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Chapter 1

Introduction

1.1 Background

Over the last 20 years or so, face recognition has become a popular area of

research in computer vision [44] [51] [52] [55]. Face recognition technologies

are growing more sophisticated and becoming a big part of our lives. There

are a large number of commercial, security, and forensic applications that

require the use of face recognition technologies.

We have been researching and developing an automatic gender and age-

group classification system by extracting human features from images. Auto-

matic gender classification has received substantial attention from researchers

for the last 15 years. One of the potential benefits of gender and age-group

classification systems is that the demographic data can be used for market

research purposes. Classifying personal features, such as gender and age-

group, of customers shopping in convenience stores or department stores

using in-store cameras will enable these stores to provide the customers with

personalized services. These stores will also have a marketing advantage us-

ing such detailed customer information. However, when there are so many

customers coming into a store at the same time, the shop clerk cannot ac-

knowledge and process information on all of them, especially with regards to
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customers who merely browse and do not have direct contact with the clerk.

Therefore, the automatic gender and age-group classification systems using

cameras that are already attached for security purposes are desirable. More-

over, a user-friendly human-machine interface (HMI) will become promising

using such technique.

Another advantage is being able to retrieve images of people using search

engines. Considering the enormous number of images, it is impossible to

manually label all of the contents. One basic filter is to determine the gender

or age-group of the person in the image.

Another example is cigarette or alcohol vending machines equipped with

security cameras and emergency buzzers, they can prevent children from

buying cigarettes or alcohol by identifying age-groups. Because of these

strong advantages, there is ongoing research on the analysis of the facial

images taken with the camera and the classification of gender and age-group.

Despite the high level of current interest in gender and age-group clas-

sification systems, there is still no system which is able to work accurately

in a real world environment. There are many underlying causes that make

it difficult. In general, current face recognition systems encounter difficul-

ties with large facial appearance variations due to head pose, illumination,

and expression changes, especially when used in practical applications. Ad-

ditionally, gender and age-group classification systems are plagued by many

other problems. The first drawback is the resolution of the image. It is dif-

ficult to acquire high-resolution face images in the real life environment. If

a gender and age-group classification system for market research purposes is

considered, surveillance cameras are used in order to detect faces and recog-

nize gender and age-groups. Facial images that are captured by surveillance

cameras usually have a very low-resolution, which significantly limits the

performance of gender and age-group classification system. Face verification
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systems can use clear high-resolution images, but surveillance systems can

not be expected to show people’s faces clearly. The second drawback is that

there are fundamental difficulties in classifying gender and age-group - even

humans cannot recognize a person’s age correctly. In the age-group classi-

fication systems, as there would be some people who would look younger

but are actually older than their appearance, and vice versa, it is almost

impossible or infeasible to achieve 100% accuracy. The third drawback is

that no large-scale database has been constructed covering a wide range of

age-groups. Therefore, there has been no attempt to analyze the data in the

narrower range of age-groups.

In order to solve these problems, many images were taken under different

lighting conditions and a large database was established, including a wide

range of age-groups. With this database, we will be able to focus on new

classification methods; subdividing the age categories into small ranges such

as 5 or 10-years. We will then find a better dimensional reduction algorithm

to reduce illumination changes. Moreover, we will use different features,

create many classifiers and integrate them to reduce errors. Here, two ways

of integration are considered. First, we will use not only the facial area but

also other information, for instance, hair and neck etc. Second, in order to

obtain variations, we will change feature extraction methods, even from a

single image.

1.2 Gender Classification: Survey

Over the last 15 years, gender classification from facial images has been one

of the most actively researched topics in pattern recognition. A successful

gender classification system has many potential applications such as user-

friendly human-machine interfaces, multimodal interaction on multimedia

terminals, efficiency in demographic data collection, and automatic customer
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analysis in convenience stores, department stores, and shopping malls. A

number of studies have been conducted to classify gender from facial images.

Early gender classification approaches can fall into one of two categories: (i)

geometry-based approaches, which are based on geometric features such as

face width, mouth size, distances, etc., and (ii) appearance-based approaches,

which find the decision boundary between male and female from training

images without extracting any geometric features.

Geometry-based methods are based on geometric features such as face

width, mouth size, distances, etc. Brunelli et al. [5] used 16 geometric features

(pupil to eyebrow separation, nose width, mouth width, etc.) as the input to

two competing HyperBF networks, one from male and the other from female.

Burton et al. [6] extracted 73 points from 179 (91 males and 88 females)

frontal views of faces and used discriminant analysis to classify gender using

point-to-point distances. Fellous et al. [15] used 22 horizontal and vertical

facial measurements with 109 images for training and experimented with 57

test images. These methods provided an average error rate of more than

10%.

Appearance-based methods find the decision boundary between male and

female from training images by training classifiers such as neural network

(NN), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM)

classifier. Cottrell et al. [2] proposed a face, emotion, and gender recognition

method using neural networks, ”EMPATH”. Their study used 64x64 pixel

images containing 20 individuals (10 male and 10 female subjects). Golomb

et al. [3] trained a fully connected two-layer network, ”SexNet”, to classify

gender from 30x30 facial images using 90 images (45 male and 45 female im-

ages). Yen et al. [7] investigated representations developed by different types

of networks (PDP, RBF) using images from a large database of 1,400 faces.

Similar to the above methods, Tamura et al. [11] used a multi-layer neural
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network to classify gender from face images of multiple resolutions (32x32,

16x16 and 8x8). Abdi et al. [8] used PCA-based image representations with

RBF networks and perceptron networks. A very favorable classification rate

was achieved by a perceptron classifier trained with PCA-based features us-

ing 160 facial images (80 males and 80 females). The above methods achieved

an error rate of around 10%.

Gutta et al. [18] proposed hybrid classification architectures for gender

and ethnic classification of human faces and showed feasibility using a collec-

tion of 3,006 facial images corresponding to 1,009 subjects from the FERET

database [35]. This hybrid approach consists of an ensemble of RBF networks

and inductive decision trees (DT). The best average error rate of their exper-

iments was 4%. Gutta et al. [33] further proposed a mixture of experts con-

sisting of ensembles of RBFs and reported an error rate of 4%. Moghaddam

et al. [40] investigated the use of nonlinear SVMs for gender classification.

They used low-resolution thumbnails (21x12) processed from 1,755 images

from the FERET face database and compared to traditional pattern classi-

fiers such as linear, quadratic, Fisher linear discriminant, nearest-neighbor,

RBF classifiers, and large ensemble-RBF networks. They reported an er-

ror rate of 3.4% using Gaussian RBF kernel. Furthermore, the difference

in classification performance between low-resolution thumbnails (21x12) and

high-resolution images (84x84) was only 1%. Sun et al. [41] demonstrated

that Genetic Algorithms (GA) could select good subsets of features in order

to reduce the classification error. In their study, four different classifiers were

compared: a Bayes classifier, a neural network classifier, a SVM classifier and

a classifier based on LDA. Walawalkar et al. [45] presented a multi-modal

gender classification using SVMs for both audio and visual cues.

