preparation of the sample

just before STM observation. Figure 2.8(c) illustrates the dummy-target inserted

over the sample as the STM tip is approached. A head of a round head screw with

a diameter of 2 mm is located in the center of the dummy-target as an alignment

mark. The alignment mark is designed so that the center of a sample is positioned

just behind it when it is viewed from the direction of the incident ion beam. Figure

2.8(d) shows an actual AEI of the alignment mark. It clearly reflects the alignment

mark, and even the slot on the head of the screw is clearly observed as shown in the

inset of Fig. 2.8(d).

By using the AEI unit and the dummy-target, experimental procedure is im-

proved as shown in Fig. 2.9(a). In the new protocol, firstly the sample surface is

prepared for observation. Next, the dummy-target is inserted over the sample, and

the ion beam is emitted to get the AEI of the alignment mark. After the alignment
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operation is completed, the ion beam is blanked electrically and the dummy-target is

retracted. Thus the preparation of the real-time STM observation of ion irradiation

process is completed. To start the observation, we have only to blank-off (restore)

the ion beam.

The advantages of this method are summarized as follows. First, as illustrated

in Fig. 2.9(a) and (b), the number of process steps is drastically decreased from

the conventional procedure, and the time required for the beam alignment is much

saved. In the conventional protocol as shown in Fig. 2.9(b), ion beam alignment was

operated before sample preparation. The beam was aligned at the sample position

using a sample for the alignment. In order to exchange the sample for the alignment

for an observation-sample and prepare its surface by flash heating, about 3 h vacu-

uming are required after the ion beam interruption. In the new protocol as shown in

Fig. 2.9(a), ion beam is aligned after the preparation of the observation-sample. By

using the dummy-target, there is no need to exchange the sample, because the sur-

face to be observed is already prepared before the ion irradiation. This protocol does

not require the time for vacuuming. Additionally, the short time interval between

the ion beam alignment operation and the STM observation without interrupting the

ion beam accurizes the alignment of the ion beam.

There is another choice for imaging method such as secondary electron image

(SEI) to visualize the ion-irradiated area. SEI method will be suitable in the case of

extremely low dose (pA order), in which high detection sensitivity is needed. The

imaging method of AEI, however, does not require a secondary electron detector

and simplifies the system configuration.
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Figure 2.7: Schematic of the ion beam alignment system. The developed ion beam

alignment system is composed of two setups: the absorbed current image (AEI) unit

to visualize an ion-irradiated area and the dummy-target as an ion beam alignment

mark.
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Figure 2.8: Experimental setups and the AEI images viewed from the direction of

the axis of ion gun; (a) arrangement of a sample and STM tip and (b) their actual

AEI images. (c) The dummy sample positioned in front of the sample, and (d)

an AEI image of the alignment mark on the dummy sample. The inset shows the

magnified drawing of the alignment mark. The dashed line in the image corresponds

to the slot on the head of the screw.
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Figure 2.9: Experimental procedures for real-time STM observation of ion irradi-

ation process; (a) the improved and (b) the conventional protocol. The experiment

proceeds two steps: the preparation and the observation steps. In the conventional

protocol, ion beam is interrupted after ion beam alignment. After waiting for recov-

ery of UHV, a sample is prepared by heat treatment. Then ion beam is re-emitted

and STM observation is started. In the improved protocol, a sample is prepared at

first and ion beam is aligned. Then STM observation is started without interruption

of ion beam.
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2.2.2 Preliminary Results of Real-Time STM Observation of Si

Surfaces Irradiated with P+ Ions

According to the new procedure as shown in Fig. 2.9(a), we performed real-time

observations of Si surfaces irradiated with P+ ions at room temperature (R.T.) and

a high temperature of 500C̊. A sample cut from an n-Si(111) wafer was installed in

the STM unit in UHV after chemical cleaning. The sample was degassed at 600C̊

for more than 12 h, and was flashed repeatedly until the surface was covered with

7 × 7 dimer-adatom-stacking-fault (DAS) structure. The sample was then kept at

observation temperature (R.T. or 500C̊) for over 1 h until it reached thermal equilib-

rium with an STM tip. After preparation of the sample surface, the dummy-target

was inserted as shown in Fig. 2.8(c) and the ion beam was aligned by capturing

the AEI of the alignment mark. Then the ion beam was temporary deflected from

the axis, and the dummy-target was retracted. Following the above mentioned pro-

cedure, STM observation was started. STM images of the surface were taken with

constant-height mode. During the STM observation, P+ ions with 5 keV were ir-

radiated and the observation was continued in the same area. The ion doses are

estimated by the following equation:I × t/S, whereI is average absorbed current,

t irradiation time andS scan area size.

Figure 2.10 shows a series of STM images of Si(111)-7× 7 surface before,

during and after the ion irradiation at R.T. Before the ion irradiation as shown in

Fig. 2.10(a), the whole surface is covered with 7× 7 structure. Small dark spots on

the surface are the atomic defects, which were already formed in the preparation of

the sample surface before the ion irradiation. During the next image scan as shown

in Fig. 2.10(b), the ion beam was irradiated. The ion dose is 2.5× 1014cm−2. Upon

the beam irradiation, it is unavoidable that the STM tip is also irradiated with the

ions, so that the image turned white due to the incidence of positively charged P+

ions into the STM tip. During this period, we can not observe the surface, but the
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STM observation is rapidly reopened just after the end of ion irradiation. Figure

2.10(c) is the next image scanned after Fig. 2.10(b). In Fig. 2.10(c), we can see a

drastic change in the surface morphology. The initial flat surface was destructed so

that the 7× 7 structure is hardly observed. The bright and dark regions frequently

appear, which suggests that the surface is highly roughened. This kind of surface

modification is considered to be induced by ion irradiation because it never happens

without ion irradiation. The surface morphology of Fig. 2.10(c) did not change in

the subsequent STM scans without the beam irradiation.

Figure 2.11 shows a series of STM images of Si(111)-7×7 surface before, during

and after ion irradiation at 500C̊. The ion dose is 2×1014cm−2. On the surface before

ion irradiation as shown in Fig. 2.11(a), an atomic step is formed in the longitudinal

direction. Just after the ion irradiation as shown in the bottom half of Fig. 2.11(b),

small patches with a diameter of about 10 nm appeared as indicated with the black

arrows. The defects are identified as the clusters of vacancy type point defects

which are generated in the substrate by the ion irradiation. In the next image of

Fig. 2.11(c), the step edge is roughened and the defects shrink. It is suggested that

surface atom migration occurs at the step edge and Si atoms from the step edge fill

up the vacancy clusters [5,7]. The density of surface defect is 3×108cm−2 (3 defect

per 1000nm× 1000nmarea) and is much smaller than the ion dose. It is considered

that although much more surface defects are formed by the ion irradiation, most of

them recover by the time to reopen the surface observation. This result observed

at high temperature is different from that at R.T. (see Fig. 2.10). At R.T. surface

morphology remains to be roughened because of the insufficient thermal energy for

migration of point defects such as vacancies and surface Si atoms.

