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Abstract 

Al-doped C60 films are grown on GaAs and quartz glass substrates by solid source 

molecular beam epitaxy. Mechanical and optical properties of the films are investigated 

by Vickers hardness test, absorption and reflectance spectra, and photoluminescence 

measurements. Vickers hardness of 250HV is confirmed for the Al-doped C60 films with 

the molecular ratio of Al to C60 of 30, and the Al-doped C60 films are found to be 

undissolved in organic solvents. The absorption spectra of pure C60 films show some 

peaks caused by the electron transition among the C60 molecular orbitals. These 

absorption peaks become less pronounced in Al-doped C60 films, probably due to the Al 

incorporation in C60 matrix. In addition, new photoluminescence peaks appear around 

1.75eV, 1.85eV and 1.95eV. The energy of 1.95eV coincides well with the energy 

difference between HOMO and LUMO states. These results suggest that the parity 

forbidden transition is relieved by the molecular distortion due to the Al-C60 bonding. 

PACS codes: 62.20.Qp; 78.40.Ri; 78.55.Kz 
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1. Introduction 

Feasibility of C60 films as a practical electronic material has been investigated 

by using solid source molecular beam epitaxy (MBE). Early works on the growth of C60 

films have proved that C60 molecules crystallize in the face-centered cubic crystal on the 

crystalline substrates such as Si and GaAs [1-6]. Indeed, we have successfully grown 

high quality single crystalline (111) oriented C60 films on GaAs (001) and GaAs (111)B 

substrates [7]. However, the grown C60 films are very fragile and chemically unstable, 

probably because C60 crystals are formed by the van der Waals force, which is very weak 

at room temperature [8]. Thus, the films are not suitable for practical device 

applications. To investigate the feasibility of C60 layers, it is inevitable to obtain 

stronger and more stable C60 films, keeping the original characteristics of C60 films. It 

has been reported that the metal-C60 interaction is stronger than the C60-C60 van der 

Waals interaction [9-11]. Therefore, metal doping in C60 films may produce much harder 

and chemically stable materials. 

In this paper, in order to enhance the binding energy while keeping the original 

nature of C60 films, we investigate the effect of Al doping into C60 films grown on GaAs 

substrates and quartz glass substrates. The mechanical and optical properties of the 

films are investigated by Vickers hardness test, absorption and reflectance spectra, and 
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photoluminescence (PL) measurements. The Al-doped C60 films are found to be much 

harder and more chemically stable than pure C60 films. A new PL peak appears around 

1.95eV, which coincides well with the energy difference between HOMO and LUMO 

states. 

 

2. Experimental procedure 

Al-doped C60 films are grown on GaAs (001) and quartz glass substrates by solid 

source MBE with background pressure of 10-10 Torr. The crystalline characteristics of 

the films grown on GaAs substrates are compared with those of pure C60 films also 

grown on GaAs substrates. Vickers hardness test, optical transmittance and reflectance 

measurements are performed on the layers grown on quartz glass substrates. GaAs 

substrates are first etched in an alkaline etchant, and loaded in the growth chamber. 

The surface oxide layer is removed by thermal anneal at 580°C. After growing a 

50-nm-thick GaAs buffer layer at 580°C, Al-doped C60 film growth is performed at a 

substrate temperature of 100°C. Purity 99.5% C60 powder is used as the C60 source. The 

beam equivalent pressure of C60 is fixed at 1.0x10-7 Torr with the deposition rate of 

0.23Å/sec. Al cell temperature is varied between 985°C and 1120°C. The flux ratios of Al 

atoms to C60 molecules are estimated to be 3, 6 and 30 for Al cell temperatures of 985°C, 

1020°C and 1120°C, respectively. The sticking coefficient of C60 at 100°C should be unity 

because the growth rate of C60 layers at substrate temperatures below 150°C remains 
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constant, and decreases gradually with temperatures above 200°C. Therefore, the 

resulting composition of the grown layer is equal to the flux ratio. 