F. H. C. Tivive et al. [61] used a class of convolutional neural networks

for gender classification. These networks are built upon the concepts of local
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receptive field processing and weight sharing, which makes them more toler-

ant to distortions and variations in two dimensional shapes. Tested on two

separate data sets, the proposed networks achieve better classification accu-

racy than the conventional feedforward multilayer perceptron networks. On

the FERET benchmark dataset, the proposed convolutional neural networks

achieve a classification rate of 97.1%.

S. Baluja et al. [64] presented a method based on AdaBoost using a

low resolution grayscale picture of a face. They matched the performance

obtained with SVMs. However, the classification was achieved with a fraction

of the computational expense; the classifiers are 1-2 orders of magnitude

faster (approximately 50 times) than SVMs.

In their research, facial information alone was used, and the performance

limits seemed to be approached. In order to exceed the classification limits,

we integrate the multiple methods to take full advantage of each approach.

More precisely, multiple classifiers can be generated by training multiple sets

of samples that are produced from different feature vectors, and can improve

the accuracy of the classification. Firstly, we use not only facial parts but

also other information, especially ties and décolletages (clothes with low-cut

necklines) are focused on. If someone wears a tie, they are more likely to be

a man. Also, if someone wears a décolletage, they are more likely to be a

woman. Secondly, we try to extract different information even from a single

source. For instance, bits of information from monochrome, color and edge

images are extracted, and we then integrate the results of those extractions.

1.3 Age-group Classification: Survey

Although a person’s age is one of the important factors for face recognition,

only a few researchers had paid attention and applied age to the task of

face recognition. It is worth noting that aging is becoming known as one of
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major difficulties in this area. As the difference in age between the training

face and testing face grows, the performance of most algorithms significantly

degrades. Recently, researchers have developed many methods to handle the

aging problem.

Burt et al. [9] investigated the process of aging using face composites

from different age-groups and caricature algorithms. They generated average

faces for different age-groups, using images of subjects with ages between 20

and 62 years. According to their experimental evaluation, in most cases, the

perceived age of the blended images was consistent with the actual age of the

subjects used for generating each composite, showing that age information for

each age-group was retained through the process of blending. O’Toole et al.

[16] [24] used three-dimensional facial information for building a parametric

3D face model. They used a caricature algorithm in order to exaggerate

or deemphasize distinctive 3D facial features; in the resulting caricatures,

the perceived age was increased or decreased according to the exaggeration

level, suggesting that 3D distinctive facial features were emphasized in older

face. Choi [25] used PCA and 3-D face shape model to extract the age

change components from 3-D facial images, and then added the age change

components to test image to synthesize the facial images at different ages.

Lanitis et al. [26] [31] [32] [42] proposed a face recognition system robust

to age variation They built a face model and an age function to isolate age

change.

Wang et al. [63] proposed an automatic age simulation method for robust

face recognition. Their experiments showed that the recognition rate was

satisfied with age simulation.

Compared with gender classification, very few attempts have been made

at age-group classification [27] [38] due to the following three reasons: (i)

increase in the number of classes, (ii) inaccuracy even by human evaluations,
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and (iii) no database with a large data set. However, shop owners in Japan

have potential needs of age-group classification systems especially in conve-

nience stores or shopping malls for market research purposes. They would

like to record the customer’s demographic data such as gender and age-group.

Actually, at convenience stores in Japan, when a purchase is made, the shop

clerk at the cash register punches a key to input the customer’s gender and

estimated age-group in 5 or 10-year increments to collect customers’ demo-

graphic data.

Kwon et al. [27] presented a theory that had only been implemented to

classify input images into one of three age-groups: babies, young adults,

and senior adults. Horng et al. [38] proposed an age classification system

based on facial features to classify a facial image into one of four age-groups:

babies (0-2), young adults (3-39), middle-aged adults (40-59), and old adults

(60-). However, both of them were only based on rough classification, while

the marketing use requires more precise age estimation, for instance, 5 or

10-year-range age-group estimation.

Kalamani et al. [62] applied Fuzzy Latice Neural (FLN) model to age clas-

sification system. They defined three winkle featurs; winkle density, wrinkle

depth and average skin variance.

In this dissertation, we introduce new age-group classification algorithms

called 2DLDA and 2DHDLA in order to improve the classification rates,

where a large data set was created and age-groups are subdivided into smaller

age-groups such as 5 or 10-year range age-groups. Appearance-based ap-

proaches are adopted as a feature extraction method. This is commonly used

for real-world applications such as face recognition and gender classification

systems for the reason of practicality. The appearance-based approaches find

the decision boundary from training images without extracting any geomet-

ric features, whereas the geometry-based approaches need high-resolution
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images in order to extract the precise positions of facial features such as eye-

brows, nose, wrinkles, etc. Additionally, two directions of two-dimensional

algorithms, R-2DPCA, C-2DPCA, R-2DLDA and C-2DLDA, are presented

and they are integrated. We also look at age-group classification from a dif-

ferent point of view. More precisely, perceived ages given by observers are

used and considered in our experiments.

1.4 Thesis Outline

This dissertation is organized into 8 chapters. Chapter 1 introduces the back-

ground of our research, and the survey of previous work in gender and age-

group classification. Chapter 2 presents a detailed review of our new large-

scale database (WIT-DB), which includes more than 5,000 Japanese subjects

(approximately 2,500 females and about 3,000 males). This database is used

in all experiments. This database is appropriate for practical real-world ap-

plications. Chapter 3 describes gender classification methods developed from

the integration of facial, hairstyle, and clothing images. Experimental results

are also described. In Chapter 4, we propose gender classification methods

based on integration of multiple classifiers using different features of facial

and neck images. The goal of this chapter is to push back the boundaries of

the traditional techniques and to get the best performance. In Chapter 5, new

two-dimensional projection methods called 2DLDA and 2DHLDA are intro-

duced to achieve better performance in age-group classification. We compare

our proposed two-dimensional methods to conventional methods. In Chapter

6, perceived ages instead of actual ages are considered. The performances

based on actual age data and perceived age data are compared. We also show

which data (actual-age based data or perceived-age based data) should be

used and how we can improve the class separability and classification rates.