In this way, we have succeeded in obtaining the sequential STM images of sur-

face modification process by dopant ion irradiation at both R.T. and 500C̊. By the

new beam alignment procedure with the developed system, we have been able to

35



CHAPTER 2. DEVELOPMENT OF THE SYSTEM FOR REAL-TIME
SCANNING TUNNELING MICROSCOPE OBSERVATION OF DOPANT ION

IRRADIATION EFFECTS ON SOLID SURFACE

observe some changes in surface morphology at almost every experiment. Consid-

ering that in the conventional procedure 20-30 times of ion beam alignment was

needed until some ion-irradiation effects was observed in real-time, the developed

system has drastically improved the accuracy of the ion beam alignment. The de-

veloped system can be applicable to various types of LMISs. The LMIS-IG/STM

equipped with the developed ion beam alignment system would be a powerful tool

for microscopic investigation of the dynamic processes of ion irradiation.
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Figure 2.10: Sequential STM images of Si(111)-7× 7 surface (a) before, (b) during

and (c) after the 5 keV-P+ ion irradiation taken at R.T. Each image was taken with

constant-height mode (current images); sample bias: 1.1 V, tunneling current: 0.2

nA, scan speed: 12 s/image, ion dose: 2.5× 1014cm−2.
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Figure 2.11: Sequential STM images of Si(111)-7× 7 surface (a) before, (b) during

and (c) after the 5 keV-P+ ion irradiation taken at 500C̊. Each image was taken with

constant-height mode (current images); sample bias: 0.3 V, tunneling current: 0.2

nA, scan speed: 23 s/image, ion dose: 2× 1014cm−2.
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2.3 Summary of Chapter 2

In this chapter, a newly developed system for real-time STM observation of ion-

irradiated solid surface is described; (1) Development of a liquid-metal-ion-source

ion gun and STM (LMIS-IG/STM) combined system. (2) Development of a beam

alignment system especially for“ dopant-ion-beam”are explained in detail.

Our original LMIS-I/STM is composed of a high-temperature UHV STM and

a low-energy ion-gun with an LMIS. The ion gun is originally designed so that

dopant ions are irradiated at an energy lower than 5 keV. After the description of the

principle of operation, some basic performances are shown such as mass spectrum

of ion beam using a Au-Si LMIS and ion current at a sample position. In addition,

as a preliminary experiment, a real-time STM observation of a high-temperature

Si(111)-7× 7 surface irradiated with Si2+ is demonstrated.

Next, a beam alignment system for“dopant”ion beam is described in detail as

a key technique for real-time STM observation especially using LMISs composed

of dopants such as P. Since such LMISs are low emission and short lifetime, we

faced a difficulty in aligning the dopant-ion beam in the STM observation area. The

beam alignment system is composed of two setups: the AEI unit to visualize an ion-

irradiated area, and the dummy target as an ion beam alignment mark. Installing the

beam alignment system enables us not only to align a dopant-ion beam accurately

but also to save the time for preparation of the experiment.

Finally, we realized a real-time STM observation of Si(111)-7× 7 surfaces irra-

diated with P+ for the first time.
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Chapter 3

Real-Time Scanning Tunneling

Microscope Observation of Silicon

Surface Modified by Gold Ion

Irradiation

3.1 Introduction

Transport and reactions of gold (Au) atoms in silicon (Si) have been extensively

studied owing to the technological importance such as contact matellization, life-

time control and a catalyst. Gold is a deep-level impurity in Si crystal and acts

as an effective recombination center of minority carriers, so that Au impurities are

utilized as so-called lifetime killer in high-speed Si devices such asp-n diodes and

bipolar transistors [1, 2]. Recently, Au implantation is applied to the formation of

a nanoparticle which is used as a nucleation site of a silicon nanowire in vapor-

liquied-solid method [3, 4]. One important key in these techniques is to control

behaviors of Au atoms in Si substrate. This is, however, difficult due to the rapid
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diffusivity of Au in Si [5], and the complexity of the diffusion mechanism mediated

point defects [6,7]. Therefore, it is important to understand deeply the transport and

reaction mechanisms of Au atoms in Si in nano-meter scale.

The Au atoms in Si substrate diffuse through exchange reactions between inter-

stitial (Auint) and substitutional (Ausub) sites. The reaction from Auint to Ausub is

considered to involve vacancies (V), which is called the Frank-Turnbull mechanism

(Auint+V ↔ Ausub) [6]. The reverse reaction from Ausub to Auint is considered

to involve a Si interstitial (I ), which is called the kick-out mechanism (Ausub+I ↔

Auint) [7]. The Auint diffuses much faster than Ausub, so that the diffusion of Au

atoms is promoted by Si interstitials and suppressed by vacancies. The Au atoms

in Si substrate provide so-called“ U-shape”profile [1, 8], in which both surface

sides have high concentration of Au because surface acts as a sink of Si intersti-

tials. Thus, the behavior of the Au atoms is known to be strongly affected by the

distribution of point defects.

When Au atoms are introduced by ion implantation, behaviors of the Au atoms

could be more complicated due to the interaction with excess point defects gener-

ated in the substrate. In particular, the heat treatment for the diffusion of implanted

Au atoms leads to both a recovery of the crystal and a growth of defects due to the

migration of the point defects. Therefore, it is crucial to understand the dynami-

cal behavior of the implanted Au atoms during annealing just after ion irradiation.

However, this is not completely clarified. Previous studies mainly focused on the

thermal equilibrium or quasi-equilibrium distributions of Au atoms after the ion ir-

radiation, which were obtained by Rutherford backscattering spectrometry (RBS)

and transmission electron microscope (TEM) and so on, and the information on

the behavior of each implanted Au atom under the nonequilibrium condition was

obtained indirectly [9–14].

In order to address the atomistic picture of the interaction between implanted
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impurities and substrate just after ion irradiation, our group developed the real-time

observation system [15] (LMIS-IG/STM) as described in chapter 2. The system

enables us to observe a sample surface during ion irradiation. From the sequen-

tial STM images of the sample surface, we can see the elemental steps of surface

modification with the time interval of STM scan period.