Quartz glass substrates are degreased by organic solvent, and the surface 

contaminations are evaporated by thermal anneal at 600°C for 30 minutes in the growth 

chamber before deposition. Al-doped C60 films are grown on the same manner as those 

grown on GaAs substrates. 

The crystalline properties are investigated by reflection high energy electron 

diffraction (RHEED) and X-ray diffraction (XRD) 2θ/ω scan. The Al distributions in the 

films are estimated by secondary ion mass spectroscopy (SIMS) measurement using Cs 

ions. Vickers hardness test is applied to investigate the mechanical properties. 

Absorption and reflectance spectra of the films grown on quartz glass substrates are 

measured at the wavelength range between 220 and 800 nm at room temperature. 

Photoluminescence (PL) measurement is performed at 4.2 K and room temperature by 

using the 488 nm line of Ar ion laser as an excitation source. 

3. Results and discussions 

The RHEED patterns of pure C60 films grown on GaAs (001) and GaAs (111)B 

substrates exhibit well characterized (1x1) structure and indicate that the epitaxial 

orientation is (111) direction on both substrates [7]. On the other hand, the RHEED 

patterns of the Al-doped C60 films on both GaAs and quartz glass substrates are halo 

patterns from the beginning of the growth, and the films show no peak in XRD 2θ/ω 
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scan, indicating that Al-doped C60 films are amorphous structure. 

Figure 1 shows the depth profiles of aluminum and carbon measured by SIMS. 

The thickness of this sample is 350nm, and the ratio of Al to C60 is 6. It is confirmed that 

there is no segregation of aluminum atom in the films. Figure 2 compares the profiles of 

aluminum and carbon distributions in the films grown at different Al cell temperatures. 

The growth time is fixed at 3 hours, and the molecular ratios of Al to C60 are 3, 6 and 30. 

As shown in the figure, Al concentration in the film increases with Al cell temperature.  

The Vickers hardness of pure C60 crystals is reported to be around 20HV [12, 

13]. To investigate the effect of Al incorporation on the hardness, we performed Vickers 

hardness test for the 6.0-µm-thick Al-doped C60 film grown with the molecular ratio of 

30. The obtained Vickers hardness is as high as 250HV, which is approximately the 

same as that of plated copper surfaces. 

Pure C60 crystals are quickly dissolved in organic solvents due to the 

nonpolarity and the weak interaction among C60 molecules. However, the Al-doped C60 

films are found to be undissolved in organic solvents. The dramatic structural changes 

and the observed improvements in hardness and chemical stability mentioned above 

suggest that C60 molecules react with aluminum, forming stable bonds between them. 

 Figure 3 shows the absorption and reflectance spectra of a 25-nm-thick pure 

C60 film grown on quartz glass substrate. Since the interaction among C60 molecules is 

very weak, the absorption profiles are governed by the electron structure of C60 molecule. 
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The four absorption peaks are observed at 2.7eV, 3.6eV, 4.6eV and 5.6eV. These 

absorption profiles are in agreement with reported experimental results [14, 15] and the 

calculated spectra [8, 16]. The absorption peaks correspond to the transitions among the 

C60 molecular orbitals. The simplified electron energy levels of the C60 molecular 

orbitals are shown in the inset of Fig. 3. The hu is the energy level of the highest 

occupied molecular orbital (HOMO) and the t1u is that of the lowest unoccupied 

molecular orbital (LUMO). The electron transition between HOMO and LUMO is not 

observed due to dipole forbidden [8]. 

Figure 4 shows absorption coefficient spectra of the pure C60 film and the 

Al-doped C60 films grown at several Al cell temperatures on quartz glass substrates. It 

is confirmed that the absorption peaks in the Al-doped C60 films become less pronounced 

as a result of the Al-C60 interaction. 

The PL spectra of both pure and Al-doped C60 films are shown in Figs. 5 (a) and 

(b). The measurement is performed at 4.2K and at room temperature. The PL spectra of 

the pure C60 are in good agreement with previous results [15, 17, 18]. The spectral 

positions of the PL peaks shift only slightly when measurement temperature varies. 