Chapter 7 shows age-group classification methods based on multiple two-
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dimensional projection algorithms. We divide two-dimensional projections

into two different directions (row-direction and column-direction), called R-

2DPCA and C-2DPCA, R-2DLDA and C-2DLDA. We present the detailed

experiments using normalization and fusion techniques. Chapter 8 summa-

rizes the proposed work and presents future directions related to this work.
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Chapter 2

WIT-DB (Waseda
human-computer Interaction
Technology - DataBase)

Along with the development of face recognition algorithms, a comparatively

large number of face databases have been collected and used for training face

recognition algorithms and testing the performance of those. The representa-

tive publicly available databases are FERET (USA) [35], XM2VTS (UK) [36],

AR Face DB (USA) [22] [39], CMU Pose, Illumination, and Expression (PIE)

Database (USA) [47]. Recently face database for Asian, such as CAS-PEAL

(Chinese face database) [53] and Korean Face Database (KFDB) [48], have

been constructed. There is only one Japanese database (HOIP database),

which includes 300 subjects (150 males and 150 females). However, in these

databases, the number of data in one age-group is not sufficient or even

there is no actual age data provided. In terms of person’s features, the per-

son’s neck and clothes are substantial factors to discriminate gender and

age-groups, but there is no huge database that contains a large number of

color images showing people’s necks and clothes. For these reasons, consider-

ing market research applications in Japan, these databases are not adequate

to recognize people’s gender and age-groups. Thus, first of all, we developed
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Table 2.1: Overview of the number of subjects depending on recording con-
ditions, gender and age-groups in WIT-DB

gender age-group
recording conditions

total
1 2 3 4 5 6 7

females

0-8 7 0 0 28 71 0 41 147
9-11 2 0 0 20 78 0 41 141
12-14 0 2 0 7 29 0 44 82
15-19 0 147 57 82 9 0 56 351
20-24 4 4 0 33 10 25 78 154
25-29 8 0 0 5 5 112 67 197
30-34 11 0 0 4 11 50 116 192
35-39 7 1 0 10 101 30 81 230
40-44 1 1 0 18 104 5 130 259
45-49 0 5 3 23 19 3 145 198
50-54 1 1 0 9 4 2 146 163
55-59 0 1 0 2 0 0 145 148
60- 0 0 0 4 3 1 146 154

males

0-8 9 0 0 14 96 0 36 155
9-11 5 0 0 19 148 0 23 195
12-14 0 1 0 15 48 0 56 120
15-19 0 218 162 166 3 0 42 591
20-24 5 11 20 96 41 41 10 224
25-29 9 2 5 11 6 243 10 286
30-34 7 1 1 7 3 168 12 199
35-39 10 1 2 11 8 213 18 263
40-44 0 1 0 13 14 77 86 191
45-49 7 2 0 13 12 59 95 188
50-54 3 0 4 15 0 30 115 167
55-59 0 0 0 3 1 17 146 167
60- 3 0 0 8 0 3 144 158

total 99 399 254 636 824 1,079 2,029 5,320

new large-scale database called WIT-DB (Waseda human-computer Interac-

tion Technology - DataBase) for gender and age-group classification system.

We will briefly introduce WIT-DB below. WIT-DB has been collected at

Waseda University and NEC Soft, Ltd since 2003. It contains images of 5,320

different Japanese subjects (2,416 females and 2,904 males). The images were
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recorded with video cameras in 7 different recording conditions, and then

digitized. Table 2.1 gives the number of subjects in each recording condition,

gender and age-group in WIT-DB. In some recording conditions, the images

systematically sampled a large number of poses and illumination conditions.

The pose angle varies from +90◦ to full frontal and on to −90◦, but frontal

images are mainly used in our experiments. Figure 2.1 shows sample images

from WIT-DB, which include the person’s neck and clothes. The faces were

sometimes illuminated by dominant light sources. The resulting changes in

facial expression are typically subtle, often switching between ”neutral” and

”smiling.” The way of recording, image resolution and the size of the images

were also different depending on the recording conditions. For example,

in some environments the subjects were naturally walked, while in other

conditions they were seated on a stool and instructed to maintain a constant

head position (although slight movements were unavoidable). Therefore,

all images are cropped and rectified according to the manually located eye

and mouth positions in the training and testing phases. Figure 2.2 shows

examples of cropped images, which are 64x64 pixels. Input images were

rotated so that the eyes were perfectly aligned horizontally and the distance

between the eyes and mouth scaled to 20 pixels.
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Figure 2.1: Sample images from WIT-DB

Figure 2.2: Cropped sample images from WIT-DB(64x64)
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Chapter 3

Gender Classification based on
the Integration of Facial,
Hairstyle, and Clothing Images

3.1 Introduction

In this chapter, we present a method of gender classification by integrating fa-

cial, hairstyle, and clothing images. Initially, input images are separated into

facial, hairstyle and clothing areas. Then we adopt the Principal-Component-

Analysis based feature extraction and Gaussian-Mixture-Model-based likeli-

hood calculation on each classification category. The classification results

are then integrated into a single score using some known prior data based on

the Bayes’ rule. Experimental results showed that our integration strategy

significantly reduced error rate in gender classification compared with the

conventional facial only approach.

In Section 3.2, we describe our gender classification method. In Section

3.3, we provide a method of gender classification using the facial images. In

Section 3.4, we focus on the method using hairstyle images. In Section 3.5

and 3.6, we focus on ties and décolletages (clothes with low-cut necklines),

which are two clothing characteristics that differentiate gender. In Section

3.7, we describe the framework that integrates information concerning facial,

15



Figure 3.1: Example input image

hairstyle, and clothing images. Conclusion and future works are given in

Section 3.8 and 3.9.

3.2 Our Gender Classification Method

3.2.1 Database

In this chapter, 7,432 images from WIT-DB are used for testing. These

images contain the entire upper body. An example image is shown in Figure

3.1. Area A (small area of the face) and Area B (large area of the face)

are used to classify gender by extracting facial and hairstyle information

respectively. Area C is used to detect the person’s tie, and Area D is to

detect the person’s décolletage.
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3.2.2 Outline of Our Method

We will attempt to use four different features specifically face (Area A),

hairstyle (Area B), tie (Area C) and décolletage (Area D) rather than only

face, and integrate them in order to achieve better performance. Simply

speaking, four types of features are classified as shown below:

1. Classify gender (male/female) directly using Area A (facial

features).

2. Classify gender (male/female) directly using Area B (hairstyle

features).

3. Classify tie or non-tie using Area C (tie area).

4. Classify décolletage or non-décolletage using Area D (décolletage

area).

If a tie is found in Area C, this person is much more likely to be a man than

a woman. In a similar way, if a décolletage is found in Area D, this person is

more likely to be a woman.

Broadly, our proposed method consists of four steps; (1) feature extrac-

tion, (2) dimensionality reduction, (3) classification and (4) integration. The

detailed steps are described in Figure 3.2.

In the first step, a discriminative feature from each area is extracted.

We then project the high dimensional image data to a low-dimensional PCA

subspace. We omit the explanation about PCA since it will be described in

Section 5.2.2. Classification is then performed using the Gaussian mixture

model (GMM), which will be explained in the next section. Finally, Bayes’

rule is used for the process of integration.
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3.2.3 Gaussian Mixture Model

Some of the classification techniques available are Support Vector Machine

(SVM) [10] [23] and Neural Networks (NN). We chose to use another tech-

nique, called Gaussian Mixture Model (GMM) [1]. We constructed female

GMM using female data and male GMM from male data, and made classifi-

cations by comparing the output likelihoods from each model. The advantage

of using GMM is that it can automatically express many different faces us-

ing mixture distribution, such as whether a person wears glasses or not and

whether a person’s mustache is heavy or not.