In this chapter a real-time STM observation of Au+ ion irradiation effects on

Si surface is reported. The STM based method enables us to track the change of

the surface structures with atomic resolution. For example, Au atoms on Si(111)-

7 × 7 dimer-adatom-stacking fault (DAS) surface are known to form several kinds

of reconstructions such as 5× 2,
√

3 ×
√

3 on the topmost surface [16] and the

atomic arrangements and their composition per each unit cell are well defined. By

using these reconstructions as the rulers in nature, we can estimate the number of

Au atoms which are involved in reconstructed domains on surface.
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3.2 Experiment

We performed the experiment using our original ion gun and STM combined system

(LMIS-IG/STM), which is described in detail in Chapter 2 [15]. The system is

composed of an UHV high-temperature STM and a low-energy ion gun using a

liquid-metal-ion-source (LMIS). Various kinds of ions can be emitted by changing

the metal alloys for the LMIS. In this experiment, an Au-Si alloy was used to extract

Au ions. The ion gun and an STM tip are facing a sample surface in the observation

chamber, and the same observation area can be kept during ion irradiation. Each

STM image is taken with a time interval of several tens seconds. This enables us to

keep observing the ion irradiation effects with the time resolution of the STM scan

period.

Experimental procedure is shown in Fig. 3.1. A sample cut from an n-type

Si(111) wafer was cleaned chemically and installed in the STM unit. The sample

was degassed at 600C̊ for about 12 h and flashed repeatedly at 1200C̊ by resistive

heating until whole surface was covered with 7× 7 DAS structure. The thermally

treated sample was kept at observation temperature (500C̊) for over 1 h until it

reached thermal equilibrium with an STM tip. After preparation of the sample

surface, STM observation was started. STM images of the surface were taken with

constant-height mode. During the STM observation, Au+ ions were irradiated with

3 keV by spot irradiation, and the observation was continued in the same area. The

beam spot size was about 0.5 mm in diameter and the ion doses was 3× 1014cm−2,

which is given byI/e× t/S, whereI , t, S stand for average current through the

sample, irradiation time, beam spot size, and e is elemental charge, respectively.
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Figure 3.1: Experimental procedure of real-time STM observation of Au+ ion irra-

diation effects on high-temperature Si surface.
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3.3 Results and Discussion

Figure 3.2 shows a sequential STM images of Si(111)-7× 7 surface kept at 500C̊

,which were taken (a) before, (b) during, and (c) after Au+ ion irradiation. Before

the ion irradiation, the whole surface was covered with 7×7 DAS structure as shown

in Fig. 3.1(a). During the next scan, Au+ ions were irradiated on the observation

area as shown in Fig. 3.2(b). Upon the ion irradiation, it is unavoidable that the

STM tip is also irradiated with the ions. During this period, the STM tip is retracted

from the sample surface, so that we can not observe the atomic structure of the sur-

face. However the STM observation is rapidly reopened just after the ion irradiation

keeping the original observation area. After the ion irradiation, some new surface

structures appeared as indicated by allows in Fig. 3.2(c). From the relation between

the scan direction and the contrast change induced by the response of STM tip,

these structures are identified to be indentations. Since they never form without ion

irradiation, it is concluded that these structures are induced by the ion irradiation.

Figure 3.3 shows STM images of the Si(111) surface kept at 500C̊, which were

taken (a) 71 s, (b) 111 s, and (c) 731 s after the ion irradiation. The structure labeled

“ a” in Fig. 3.3(a) is a vacancy island, which is a two-dimensional cluster of

surface vacancies. The same type of surface defects were observed in our previous

work [17], in which Ar+ ions were irradiated on a Si(111)-7×7 surface at 500C̊. The

vacancy islands are nucleated by ion impacts, and then they grew by incorporating

vacancy-type point defects generated in the substrate upon the ion irradiation. The

number density of the vacancy islands (about 1× 1011cm−2) is much lower than

expected from the ion dose (3× 1014cm−2). It is considered that although much

more surface defects were formed by the ion irradiation, most of them have been

annihilated or coalesced each other by the time to reopen the surface observation.

We also found that a chain structure, which is labeled“h”in Fig. 3.3(a), forms

adjacent to a vacancy island. The periodic structure has a side length of 5a, where
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a is the lattice constant of Si(111) plane (0.381 nm). Since this structure has never

been observed on Ar+ ion irradiated Si(111)-7× 7 surface [17], it is associated

with incident Au+ ions. Figure 3.4(a) shows a Si(111) surface image obtained in

a separate experiment, which is taken at room temperature after ion irradiation at

500C̊. Figure 3.4(b) is the magnified image of periodic bright spots observed in Fig.

3.4(a). This structure has 5a× 2a periodicity (dashed parallelogram). Many studies

of Au deposition on Si(111) surface reports 5× 2-Au reconstruction forms at 500C̊

when Au concentration on surface is lower than 0.7 monolayer (ML) [16, 18]. In

the present experiment, surface concentration of Au atoms never exceeds 0.3 ML

(corresponding ion dose is 3× 1014cm−2), so that the condition for the appearance

of the 5× 2-Au is satisfied. One of the prevailing models of the 5× 2-Au is shown

in Fig. 3.4(c), which is known as”Double Honeycomb Chain (DHC)”model

proposed by Erwin [19]. So far several model of 5× 2 structure [20,21] have been

proposed and a firm consensus on the structure has not yet been reached. However,

it is accepted, at least, that the 5× 2 structure includes 4 Au atoms per unit cell in

their models. As discussed later, the number of atoms involved in the structure can

be estimated from the aerial size and the atomic configuration.

Since the 5× 2-Au domain in Fig. 3.2 keeps growing after the ion irradiation, it

is considered that the Au atoms were once implanted into the Si substrate and then

diffused toward the surface. This picture is supported by ion energy dependency

of 5 × 2-Au domain size. Figure 3.4 shows ion irradiated Si(111)-7× 7 surfaces

obtained 10 s after the ion irradiations with about the same dose (2× 1014cm−2),

and at different ion energies (0.5, 1, and 5 keV). The coverage of 5× 2-Au domain

increases as the ion energy decreases. This is due to the difference in the initial

distributions of Au ions; upon low energy ion implantation, the projected range

(Rp) of ions is small so that more Au atoms reach the surface.

Our real-time observation reveals the interaction between Au atoms and defects
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appeared on the surface. As shown in Fig. 3.3, it was found that 5× 2-Au domains

were formed at step edges and at a periphery of vacancy islands as indicated by

arrows in Fig. 3.3(b). Formation of 5× 2-Au at a step edge was also observed

in other groups’work on Au deposition [22–24]. This is because a step edge is

a stable site for adsorption of Au atoms. In the present experiment, the periphery

of vacancy islands induced by the ion irradiation also act as the nucleation site of

5× 2-Au reconstructions as well as the step edges.

As seen in Fig. 3.3, the vacancy islands and the 5×2-Au domain change in their

shape and size after the ion irradiation. Some vacancy islands shrink and disappear.