This is due to the weak intermolecular bonds of C60 solids [8]. The most dominant 

emission line lies around 1.69eV (peak 2), which is attributed to the radiative 

recombination of a self-trapped polaron exciton. Such an exciton complex occurs due to 

the strong electron-vibration coupling on C60 clusters. This excitation is localized, and 
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can be a Frenkel exciton trapped by a lattice dislocation. The peak around 1.50eV (peak 

1) is considered to be a phonon replica of peak 2. The energetic difference between peak 

1 and peak 2 is about 180meV. The phonon mode involved in the peak 1 corresponds to 

the strongest phonon peak in Raman spectrum [19] at 1469cm-1 (182meV). This is a 

total-symmetric Ag mode, corresponding to the double bond stretching pentagonal pinch 

mode of the C60 molecules. 

In pure C60 films, the electron transition between HOMO and LUMO is parity 

forbidden [16]. In the Al-doped C60 films, however, new PL emission peaks appear 

around 1.75eV (peak 3), 1.85eV (peak 4) and 1.95eV (peak 5). The energies of the new 

PL peaks remain when measurement temperature varies, indicating that the new peaks 

also may be attributed to the C60 molecules. The energy of the peak 5 coincides well with 

the energy difference between HOMO and LUMO states [20], suggesting that the parity 

forbidden transition is relieved by the molecular distortion due to Al-C60 bonding. The 

peaks around 1.75eV (peak 3) and 1.85eV (peak 4) are considered to the phonon replicas 

of peak 5. The energetic difference between peak 4 and peak 5 is about 90meV. This 

phonon mode corresponds to the phonon peak in Raman spectrum at 709cm-1 (88meV). 

The energetic difference between peak 3 and peak 5 is about 200meV. This phonon mode 

corresponds to the phonon peak in Raman spectrum at 1575cm-1(196meV).  

4. Conclusions 

Al-doped C60 films are grown on GaAs and quartz glass substrates by solid 
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source MBE. The RHEED exhibits halo patterns from the beginning of the Al-doped C60 

films growth, and the films show no peak in XRD 2θ/ω scan, indicating that Al-doped 

C60 films are amorphous structure. SIMS measurements show that there is no 

segregation of aluminum atoms in the films. The Vickers hardness of 250HV is 

confirmed for the Al-doped C60 films with the molecular ratio of Al to C60 of 30, and the 

films are found to be stable against organic solvents. For pure C60 films, the absorption 

peaks caused by the electron transition among the C60 molecular orbitals are observed. 

However, the absorption peaks of the Al-doped C60 films become less pronounced due to 

the Al-C60 interaction. New PL peaks appear around 1.75eV, 1.85eV and 1.95eV in 

addition to the original excitonic emissions at 1.5eV and 1.7eV in pure C60 films. The 

energy of 1.95eV coincides well with the energy difference between HOMO and LUMO 

states, suggesting that the parity forbidden transition is relieved by the molecular 

distortion due to the Al-C60 bonding. 
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Figure Captions 

Fig. 1. Depth profiles of aluminum and carbon of the Al-doped C60 film on GaAs 

substrate measured by SIMS. The growth time of this sample is 3 hours, and the 

molecular ratio of Al to C60 is 6.  

Fig. 2. Profiles of aluminum and carbon distributions in the films grown at different Al 

cell temperatures. The growth time is fixed at 3 hours, and the molecular ratios of Al to 

C60 are 3, 6 and 30. 

Fig. 3. Absorption and reflectance spectra at room temperature of a 25-nm-thick pure 

C60 film deposited on quartz substrate. The inset shows the simplified electron energy 

levels of the C60 molecular orbitals. 

Fig. 4. Absorption coefficient spectra at room temperature of the pure C60 film and the 

Al-doped C60 films grown at several Al cell temperatures on quartz glass substrates. 

Fig.5. PL spectra of the pure C60 film and the Al-doped C60 film with the molecular ratio 

of Al to C60 of 30 grown on quartz glass substrates measured at 4.2K (a) and room 

temperatures (b). The samples are excited by the 488nm line of an Ar ion laser. 
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