Gaussian mixture model (GMM) is a mixture of several Gaussian distri-

butions and can therefore represent different subclasses inside one class. The

Gaussian probability density function in one dimension is a bell shaped curve

defined by two parameters, mean µ and variance σ2. In the d-dimensional

space it is defined in a matrix form as

P (x,µ,Σ) =
1

(2π)
d
2 |Σ| 12

exp[−1

2
(x− µ)tΣ−1(x− µ)], (3.1)

where µ is the mean vector and Σ the covariance matrix. The probability

density function is defined as a weighted sum of Gaussians

P (x; θ) =
M∑

m=1

αmPm(x; µm,Σm), (3.2)

where αm is the weight of the component m, 0 < αm < 1 for all components,

and
∑M

m=1 αm = 1. The parameter list

θ = {α1,µ1,Σ1, · · · , αm,µm,Σm} (3.3)

18



defines a particular Gaussian mixture probability density function.

3.3 Gender Classification using Facial Images

3.3.1 Feature Extraction

In this section, upper body images (Area A of Figure 3.1) are used in order

to classify gender. These images include a person’s eyebrows, eyes, nose,

and mouth. These images are 32x32 pixels, and is converted to 256-level

grayscale. Since images will be captured at low resolution, it is difficult

to extract the detailed features of a face. Thus, features were taken out

from approximately 11,656 facial images including 4,389 female images and

7,267 male images by compressing dimensions using Principal Component

Analysis (PCA). When cumulative proportion of PCA was set to 80%, 1,024

dimensions were compressed into 36 dimensions.

3.3.2 Experiments using Facial Images

We constructed female GMM using approximately 2,800 female images and

male GMM using approximately 4,600 male images on a 36-dimensional space

(compressed using PCA). Accuracy of gender classification was evaluated by

using 2,397 female images and 5,035 male images as inputs to female GMM

and male GMM. The number of Gaussians is set to 10 for both males and

females. The output likelihood values from both GMMs are compared for

classifications. Table 3.1 gives the result of gender classification using the

facial images. The error rate in gender classification for facial images is

10.4%.
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Table 3.1: Gender classification result using facial images
Method # Sample # Error Error rate
Female 2,397 373 15.6%
Male 5,035 400 7.9%
Total 7,432 773 10.4%

3.4 Gender Classification using Hairstyle Im-

ages

3.4.1 Feature Extraction

Hairstyle is considered to be one of the most distinguishable features in gen-

der classification. We created hairstyle image from Area B of Figure 3.1. The

hairstyle area is extracted based on color information. This image is resized

to 32x32 pixels, and is converted to 5-level grayscale. The hairstyle feature

extraction method is performed by carrying out PCAs of the entire set of

hairstyle images as was done on the facial images. The number of images

is 11,726 including 4,433 female images and 7,293 male images. Cumulative

proportion is 80%, and reduced dimension is 31.

3.4.2 Experiments using Hairstyle Images

We constructed female GMM using approximately 2,800 female images and

male GMM using approximately 4,700 male images on a 31-dimensional space

(compressed using PCA). We constructed female GMM and male GMM, and

made classifications by comparing the output likelihoods from each model.

2,397 female images and 5,035 male images were used as inputs to female

GMM and male GMM. The number of Gaussian is set to 5 for both males

and females. The output likelihood values from both GMMs are compared for

classifications. Table 3.2 gives the result of gender classification for hairstyle

images.
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Table 3.2: Gender classification result using hairstyle images
Method # Sample # Error Error rate
Female 2,397 381 15.9%
Male 5,035 607 12.1%
Total 7,432 988 13.3%

3.5 Tie/non-tie Classification

3.5.1 Feature Extraction

We created tie/non-tie images by applying Laplacian filtering to Area C from

Figure 3.1. This image is resized to 24x24 pixels, and is converted to 256-

level grayscale. We extracted features using PCA with 7,577 edge images

including 1,212 tie images and 6,365 non-tie images. Cumulative proportion

is 60%, and reduced dimension is 57.

3.5.2 Experiments in Tie/non-tie Classification

We constructed tie GMM using approximately 800 tie edge images and non-

tie GMM using approximately 4,100 non-tie edge images on a 57-dimensional

space (compressed by PCA). We constructed tie GMM and non-tie GMM,

and made classifications by comparing the output likelihoods from each

model. 1,212 tie images and 6,220 non-tie images were used as inputs to

tie GMM and non-tie GMM. The number of Gaussian for tie GMM is set to

1, and 5 for non-tie GMM. Table 3.3 gives the result of tie/non-tie classifi-

cation.

Table 3.3: Tie/non-tie classification result using edge images
Method # Sample # Error Error rate
Tie 1,212 91 7.5%
Non-tie 6,220 95 1.5%
Total 7,432 186 2.5%
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3.6 Décolletage/non-décolletage Classification

3.6.1 Feature Extraction

We next created décolletage/non-décolletage images. What is different about

this image from the tie images is the extraction of skin area from the image.

We created skin images from Area D of Figure 3.1. This image is resized

to 24x24 pixels, and is converted to 256-level grayscale. The skin area is

extracted based on the person’s facial skin color information. We extracted

features using PCA with approximately 7,577 skin images (approximately 210

décolletage images and 7,367 non-décolletage images). Cumulative proportion

is 30%, and reduced dimension is 12.

3.6.2 Experiments in Décolletage/non-décolletage Classi-
fication

We constructed décolletage GMM using approximately 300 décolletage skin

images and non-décolletage GMM using approximately 500 non-décolletage

skin images on a 12-dimensional space (compressed by PCA). Classification

is done as was with other images described in the previous sections.

207 décolletage images and 7,225 non-décolletage images were used as

inputs to décolletage GMM and non-décolletage GMM respectively. The

number of Gaussian for décolletage GMM is set to 1, and 5 for non-décolletage

GMM. Table 3.4 gives the result of décolletage/non-décolletage classification

for skin images.