The defect labeled“ e”disappeared at 111 s after the ion irradiation as shown in

Fig. 3.3(b), and after 731 s, the defects“ b”and“ g”also disappear as shown in

Fig. 3.3(c). On the other hand, the 5× 2-Au domain labeled“ h”develops with

time and finally reached the step edge as shown in Fig. 3.3(c). Figure 3.6 shows

time evolution of the size of each vacancy island and the 5× 2-Au domain after the

ion irradiation. Size of vacancy islands are within about 10− 50nm2 just after the

ion irradiation, then tend to slowly decrease as a whole. Contrarily, the 5× 2-Au

domain increases for about 2000 s after the ion irradiation.

The decrease in the vacancy island size means the recovery of the Si crystal. The

same phenomena were also observed in our previous work of Ar+ ion irradiation

[17]. This is due to the diffusion of interstitial atoms toward the surface and the

migration of surface atoms, resulting in filling the vacancy islands. This indicates

that the vacancy island acts as a sink for Si interstitials.

The monotonic increase in the size of the 5×2-Au domain means that Au atoms

are supplied from the substrate during heat treatment for 2000 s after the ion irradi-

ation.

Diffusion coefficient of Au atom on the Si(111)-7× 7 surface is estimated to be

about 10−9cm2/s at 500C̊ [25], which is much higher than those of in the substrate
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by about four orders of magnitude [8, 26]. Therefore the rate-limiting process is

considered to be the diffusion in the substrate. Based on this assumption, we calcu-

late the number of Au atoms reached the surface. Number of Au atoms reached the

surface is given by

NS ur f(t) =
1
2

∫ +∞

0
Ni(x)Er f c

( x
2Dt

)
dx. (3.1)

whereNi is the initial distribution of Au atoms as a function of depthx estimated

by TRIM simulation [27], andD is the diffusion coefficient of Au atoms in the Si

substrate. This equation means that the probability to reach the surface from depth

x during the timet is given by the half of the co-error function [28]. According to

the TRIM simulation, theRp and the extent of the straggle (∆Rp) for implanted Au

atoms are 3.9 nm and 1.5 nm, respectively (Fig. 3.7). In eq. 3.1, we assume that an

Au atom on the surface never return into the substrate, because they are stabilized

by forming the 5×2-Au structure. According to literatures, the diffusion coefficient

D of Au in dislocation-free Si crystal is 10−17cm2/s [7],8) and that in amorphous Si

is 10−13cm2/s [26]. In the present experiment, the number of Au atoms appeared

in the observation area (100nm× 100nm) is estimated to be at most 1000 atoms. If

we assume the diffusion coefficient in amorphous silicon, the time required for the

1000 atoms to reach the surface is only about 0.14 s, which is too short to explain

the gradual increase of the Au domain size. If we assume the diffusion coefficient

in dislocation-free Si crystal, the required time is about 1400 s, which corresponds

roughly to the observed time scale. Therefore, it is considered that interactions

in the substrate between Au atoms and excess point defects induced by the ion

irradiation are almost negligible. In the present experimental condition, most of the

defects in the substrate are likely to rapidly disappear by the heat treatment.

If experimental conditions such as temperature and ion dose are changed, the

modulation of the diffusion speed may be expected. At lower temperatures, the

excess point defects induced by the ion irradiation survive long time, and the inter-
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action between Au atoms and the defects cannot be ignored. Also, higher dose leads

to formation of complex defects which traps the Au atoms as reported by RBS and

TEM studies [13,14], so that the diffusivity would be slow down. By performing a

more systematic study varying these conditions, various aspects of the behavior of

the implanted Au atoms will be clarified.
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Figure 3.2: Sequential STM images of Si(111)-7×7 surface kept at 500C̊ (a) before,

(b) during and (c) after Au+ ion irradiation (Ion energy: 3 keV, Dose: 3× 1014cm−2.

Each image was taken with constant height mode (current image); sample bias: 1.5

V, tunneling current: 0.2 nA, scan speed: 12 s/image.
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Figure 3.3: Sequential STM images of Au+ ion irradiated Si(111) surface kept at

500C̊; (a) 79 s, (b) 111, and (c) 731 s after the ion irradiation. Some modified sites

on the surface are labeled by the alphabet“ a”∼“ h“ .
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Figure 3.4: (a) STM image of a modified site formed by Au ion irradiation taken

at RT (current image, sample bias: 1.2 V, tunneling current: 0.1 nA), (b) its partial

magnified image (4nm× 4nm), and (c) atomic arrangement of 5× 2-Au structure

proposed by Erwin’s model (ref. [19]).

53



CHAPTER 3. REAL-TIME SCANNING TUNNELING MICROSCOPE
OBSERVATION OF SILICON SURFACE MODIFIED BY GOLD ION

IRRADIATION

Figure 3.5: Comparison of 5×2-Au area size by ion energy. Au+ ions are irradiated

onto Si(111)-7× 7 surfaces kept at 500C̊ with different ion energies; (a) 500 eV, (b)

1 keV and (c) 5 keV. The image (a) is taken at 500C̊, 10 s after ion irradiation; The

images (b) and (c) are taken at R.T. after being quenched 10 s after ion irradiation.

Each ion dose is about 2×1014cm−2. Below each STM image (80nm×80nm), 7×7

and 5× 2-Au areas are indicated as white area and hatched area, respectively.
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Figure 3.6: Time evolution of size of a 5× 2-Au area and each vacancy cluster after

ion irradiation. The origin of the time scale corresponds to the beginning of the ion

irradiation. Circle mark indicates the 5× 2-Au area on terrace corresponding the

structure“ h” in Fig. 3.2(a), and the other marks indicates each vacancy cluster

corresponding to the defects“ a”∼”g”in Fig. 3.2(a), respectively.
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Figure 3.7: Distribution of Au ion calculated by TRIM (ref. [27]). (a) Ion tracks

formed by Au ion implantation; Target material: amorphus-Si, Incident angle of

ions: 60◦, Ion energy: 3 keV, Numer of incident ions (simulated times of ion inci-

dents): 10000. (b) Existing probability of Au ion as a function of depth.
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3.4 Summary of Chapter 3

In order to investigate the behaviors of Au atoms as impurities in nano-scale, we

performed real-time STM observation of the low-energy Au ion irradiation effects

on high-temperature Si(111)-7× 7 surface. We obtained sequential STM images of

Si(111)-7× 7 surfaces kept at 500 C̊ before, during, and after the 3 keV Au+ ion

irradiation. Vacancy islands and 5× 2-Au structures were formed on the sample

surface, and changed their size during the heat treatment after the ion irradiation.