Table 3.4: Décolletage/non-décolletage classification result using skin images
Method # Sample # Error Error rate
Décolletage 207 43 20.8%
Non-décolletage 7,225 417 5.8%
Total 7,432 460 6.2%
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3.7 Multiple Information Integration

3.7.1 Integration Method

We denote the face feature extraction data as xF , the hairstyle feature extrac-

tion data as xH , the tie/non-tie data as xT , the décolletage/non-décolletage

data as xD. Considering each data independent, the ratio of the female prob-

ability Pr[F |xF , xH , xT , xD] and the male probability Pr[M |xF , xH , xT , xD] is

calculated as follows:

Pr[F |xF , xH , xT , xD] : Pr[M |xF , xH , xT , xD]

= Pr[F ]× (Pr[xF |F ])nF × (Pr[xH |F ])nH

×(Pr[tie|F ] · Pr[xt|tie] + Pr[tie|F ] · Pr[xt|tie])nT

×(Pr[dec|F ] · Pr[xd|dec] + Pr[dec|F ] · Pr[xd|dec])nD

: Pr[M ]× (Pr[xF |M ])nF × (Pr[xH |M ])nH

×(Pr[tie|M ] · Pr[xt|tie] + Pr[tie|M ] · Pr[xt|tie])nT

×(Pr[dec|M ] · Pr[xd|dec] + Pr[dec|M ] · Pr[xd|dec])nD , (3.4)

which is calculated using the following prior probability:

Pr[F ] = Pr[M ] = 0.500,

Pr[tie|F ] = 0.005, Pr[tie|F ] = 0.995,

Pr[dec|F ] = 0.050, Pr[dec|F ] = 0.950,

Pr[tie|M ] = 0.100, Pr[tie|M ] = 0.900,

Pr[dec|M ] = 0.010, Pr[dec|M ] = 0.990, (3.5)
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and nF , nH , nT , nD are weight parameters to compensate for differences be-

tween each likelihood. nF , nH are set to 1, and nT , nD are set to 5. These

prior probabilities can be calculated by using the statistics taken from a real

life environment.

3.7.2 Experimental Result Based on the Likelihood-
based Integration

An integrated result is shown in Table 3.5. Facial, hairstyle, tie and décolletage

information all seem to affect the classification result to some degree.

Table 3.5: Gender classification result using integrated information: F, H,
T, and D represent face, hairstyle, tie, and décolletage respectively.

method of integration # Sample # Error Error rate
F 373 15.6%

Female F + H 2,397 305 12.7%
F + H + T + D 297 12.4%
F 400 7.9%

Male F + H 5,035 308 6.1%
F + H + T + D 282 5.6%
F 773 10.4%

Total F + H 7,432 613 8.2%
F + H + T + D 579 7.8%

3.8 Conclusion

This chapter proposed a method of gender classification by integrating infor-

mation from different parts of a single image. By integrating the likelihoods

of the hairstyle and clothing, we were able to reduce 25.1% of false classifica-

tions made by the conventional, facial only approach. Experimental results

show that classifying extracted images of the face, the hairstyle, and the

clothing individually is effective in gender classification.
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3.9 Future Works

This work involved images from only the frontal view, but we are planning

to incorporate images from various angles. Moreover, We plan to adapt the

integration theory mentioned in Section 3.7.1 to multi-frame images (movies).

Furthermore, we plan to use the physical and clothing information in order

to recognize not only gender and age-group but also occupation-type (such

as corporate employee or student).
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Figure 3.2: Our gender classification scheme
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Figure 3.3: Example hairstyle image

Figure 3.4: Example edge image for tie/non-tie classification

Figure 3.5: Example skin image for décolletage/non-décolletage classification
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Chapter 4

Gender Classification based on
Integration of Multiple
Classifiers Using Different
Features of Facial and Neck
Images

4.1 Introduction

In this chapter, we will try to reduce as many errors in gender classification as

possible. The best performance has been achieved by using SVM classifiers

in [40] [41], especially SVMs with RBF kernel function are the most effec-

tive classifiers in gender classification. However, only a single classifier was

eventually used to classify gender in these studies. In addition, previous re-

search in other areas has shown that classifier combination has improved the

recognition accuracy rather than single classifier approaches [20]. For these

reasons, we employ SVM with a kernel function using facial monochrome

images as our baseline, and try to improve the performance by integrating

multiple classifiers, which have different characteristics. As for the different

characteristics, we use not only facial region, but also neck region, and ex-

tract different features from each region. The different characteristics are
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used because the different region and features include other important con-

tributing factors in gender classification such as skin color, neck size, jaw line,

neckline, color of clothing, and types of clothing etc. One of the best points

about integrating other information is that different types of error patterns

made by other information could be more likely to help reduce the errors.

Another point is that if a classifier on facial monochrome images does not

have confidence, other classifiers could compensate for it. Hence, in our ex-

periments, we separate images into facial and neck regions and monochrome,

color, and edge images individually from the facial region and the neck region

are extracted.

We describe SVM in Section 4.2, and our proposed framework in Section

4.3. Experimental results for each component are discussed in Section 4.4,

and integration results are given in Section 4.5. Conclusions are presented

in Section 4.6.

4.2 Support Vector Machines (SVMs)

We investigated SVMs [10] [19] [23] for gender classification. SVM is one

of the most successful classification techniques in pattern recognition. The

basic idea of SVMs is to find the optimal linear hyperplane such that the

expected classification error for unseen test samples is minimized. For con-

structing non-linear decision functions, SVMs can map the input data from

input space into a high-dimensional feature space using kernel functions.

Thus, SVMs with kernel techniques have been used in various applications

such as classification and regression.

Given a labeled set of l training samples

(x1, y1) · · · (xl, yl),xi ∈ <n, yi ∈ {−1, +1}. (4.1)
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yi is the associated label that shows which class xi belongs to. We assume that

the distribution of these two classes is such that they are linearly separable,

i.e. a hyperplane separating the two classes exists as follow:

(w · x) + b = 0, (4.2)

where w is the classifier’s parameter vector, and b is a bias term. An optimal

Lagrange multiplier α∗i , and an optimal bias term b∗ are computed by solv-

ing the quadratic programming problem, and the discriminant hyperplane is

defined as:

f(x) = sign(
l∑

i=1

α∗i yiK(x,xi) + b∗), (4.3)

where K(x,xi) is a kernel function and the sign of f(x) indicates the mem-

bership of x. Possible choices of kernel functions include polynomial, Gaus-

sian, and sigmoidal. For this study, the Gaussian kernel:

K(x, xi) = exp(−‖x− xi‖2

2σ2
), (4.4)

was chosen since it was empirically observed to perform better than others.

In our experiment, we use the distances from the hyperplane as features for

the second classifiers:

d =
l∑

i=1

α∗i yiK(x,xi) + b∗. (4.5)

4.3 Overview of the Proposed Approach

First, input images for gender classification are normalized to account for

geometry and illumination changes. The region used in our experiment is
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Figure 4.1: Facial region Figure 4.2: Neck region

a facial region of 64x64 pixels, as shown in Figure 4.1, and neck region of

64x64 pixels, as shown in Figure 4.2.

Our methodology for gender classification is shown in Figure 4.3. We

extracted facial and neck regions, and converted each image to monochrome,

color, and edge images. The feature vector was extracted from the inten-

sity value of each image pixel. x
(F)
M represents the feature vector from the

monochrome facial image, x
(F)
C represents the feature vector from the color

facial image, and x
(F)
E represents the feature vector from the edge facial im-

age. In the same way, x
(N)
M , x

(N)
C and x

(N)
E represent the feature vector from

monochrome, color, and edge neck images respectively. We used SVMs as

gender classifiers, SVM
(F)
M , SVM

(F)
C , SVM

(F)
E , SVM

(N)
M , SVM

(N)
C , and SVM

(N)
E

which were induced from six feature vectors, x
(F)
M , x

(F)
C , x

(F)
E , x

(N)
M , x

(N)
C , and

x
(N)
E . The performance of each SVM was evaluated using 2-fold cross valida-

tion: half of the data was used for training and the remaining half for tests,

and by repeating the same process by reversing, all the data were evaluated.