Number of surface Au atoms reached surface during heat treatment is estimated

from 5×2 area size. The growth rate of the 5×2-Au domain suggests that implanted

Au atoms reached the surface almost without interacting with defects in the bulk Si

generated by the ion irradiation. Although our method here is limited to observe

the topmost surface, the elemental steps of surface modifications can be directly

clarified with the time resolution of the STM scan period. Moreover, this method

can be extended to understand the atomistic picture of the other impurities such as

dopants just after the ion irradiation.
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Chapter 4

Real-Time Scanning Tunneling

Microscope Observation of Silicon

Surface Modified by Phosphorus Ion

Irradiation

Dopants in Si interact with host Si atoms and point defects. In order to better control

the behavior of dopants, it is important to clarify the behavior of point defects as

well as that of dopants themselves. To observe point defects directly in real-space is

believed to be impossible. However, if point defects diffuse in substrate and appear

on surface, we can observe them as surface vacancies, surface atoms, and other

atomic or nano-scale changes in the surface morphology. It is therefore expected

that detailed and cautious investigation of surface nano-modificaiton will open a

discussion on the behavior of point defects near surfaces.

STM is one of the most powerful tools to observe surface modification in atomic

and nm scale. Actually, several pioneering works [1–5], followed by our group

[6, 7], reported surface defects induced by ion irradiation. However, ion species
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used in these works were rare gas such as argon (Ar) [1,2,6,7] and xeon (Xe) [3–5],

or Si (self implantation) [8]. There is no report on surface modification with dopant

ions actually used in Si LSI technology.

In this chapter, in order to understand what happens actually in the dopant ion

irradiation process, real-time STM observation of P ion irradiation on Si substrate

has been performed. Si(001) and Si(111) substrate are used as samples. The author

tries to discuss on the behavior of point defects involved in the surface morphology

change.
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4.1 Experiment

The experiment was performed as shown in Fig. 4.1. A sample cut from a n-type

Si(111) or Si(001) wafer was installed in the STM unit in UHV after chemical

cleaning. The sample was degassed at 600C̊ for more than 12 h, and was flashed

repeatedly until the surface was covered with reconstruction structure (7× 7 for

Si(111) sample, 2×1 for Si(001) sample). The sample was then kept at observation

temperature of R.T., 500C̊ and 600C̊ for over 1 h until they reached thermal equilib-

rium with a STM tip. After preparation of the sample surface, STM observation was

started. STM images of the surface were taken with constant-height mode. During

the STM observation, P+ ions with 5 keV were irradiated and the observation was

continued in the same area. The ion doses are estimated by the following equation:

I/e× t/S, whereI is the average absorbed current,e the elementary charge,t the

irradiation time, andS the scan area size.
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Figure 4.1: Experimental procedure of real-time STM observation of P+ ion irradi-

ation effects on high-temperature Si surface.
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4.2 Modification on Si(111) Surface

4.2.1 Morphological Change by Ion Irradiation and During

Heat Treatment

Figure 4.2 shows a sequential STM images of 600C̊-Si(111) surface taken (a) be-

fore, (b) during, and (c) after the ion irradiation. Figure 4.2(a) is the initial surface,

in which atomic steps and 7× 7 terraces are observed. During the next scan of Fig.

4.2(b), P+ ions were irradiated for 6 s. Just after the ion irradiation, many small

patches with 20-30 nm in diameter appeared on the terraces. Judged by the scan

direction and the width of the black region at the periphery of the vacancy island

as shown in the Fig. 4.2(d), these structures are identified to be vacancy islands,

which are indentations with 7× 7 DAS structure of one bilayer depth. The num-

ber density of vacancy islands (2.7 × 1010cm−2) is much smaller than the ion dose

(5.4 × 1013cm−2) by three-order of magnitude. This is because that most of the

ion-induced defects already recovered before the STM observation reopened.

This is supported by the comparison of ion-irradiated surfaces taken at R.T.

and high-temperature. STM images shown in Fig. 4.3 were taken in the separate

experiment with almost the same dose but at different temperatures. At R.T. the

initial 7 × 7 surface are fully roughened after the ion irradiation. It is, therefore,

indicated that the heat treatment at high-temperature leads to the recovery of the

crystal.

Based on a TRIM calculation [9], sputtered atoms and generated vacancies in

the observation area are estimated to be 2.4 × 106 vacancies and 4.4 × 107 atoms,

respectively. These values are estimated by assuming the sputtering yield of 5.5

atom/ion, the vacancy production rate of 126 atom/ion, and the number of incident

ions in the observation area of 3.5 × 104 ion. On the other hand, the average size

of each vacancy island is about 285nm2. The estimated number of vacancies corre-
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sponds to 4,480, which is calculated based on the assumption that 98 Si atoms are

involved in each 7× 7 DAS unit cell [10]. This value is about ten times as much

as that of TRIM simulation, so that we can not explain that each vacancy island

is induced by single-ion-incidence. More than one single-ion-induced defects are

responsible to form a vacancy island.

Figure 4.4 shows a sequential STM images of 600C̊-Si(111)-7×7 surface taken

(a) 108 s after, (b) 466 s, (c) 1576 s after the ion irradiation. During the heat treat-

ment, the vacancy islands tend to shrink and some of them disappeared, which

results in the decrement of the number density as shown in Fig. 4.5. The shape

of steps edges appear to change. Figure 4.6 shows the step edges and vacancy is-

lands before and after the ion irradiation. From the figure, the steps are found to

be retreated during the heat treatment between at 108 s and 1576 s after the ion ir-

radiation. Since the attachment and detachment of atoms (or vacancies) causes the

motion of steps and the changes in size of vacancy islands, these results mean that

the migration of surface atoms and surface vacancies occurs during the heat treat-

ment. In addition to the surface migration, diffusion of vacancies and interstitials

from the substrate to the surface could lead to morphology changes.
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Figure 4.2: Sequential STM images of 600C̊-Si(111)-7×7 surface taken (a) before,

(b) during, and (c) after the ion irradiation. Ion species is P+ with 5 keV and dose is

5.4×1013cm−2. Each image was scanned with constant height mode at a scan speed

of 60 s/image. Sample bias is+1 V and tunneling current is 0.2 nA.
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Figure 4.3: Comparison of ion-irradiated surfaces between R.T. and high-

temperature [Referred inT. Kamioka et al., Rev. Sci. Technol.79 (2008) 073707].

Ion species: 5 keV-P+, Dose: 2.5× 1014cm−2 at R.T. and 2× 1014cm−2 at 500C̊.
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Figure 4.4: Sequential STM images of 600C̊-Si(111)-7× 7 surface taken at (a) 108

s after, (b) 466 s after, and (c) 1576 s after the ion irradiation. Each image was

scanned with constant height mode at a scan speed of 60 s/image. Sample bias is

+1 V and tunneling current is 0.2 nA.
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Figure 4.5: Time development of the number density of vacancy islands. The sam-

ple area size is 734nm× 867nm. Vacancy islands smaller than about 10nm2 are not

counted.
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Figure 4.6: Step motion and evolution of vacancy islands before, after ion irradia-

tion.
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4.2.2 Surface Modification by Additional Ion Irradiation onto

the Same Surface

In order to better understand the effect of ion irradiation on surface morphological

change, we additionally irradiated P+ ions onto the same sample surface. As shown

in Fig. 4.7(a), vacancy islands are hardly observed and step edges are roughened

at 1576 s after the first ion irradiation. When P+ ions are additionally irradiated on

the surface, vacancy islands newly appeared. As indicated arrows in Fig. 4.7(a) and

4.7(b), the number of step kinks increases so that step edges are more roughened by

the ion irradiations. It is noted that the vacancy islands remaining before the second

ion irradiation are enlarged by the ion irradiation, which are indicated by dotted

circles in Fig. 4.8. It is suggested that the vacancy clusters act as a sink for surface

vacancies. During the heat treatment after the second ion irradiation, these vacancy

islands shrink and some disappeared and the step edges are retreated and become

smooth, in the similar way as the first irradiation and subsequent heat treatment.

These phenomena can be observed at different high-temperatures. Figure 4.9

shows Si(111) surface kept at 500C̊ with almost the same dose and time. At 500C̊,

the number density of residual vacancy islands after the first ion irradiation is larger

than those at 600C̊. The roughness of the step edges is smaller. The width of

denuded zone in terms of vacancies near the step edges is narrower than those at

600C̊. These results are ascribed to the difference in the diffusivity of point defects

in substrate and on surface. At high temperature, the diffusivity of interstitial atoms

is high enough for the recovery of vacancy islands. The diffusivity of vacancies

is also high for long distance surface migration to be annihilated at the step edge,

which leads to widen the denuded zone near the step edges.

As described above, ion irradiation at high-temperatures induces surface modi-

fication as a result of diffusion of point defects. Figure 4.10 shows the STM images

of Si(111) surface kept at 500C̊ modified with intermittent ion irradiations. As the
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ion dose increase, the mean size of vacancy island increases and the retreat and

roughness of step edges increase. For clarity, transition of step edges and vacancy

islands are indicated as shown Fig. 4.11. In the image of Fig. 4.11(b), we can

see the overlap in the distribution of vacancy islands between at 56 s after the 2nd

irradiation (green circles) and at 64 s after the 4the irradiation (red circles). We can

also distinguish the coalescence of the vacancy islands to form large ones.

Our real-time STM observation reveals the microscopic aspects of elemental

steps of surface modification. As shown in Fig. 4.12, we directly observe the co-

alescence of neighboring vacancy islands just after the ion irradiation, resulting in

the expansion of the vacancy island. Also observed is incorporation of a vacancy

island into a retreated step edge, resulting in the enhancement of step roughness.
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Figure 4.7: STM images of Si(111) surface at 600C̊ before and after the second ion

irradiation. Dose is 5.4× 1013cm−2. Kinks sites are indicated by arrows.
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Figure 4.8: Step motion and evolution of vacancy islands before, after the second

ion irradiation. Dotted circle indicates the overlapped vacancy islands between be-

fore and after the ion irradiation.
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Figure 4.9: STM images of Si(111) surface at 500C̊ before and after the second ion

irradiation. Dose is 6.3× 1013cm−2.
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Figure 4.10: STM images of Si(111) surface kept at 500C̊ modified with intermit-

tent ion irradiations. Dose at each time: 6.3× 1013cm−2, Vs: +1 V, It: 0.2 nA.
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Figure 4.11: Transition of the step edges and vacancy islands just after each ion

irradiation. (a) 1590 s after the first ion irradiation, (b) 56 s after the second ion

irradiation, and (c) 64 s after the fourth ion irradiation.
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Figure 4.12: Magnified images of vacancy islands near the step edge taken before

and after the ion irradiation. Scan area size is 141nm× 141nm. 5 keV-P+ ions were

irradiated on to 500C̊-Si(111) surface to a dose of 6.3× 1013cm−2.
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4.2.3 Behavior of Point Defects

In this way, surface modification by ion irradiation occurs as the nucleation and

growth (or decay) of vacancy islands and the retreat of step edges, resulting in

the removal of surface atoms. However, although these phenomena are apparently

caused by the vacancy diffusion and sputtering, we have to also consider the inter-

stitials diffusion toward surface. In order to explain the behavior of vacancy islands

and step edges, we compare the number of surface vacancies in the experiment and

in the simulation.

In the temperature range between 500 and 600C̊, sublimation of atoms from

the surface hardly occurs. Thus, evolution of vacancy islands and step motion are

attributed to the sputtering and the diffusion of point defects from the bulk toward

the surface. Figure 4.13 shows the number of vacancies appeared on the surface at

600C̊ as a function of time after the first ion irradiation. Just after the ion irradiation,

surface vacancies increases a lot due to the nucleation of vacancy islands and the

retreat of the step edges. The ion dose is 5.4× 1013ion/cm2, and therefore sputtered

atoms calculated by TRIM are 3× 1014 atoms (sputtering yield is 5.5 atom/ion).

However, density of total surface vacancies is about 1.6 × 1014atom/cm2, which

is less than those of the simulation as listed in Table 4.2.3. Upon each irradiation

(the second, the third, and the fourth irradiation) at each temperature (600C̊ and

500C̊), it appears to be similar as shown in Fig. 4.14 and Fig. 4.15, respectively.

At 500C̊, unfortunately we could not extract the data between just after the first

ion irradiation and the second ion irradiation, so that we focus on the time after the

second ion irradiation (Note that the origin of the time scale corresponds to the time

just after the second ion irradiation).

As shown in Fig. 4.16, number of vacancies newly appeared on the surface

(∆Nsur f vac) upon each irradiation could be determined by the equation:∆Nsur f vac=

Nsput + Nvac − Nint, whereNsput denotes number of sputtered atoms by each ion
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irradiation,Nvac andNint denotes number of vacancies and interstitials reached the

surface within the next scan of each ion irradiation. Now∆Nsur f vac is less thanNsput,

so thatNvac− Nint < 0. That is, interstitials diffuse from the substrate to the surface

much more than vacancies. Figure 4.17 shows the density of atoms reached surface

as a function of ion dose. Both at 500C̊ and 600C̊, observed surface vacancies is

less than sputtered atoms, and about 3-3.5 excess interstitials per ion diffuse toward

surface.

During the heat treatment after each irradiation, vacancies involved in the step

retreat gradually increase at both temperatures. On the other hand, size of vacancy

islands tends to decrease at both temperatures at low dose. As the temperature

increases, the rate of step retreat and size change of vacancy islands increase. This

is attributed to the high diffusivity of point defects at high temperature. As a result,

the total number of surface vacancies changes.