We used the distance from the hyperplane to x in equation (4.5) in order

to integrate the six types of information. The distances were denoted by

d
(F)
M , d

(F)
C , d

(F)
E , d

(N)
M , d

(N)
C , and d

(N)
E . The distances were set to zero in the

absence of neck images. As for the integration of six types of information,

we tried three different methods: (1) distance summation based integration,
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Figure 4.3: Our gender classification scheme

(2) GMM (Gaussian Mixture Model) based integration, and (3) SVM based

integration. The reason we chose a distance summation method is that the

problem we try to solve is not so complicated. In addition, we are trying

to use a different type of classifier; a model based classifier, for comparison

purposes. GMM is chosen because we suppose GMM expresses many dif-

ferent faces automatically by using a mixture distribution, such as whether

a person wears glasses or not and whether a person’s facial hair is thick or

not. Finally, SVM based integration is done because SVM is one of the most

powerful machine learning techniques to solve a binary classification problem.

4.4 Experiments

In this section, we briefly introduce our database, and experimental results

for each component are discussed. Moreover, we combined the results from
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Figure 4.4: A mask image

(a) (b)

Figure 4.5: Examples of facial images: (a)Male (b)Female

monochrome facial images and the results from other images such as facial

color images, neck monochrome images, etc. to improve classification accu-

racy more than the facial monochrome based approaches in [40] [41].

4.4.1 Database

We use most of frontal view images in WIT-DB (totally 26,569 images –

14,392 male and 12,177 female images). These images were taken from sub-

jects in a wide variety of lighting conditions and ages, from 3 to 85 years.

Figure 4.1 and Figure 4.2 show examples of the facial and neck images used

in our study. There are 25,430 neck images which make up 95% of all images

in our database. The remaining images (5%) do not include a neck region

because the region is cut off due to the corner of the image.
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4.4.2 Monochrome Facial Image Based Gender Classi-
fier

An oval mask shown in Figure 4.4 was applied to eliminate background, and

an oval region for the face, shown in Figure 4.5, was used for gender classifi-

cation. This mask image was chosen since it reflected the best classification

accuracy. The resulting image has 2,500 pixels. Histogram equalization was

done to each image to reduce the influence of different lighting conditions

(side light, bright light, very bright spots in the image, and very low light)

in WIT-DB. Table 4.1 shows experimental results.

Table 4.1: Error rate comparisons between different methods. When facial
region was used, the number of female, male and total samples was 12,177,
14,392 and 26,569 respectively. When neck region was used, the number of
female, male and total samples was 11,622, 13,808 and 25,430 respectively.
The distance summation based integration was carried out.

Method
Female Male Total

# Error # Error # Error
Errors rates Errors rates Errors rates

SVM
(F)
M 509 4.18% 660 4.59% 1,169 4.40%

SVM
(F)
C 860 7.06% 1,045 7.26% 1,905 7.17%

SVM
(F)
E 1,441 11.83% 922 6.41% 2,363 8.89%

SVM
(N)
M 1,066 9.17% 645 4.67% 1,711 6.73%

SVM
(N)
C 1,026 8.83% 1,645 10.91% 2,671 10.50%

SVM
(N)
E 1,747 15.03% 1,082 7.84% 2,829 11.12%

SVM
(F)
M + SVM

(F)
C 398 3.27% 593 4.12% 991 3.73%

SVM
(F)
M + SVM

(F)
E 506 4.16% 551 3.83% 1,057 3.98%

SVM
(F)
M + SVM

(N)
M 508 4.17% 480 3.34% 988 3.72%

SVM
(F)
M + SVM

(N)
C 414 3.40% 587 4.08% 1,001 3.77%

SVM
(F)
M + SVM

(N)
E 501 4.11% 522 3.63% 1,023 3.85%

We discovered the two reasons why the integration of different features

were effective. The first reason is that most falsely classified data is located

near the SVM hyperplane, and most correctly classified data is relatively

35



Table 4.2: Relationship between the distance from the hyperplane and the
error rate.

Distance # Samples # Errors Error rates

0.5 ≤ d
(F)
M 24,326 507 2.08%

1.0 ≤ d
(F)
M 21,188 186 0.88%

far from the hyperplane. We found that within a distance of 1.0 from the

hyperplane there were 983 errors, which were 81.4% of all errors. Table

4.2 shows that there were 24,326 and 21,188 samples beyond a distance of

0.5 and 1.0 respectively from the hyperplane, and these data contained only

a small number of errors (2.08% and 0.88%). This is because during the

training process, even if falsely classified data exists in the wrong place, SVM

classifier put the falsely classified data closer to the hyperplane to minimize

the cost function. The second reason is that the different types of error

patterns are made by other classifiers based on the different features. In

this case, the correctly classified data is more likely to exist far from the

SVM hyperplane and compensate the error made by the falsely classified

data near the hyperplane. Table 4.3 shows that the number of correct data

and the ratio of correct data with color facial images, edge facial images,

monochrome neck images, color neck images, and edge neck images in 983

errors from facial monochrome images. These two reasons provide enough

motivation for incorporating results from different classifiers to decrease error

rates of gender classification.

4.4.3 Color Facial Image Based Gender Classifier

The RGB representation of color images is not suitable for images contain-

ing a wide variety of lighting conditions, because the (R,G, B) represents

not only color but also luminance. Luminance varies across a person’s face

due to ambient lighting. Therefore, each (R, G,B) pixel in the image was

36



Table 4.3: The number of correct data and the ratio of correct data with
color facial images, edge facial images, monochrome neck images, color neck
images, and edge neck images in 983 errors using facial monochrome images.
These 983 errors exist within a distance of 1.0 from the hyperplane.

Method
# Correct Ratio of

data correct data

SVM
(F)
C 623 63.4%

SVM
(F)
E 584 59.4%

SVM
(N)
M 605 61.5%

SVM
(N)
C 585 59.5%

SVM
(N)
E 596 60.6%

transformed into chromaticity space shown below:

r = R/(R + G + B), (4.6)

g = G/(R + G + B), (4.7)

b = B/(R + G + B), (4.8)

and they were used for classification. We used the same mask images for color

facial images. Experimental results for color facial images are shown in Table

4.1. Table 4.1 also showed that, although the performance of color facial

images was less powerful than that of monochrome facial images, adding the

distances d
(F)
M and d

(F)
C from the optimal hyperplane of SVM

(F)
M and SVM

(F)
C

was very helpful in reducing conventional errors. By integrating color facial

images, we obtained the relative error reduction of 15.2%. Here, the relative

error reduction (RER) [%] is calculated as follows:

RER =
Eo − Ei

Eo

× 100, (4.9)

37



(a) (b)

Figure 4.6: Examples of edge images: (a)Male (b)Female

where Eo is the number of errors in the original method, and Ei is the

number of errors in the improved method. This means we were able to

reduce 15.2% of the erroneous classification made by the facial image only

approach, signifying the effectiveness of integration between monochrome

and color images.