In this way, diffusion of point defects toward the surface leads to retreat of step

edges and evolution of vacancy islands. On the surface, there is an interaction be-

tween steps and vacancy islands, which results in the formation of the denuded

zone in terms of vacancies. The density of surface vacancies depends on the dis-

tance from the step edge as shown in Fig. 4.18. Both after each ion irradiation and

after each heat treatment, the density of surface vacancies in the middle region of

the terrace (region“ B”) is higher than those of near the step edges (region“ A”

and“ C”). This indicates that the step edges affect the behavior of vacancy is-

lands. Also, the density of surface vacancies in region“ A”, which is adjacent to

the upper terrace, is a little higher than those of in region“ C”, which is adjacent

to the lower terrace. The reason for this may be the decrease of the denuded zone

width caused by step retreat, or the asymmetry of the kinetic coefficient of incorpo-

ration into a step from the upper and from the lower terrace, which is known as the

Ehrlich-Schwoebel effect [11]. In the middle region of the terrace, the morphology
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change in size of vacancy islands is less affected by the step edges.

The atomistic picture for growth and decay of vacancy islands are proposed

as shown in Fig. 4.19. When a vacancy island shrinks, as shown in the present

experiment, possible mechanisms are; (a) supply of adatoms from the step edge, (b)

emission of vacancies from the vacancy island, and (c) supply of interstitials from

the bulk. It is generally accepted that most of the point defects generated by ion

irradiation annihilate by recombination within ps order. Only a few percent of point

defects survive and clusterize. Then, these clusters dissolve to release point defects

during heat treatment. This is suggested by the gradual increase and decrease of the

number of surface vacancies during heat treatment in Fig. 4.14 and Fig. 4.15.

Finally, we show a preliminary result using cross-section TEM of ion-irradiated

sample. The experimental procedure is described in Fig. 4.20. A Si(001) substrate

was irradiated with 5 keV-P+ ions at 500C̊. Then sample was quenched at 180 s after

the ion irradiation. As shown in Fig. 4.21 and Fig. 4.22, within 10 nm depth, the

lattice images of (110) plane is observed and defects are hardly observed. However,

in the end-of-range, which is the deeper region than the projected range of P ions,

we can see a band of defects. These defects have a few nm scale in size so that

they indicates clusters of point defects. Although the substrate is different and the

ion dose is much higher than those in the STM experiment, similar phenomena may

occur in the STM experiment. In order to know the detail information on diffusion

of point defects in bulk toward surface, further analysis such as simulation of point

defect diffusion and other observation methods such as TEM study are needed.
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Figure 4.13: Time evolution of surface vacancies after the first ion irradiation at

600C̊.
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Figure 4.14: Time evolution of surface vacancies after ion irradiation at 600C̊. Note

thatt = 0 corresponds to at the end of the second ion irradiation.
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Figure 4.15: Time evolution of surface vacancies after ion irradiation at 500C̊. Note

thatt = 0 corresponds to at the end of the second ion irradiation.
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Figure 4.16:∆Nsur f vac denotes the net increase in the number of surface vacancies

introduced by each ion irradiation. This value eliminates the variation in the number

of surface vacancies during the time interval between each ion irradiation.
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Figure 4.17: Density of atoms reached surface as a function of ion dose.

87



CHAPTER 4. REAL-TIME SCANNING TUNNELING MICROSCOPE
OBSERVATION OF SILICON SURFACE MODIFIED BY PHOSPHORUS ION

IRRADIATION

Figure 4.18: The density of surface vacancies in each segment on the terrace. Re-

gions“ A”,“ B”, and ”C” correspond to the regions in the above image,

respectively.
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Figure 4.19: Possible mechanisms of decay of vacancy islands; (a) supply of

adatoms from the step edge, (b) emission of vacancies from the vacancy island,

and (c) supply of interstitials from the bulk.
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Figure 4.20: Preparation of TEM sample. A Si(001) substrate is irradiated with

5keV-P+ ions at 500C̊ and then quenched at 180 s after the ion irradiation.
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Figure 4.21: Cross-section TEM images of (110) plane of Si(001) substrate. (a) Ion-

irradiated sample with 5 keV-P+ ions to a dose of about 1015 − 1016cm−2 at 500C̊.

The sample was quenched at 150 s after the ion irradiation. (b) Sample without ion

irradiation.
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Figure 4.22: Magnified cross-section TEM images of (110) plane of the ion-

irradiated Si(001) substrate. The sample was irradiated with 5 keV-P+ ions to a

dose of about 1015 − 1016cm−2 at 500C̊, then was quenched at 150 s after the ion

irradiation.
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Table 4.1: Comparison of density of observed surface vacancies after the ion irradi-

ation with ion dose and estimated sputtered atoms.
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4.3 Modification on Si(001) surface

4.3.1 Morphological Change by Ion Irradiation and During

Heat Treatment

Figure 4.23 shows sequential STM images of 500 C̊-Si(001)-2× 1 surface taken

(a) before, (b) during, and (c) after 5 keV-P+ ion irradiation. Although the initial

surface before the ion irradiation has many vacancy type point defects, there are

no clusters of them. During the next scan of Fig. 4.23(b), P+ ions were irradiated

onto the sample surface. After the ion irradiation as shown in Fig. 4.23(c), vacancy

islands, which is two dimensional clusters of surface vacancies, are formed on the

terrace and step edges are roughened. Vacancy islands are observed only on the

lower 1×2 terrace betweenSA (the step edges is perpendicular to the dimmer rows)

andSB step (the step edges is perpendicular to the dimmer rows).SB steps are more

roughened thanSA step since vacancies prefer to annihilate atSB step [12].

The number density of vacancy islands (5.8 × 109cm−2) is much smaller than

the ion dose (4× 1013cm−2) by four-order of magnitude. In addition, the average

number of vacancies which consist of each vacancy island is about 1,100 and this

is about ten times as much as the TRIM estimation. These features are seen in

vacancy islands on Si(111). Most of the ion-induced defects already recovered

before the STM observation reopened, and more than one single-ion-induced defect

is considered to form a vacancy island.

Figure 4.24 shows sequential STM images of Si(001)-2× 1 surface during heat

treatment at 500C̊ after the ion irradiation. During the heat treatment, surface

morphology gradually changes so as to shrink vacancy islands. As shown in Fig.

4.24(b), vacancy islands on terraces almost disappear at 1631 s after the ion irra-

diation. Some vacancy islands enlarge and the others shrink. Steps are gradually

retreated during the heat treatment.
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In is noted that the growth rate of size of vacancy islands is anisotropic. The

growth parallel to the dimmer rows increases faster than those of perpendicular to

the dimmer rows. Figure 4.25 shows growth rate of vacancy island size perpendic-

ular and parallel to Si(001)-2× 1 dimmer in the separate experiment with the same

experimental condition. Vacancy islands exhibit a large expansion in the parallel

direction to the dimmer rows compared to perpendicular direction by 2-3 times.