4.4.4 Edge Facial Image Based Gender Classifier

We prepared edge images, as shown in Figure 4.6, by using a Laplacian filter

in order to effectively extract wrinkle, mustache, hair and the outline of the

face from facial images. Edge images were not processed using mask images

as monochrome and color images. All pixels (4,096 pixels) were used as

the inputs due to the use of hair contour. Classification results obtained by

the use of extracted features from edge images are shown in Table 4.1. As

far as we can see, the performance of edge images fell short of classification

using monochrome and color images, but we recognized the improvements

in classification by integrating monochrome and edge information. Table 4.1

also shows the integration results. By integrating edge images, we were able

to obtain the relative error reduction of 9.6% compared with the baseline

(facial image only approach).
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(a) (b)

Figure 4.7: Examples of neck images: (a)Male (b)Female

(a) (b)

Figure 4.8: Examples of edge neck images: (a)Male (b)Female

4.4.5 Neck Image Based Gender Classification

Most of the conventional studies for gender classification have focused on

the use of a facial region, however, little attention has been given to other

regions. Factors such as neck size, jaw line, neckline, color of clothing, and

types of clothing such as suits and skirts can also be used to classify gender.

Concerning clothes color, there is limited information for its use in gender

classification, nevertheless we can infer information about gender. Using

these types of information is informative for gender classification if it is not

deliberately made to deceive the system. In the previous chapter, we pro-

posed a method of integration by using a tie and décolletage (clothes with

low-cut neckline) and validated our approach experimentally. Thus in this

study, we focused our attention on the neck region which includes neck size,

jaw line, neckline, and color of clothing, in addition to tie and décolletage,

and tried to classify gender directly. We used monochrome, color, and edge

images from the neck region in the same way as we used the face region. Sam-

ple images are shown in Figure 4.7 and Figure 4.8. SVM classifiers SVM
(N)
M ,
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SVM
(N)
C and SVM

(N)
E were used for classification, and the results are shown

in Table 4.1. In addition, results concerning the integration of monochrome

facial images are also shown in Table 4.1. Results show that various kinds

of information contribute to the elimination of classification error rates over

monochrome facial only approach.

4.5 Integration of Facial Information and Neck

Information

4.5.1 Integration Using Six Types of Information

As discussed in the previous section, it was found that all facial and neck

features were significant in gender classification, therefore we integrated all

information that were extracted.

As for the integration, we experimented three different approaches: (1)

distance summation based integration, (2) GMM based integration, and (3)

SVM based integration.

The first, distance summation based integration, was to add the

distances from the hyperplane as shown below:

y = sign(dtotal), (4.10)

where

dtotal = d
(F)
M + d

(F)
C + d

(F)
E + d

(N)
M + d

(N)
C + d

(N)
E . (4.11)

The second, GMM based integration, was to use the GMM classifier.

Gaussian models from each gender are estimated in 6 dimensional feature

space by using the EM Algorithm. The Gaussian model is a type of prob-

ability distribution model. The d-dimensional normal distribution density
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function is defined as

P (x,µ,Σ) =
1

(2π)
d
2 |Σ| 12

exp[−1

2
(x− µ)tΣ−1(x− µ)], (4.12)

where the vector µ is the mean of the normal distribution, and the matrix

Σ is the variance-covariance matrix. The gender classification using test

images is done based on likelihoods from each gender model, and we make

classifications by comparing the output likelihoods from each model. GMM

classifier with 3 mixture components was used for our experiments.

The last, SVM based integration, to use the SVM classifier using a

6-dimensional vector as shown below:

d = (d
(F)
M , d

(F)
C , d

(F)
E , d

(N)
M , d

(N)
C , d

(N)
E ). (4.13)

SVM classifier with a Gaussian kernel function was used for our experiments.

Experimental results are shown in Figure 4.9. We achieved very good

results; the relative error reduction was 27.5% using GMM or SVM classifiers.

Falsely classified data were at a small distance from the hyperplane of

SVM, so using color facial images, including lipstick color and makeup color,

and neck images, including jaw line, neckline, and color of clothing, were

able to decrease our errors. Monochrome and color facial images did not

show long hair on women because of the oval region, but edge facial images

and neck images included hair region and helped improve the accuracy. The

reason why our method can improve the accuracy is that the results from

different classifiers have different types of error patterns as shown Table 4.3

and other classifiers can compensate for it. On the other hand, most images

classified erroneously even after the integration were extremely difficult to
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Figure 4.9: Error rate comparisons of integration methods using facial and
neck information

classify even by the human eye.

In addition, we used a combination of both face and neck region (96×64)

as shown in Figure 4.2, and constructed SVM
(F+N)
M as a gender classifier in

order to confirm the effectiveness of integration. Experiments showed an

error rate of 5.45%, which was worse than the baseline.

4.5.2 Investigation on the Contribution to the Classi-
fication Accuracy Using Forward-Selection

We next conducted experiments in determining the contribution of each piece

of information to the process using forward-selection, a method of finding

the best combination of variables by sequentially incrementing the number

of variables used. We used the SVM based integration method, which pro-

duced the best classification accuracy. Six different types of information were

used in this process, as shown in Table 4.4. The contribution of each classifier
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Table 4.4: Order of contribution of each information using forward-selection.
The number of female, male and total samples was 12,177, 14,392 and 26,569
respectively. The SVM based integration was carried out.

(a) Error rates

Order Method
Female Male Total

# Error # Error # Error
Errors rates Errors rates Errors rates

1 SVM
(F)
M 509 4.18% 660 4.18% 1,169 4.40%

2 1 + SVM
(N)
M 476 3.91% 506 3.52% 982 3.70%

3 2 + SVM
(F)
C 402 3.30% 472 3.28% 874 3.29%

4 3 + SVM
(N)
C 372 3.05% 480 3.34% 852 3.21%

5 4 + SVM
(N)
E 380 3.12% 457 3.18% 837 3.15%

6 5 + SVM
(F)
E 387 3.18% 460 3.20% 847 3.19%

(b) Error reduction

Order Method
Error

Relative

reduction
error

reduction

1 SVM
(F)
M Baseline Baseline

2 1 + SVM
(N)
M 0.70 point 16.0%

3 2 + SVM
(F)
C 1.11 point 25.2%

4 3 + SVM
(N)
C 1.19 point 27.1%

5 4 + SVM
(N)
E 1.25 point 28.4%

6 5 + SVM
(F)
E 1.21 point 27.5%

did not necessarily depend on each classifier’s accuracy, as shown in Table

4.1. The individual accuracy of classifiers, as shown in Table 4.1, is not suffi-

cient by itself to determine which one should be integrated next nor whether

we should integrate further classifiers or not. Without any experiments, it is

almost impossible to discover whether or not independent classifiers are ob-

tainable, which can compensate for each other. If the database, image region

or feature extraction is changed, we need to experiment and select features

using the forward-selection procedure to make sure that we can obtain use-

ful information. In this chapter, we deliberately produced such variations
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using neck region, color and edge images in addition to monochrome ones.