Considering the pioneering report on the anisotropic kinetics step retreat, in which

SB steps (the step edges is perpendicular to the dimmer rows) retreat 1.8 times faster

thanSA steps (parallel to the dimmer rows) [12], this result reflects anisotropic sur-

face diffusivity of point defects.

The evolution of surface morphology could change by the different experimental

conditions such as temperature and dose, and is now under investigation.
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Figure 4.23: Sequential STM images of 500C̊-Si(001)-2×1 surface taken (a) before,

(b) during, and (c) after the ion irradiation. Ion species is P+ with 5 keV and dose is

4× 1013cm−2. Each image was scanned with constant height mode at a scan speed

of 60 s/image. Sample bias is -2.6 V, and tunneling current is 0.08 nA.
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Figure 4.24: Sequential STM images of 500C̊-Si(001)-7× 7 surface taken (a) 60 s

after, and (b) 1631 s after the ion irradiation. Each image was scanned with constant

height mode at a scan speed of 60 s/image. Sample bias is+1 V and tunneling

current is 0.08 nA.
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4.3.2 Segregation of Phosphorus Atoms toward Surface

In addition with the atomistic behaviors of point defects, those of dopants need to

be addressed. There exist fundamental questions regarding the interaction between

point defects and implanted dopants in the vicinity of surface. For instance, are

both the segregation of P atoms at the topmost surface and activation of P atoms in

the vicinity of the surface related to the behavior of implantation-induced surface

defects such as vacancy islands? Segregation of P atoms at surface has attracted sig-

nificant interest since this could degrade device performance. Electrical activation

of P atoms is also important since this determines conductivity of devices.

Figure 4.26 shows an STM image of Si(001) surface after quenching from 500C̊

after 3 keV-P+ ion irradiation as a preliminary result. In the figure, some bright sites

are observed.“ Y-shape” structure can be seen in the solid circle line, which

could be Si-P heterodimmer. This structure is often observed when P atom exsit on

Si(001)-2× 1 [13,14]. In this experiment, this P atom is considered to diffuse from

the substrate.

The result in Fig. 4.26 demonstrates that our system has an ability to observe

segregated P atoms during ion irradiation. In order to observe activation process

of implanted P atoms in the vicinity of surface, hydrogen-termination of surface

[15, 16] after ion irradiation and using Pt-Ir tip [17] would be effective. These are

the future challenges.
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Figure 4.25: Growth rate of surface defect size along perpendicular and parallel to

Si(001)-2× 1 dimmer.“A”-”E”are sampled vacancy islands in the observation

area. The Black and blue lines correspond to the components of each vacancy size

parallel and perpendicular to the dimmer on the terrace.

99



CHAPTER 4. REAL-TIME SCANNING TUNNELING MICROSCOPE
OBSERVATION OF SILICON SURFACE MODIFIED BY PHOSPHORUS ION

IRRADIATION

Figure 4.26: Si(001) surface modified with 3 keV-P+ ions taken at R.T. Sample

surface was first irradiated at 500C̊ and annealed at the same temperature, then was

quenching to R.T. Observation mode: Topography, Vs: -2.4 V, It: 0.5 nA.
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4.4 Summary of Chapter 4

In this chapter, some of our results on surface nano-modification with phosphorus

ion irradiation using Si(111) and Si(001) substrates are described.

First, surface modification of Si(111)-7times7 surface with P ions are reported.

Real-time STM observation of P ion irradiation effects are shown for the first time.

Ion irradiation causes nucleation of vacancy islands and retreat of step edges, re-

sulting in removal of surface atoms. Behavior of point defects is discussed in terms

of number of diffused point defects toward surface.

Then, surface modification of Si(001)-2times1 with P ions are reported. In ad-

dition to surface vacancy island, Si-P hetero-dimer seems to appear on the surface.

Since there is no signature of P on the initial surface, the observed P atoms is sup-

plied from the substrate after the ion irradiation. Segregation of P atoms at surface

and interface is generally supposed to degrade of device performance so that the

mechanism needs to be clear from the technological view point.
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Chapter 5

Conclusion

In order to address the atomistic behavior of implanted atoms and point defects,

surface nano-modification by dopant ion irradiation was studied by performing real-

time STM observation.

First, combining the LMIS/IG-STM and the new beam alignment procedure

with the developed system enabled us to observe surface modification in real-time

at almost every experiment. Morphological changes of Si(111)-7×7 surfaces caused

by P+ ion irradiation were observed just after the ion irradiation. Considering that

in the conventional procedure 20-30 times of ion beam alignment was needed until

some ion-irradiation effects was observed in real-time, the developed system has

drastically improved the accuracy of the ion beam alignment. The developed system

can be applicable to various types of LMISs. The LMIS-IG/STM equipped with the

developed ion beam alignment system would be a powerful tool for microscopic

investigation of the dynamic processes of ion irradiation effects.

Second, in order to demonstrate that the developed real-time observation system

is actually an effective tool for addressing the atomistic picture of implant atoms,

real-time STM observation of Si(111)-7× 7 surface irradiated with Au+ ions was

performed. By using the reconstructions such as 7× 7, 5× 2 as rulers in nature, the
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number of Au atoms on the surface was estimated from the size of reconstructed

domains involving them. Although our method here is limited to observe the top-

most surface, the elemental steps of surface modifications can be directly clarified

with the time resolution of the STM scan period. Moreover, this method can be

extended to understand the atomistic picture of the other impurities just after the

ion irradiation.

Third, in order to discuss the behavior of point defects in the vicinity of solid

surfaces which are irradiated with dopant ions, real-time STM observations of P+

ion irradiation effects were shown for the first time. Ion irradiations on Si surfaces

at high temperature induce nucleation of vacancy islands and retreat of step edges.

During the heat treatment after the ion irradiations, the step edges continue to retreat

and the vacancy islands tends to shrink and disappear. Additional irradiations in-

crease surface vacancies, which lead to evolution of vacancy islands, coalescence of

neighboring vacancy islands, and incorporation of vacancy islands into step edges.

Behavior of point defects was discussed in terms of number of diffused point defects

toward surface. The evolution of surface morphology would change in the differ-

ent experimental conditions such as dose, temperature, and ion energy. Therefore,

systematic investigation of surface modification is needed in order to extract some

physical parameters such as activation energy of diffusion of point defects in the

vicinity of surface.

Remarkable differences in the surface defects induced by ion irradiation have

not been found yet between P and other implant species such as Si and Ar. How-

ever, some irradiation-induced structures, which may be derived from existence of

P atoms, are observed. Another future challenge is to observe directly the behavior

of dopants such as segregation and activation process in the vicinity of surface.
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