Since we can extract facial color from color facial images and wrinkles from

edge facial images, the combination of information from these two types of

images is thought to be effective to classify gender. Neck region images can

also be considered effective for gender classification. (Additionally, we can

also extract gender-specific features such as the size of a neck, the color of

a cloth, and shapes of clothes – ties, décolletages, etc.) The most favorable

classification resulted when five types of information, excluding facial edge

images, were used, and it showed a 28.4% relative reduction in error over a

baseline on the monochrome facial image approach.

4.6 Conclusions

In this chapter, we proposed a method of gender classification using facial

images and neck images to decrease error rates made by the conventional

approach. Concerning feature extraction, we used not only monochrome im-

ages but also color and edge images, and integrated the individual results.

Experimental results show that using multiple classifiers and integrating dif-

ferent effective features, which have different error patterns, can reduce er-

rors, because most falsely classified data were close to the SVM hyperplane.

Experimental results also show a 28.4% relative reduction in error over the

baseline, and our approach is significantly better than the single classifier ap-

proach based on monochrome facial images, which is considered as marginal

performance.
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Chapter 5

New Projection Methods for
Age-Group Classification

5.1 Introduction

This chapter presents feature extraction methods for age-group classifica-

tion. Two types of approaches can be considered to classify age-groups: (i)

geometry-based and (ii) appearance-based approaches. As seen in Section

1.3, most previous research in age-group classification applied to geometry-

based approach. The geometry-based approach is robust against pose and

orientation changes. However, the real-world applications are considered, it

is difficult to locate facial features due to several corruptions such as illumi-

nation, noise and occlusion. For this reason, the appearance-based approach

will be used as in most face recognition systems. However, features should be

robust against various lighting conditions, and feature extraction should be

processed in real-time. Therefore, we would like to focus on the dimensional-

ity reduction, which can reduce computational cost and lighting variations,

and can improve the separability in age-groups.

Generally, three appearance-based statistical methods, namely Principal

Component Analysis (PCA) [4] [8] [14], Independent Component Analysis

(ICA) [43] and Linear Discriminant Analysis (LDA) [14] [39], are widely
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used for face recognition, because a two dimensional image has huge dimen-

sionality and recognition would be computationally inefficient. Let us now

briefly introduce these conventional projection methods. PCA finds a set

of representative projection vectors, which has the largest variance among

training data, such that the projected samples retain the most information

about original samples. The most representative vectors are the eigenvec-

tors corresponding to the largest eigenvalue of the covariance matrix. ICA

captures both second and higher-order statistics and projects the input data

onto the basis vectors that are as statistically independent as possible, while

PCA deals with second-order statistics. LDA uses the class information and

finds a set of vectors that Fisher discriminant criterion. It simultaneously

maximizes the between-class scatter while minimizing the within-class scat-

ter in the projective feature vector space. While PCA and ICA can be called

unsupervised learning techniques, LDA is supervised learning technique be-

cause it needs class information for each image in the training process. LDA

can enhance class separability of all sample images for classification purposes,

but whenever the number of samples is less than the dimensionality of the

samples, the scatter matrix may become singular, and the execution of LDA

may encounter the so-called Small Sample Size Problem (S3 Problem), there-

fore transformation matrix can not be computed. The S3 Problem is often

encountered when we use facial images in face recognition because of the high

dimensionality. For example, a 64x64 monochrome image implies a feature

space of 4,096 dimensions, therefore more than 4,096 samples are necessary

to calculate the LDA projection matrix.

Due to the S3 problem, before LDA can be applied to reduce dimension-

ality, PCA is commonly used for dimensionality reduction: PCA+LDA [12]

[14]. However, PCA step may extract nuisance dimensions, such as light-

ing conditions, and degenerate classification accuracy because of discarding
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important discriminative dimensions. Therefore, direct LDA (DLDA) meth-

ods, which can accept a small number of high-dimensional data and optimizes

Fisher’s criterion directly without dimensionality reduction steps, were pro-

posed to solve the S3 problem [34] [37].

Incidentally, Heteroscedastic Linear Discriminant Analysis (HLDA) [17]

is becoming popular in state-of-the-art speech recognition systems. HLDA

can separate the original feature space into two independent subspaces; useful

dimensions and nuisance dimensions. However, calculating the transforma-

tion matrix is difficult due to high dimensionality and extreme sparseness of

the data.

In this chapter, new two-dimensional algorithms, two-dimensional linear

discriminant analysis (2DLDA) and two-dimensional heteroscedastic linear

discriminant analysis (2DHLDA) are developed in order to find the most

discriminant projection vectors for age-group classification. These methods

overcome the singularity problem implicitly (S3 Problem of LDA), and reduce

the influence of different lighting variations.

We briefly introduce conventional projection methods in Section 5.2, and

we describe our proposed framework in Section 5.3. Experimental results

for our method and conventional methods are discussed in Section 5.4, and

conclusions are presented in Section 5.5.

5.2 Review of Previous Approaches

As facial images have very high dimensionality, we need efficient feature ex-

traction before classification in order to robustly classify age-groups under

various lighting conditions with speed. In this section, conventional projec-

tion methods based on an appearance-based approach are introduced. Many

algorithms have been developed for the projection from high dimensional fa-

cial space to the lower dimensional space, namely PCA, LDA, and 2DPCA,
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on which our new two-dimensional approaches (2DLDA and 2DHLDA) are

based.

5.2.1 Formulation

Generally, a two dimensional image of size h × w pixels can be viewed as a

vector in a high dimensional space. The easiest way to create a vector from

an array is to concatenate its columns, thus getting a vector x, where x ∈ <d

and d = h× w.

Let the training set of n face images be x1, · · · , xn. For the moment, we

focus on linear dimensionality reduction, i.e., using a d × d̃ transformation

matrix W , y is given by

y = xW . (5.1)

5.2.2 Principal Component Analysis (PCA)

PCA [4] [8] [14] is a classical feature extraction widely used in the area of face

recognition to reduce the dimensionality. PCA seeks to find the vectors that

best describe the data in terms of reproducibility, however these vectors may

not include the effective information for classification, and may eliminate

discriminative information.

PCA aims to find the eigenvalues of the covariance matrix C,

C =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T , (5.2)

where x̄ denotes the average of xi. One of the drawbacks of adapting PCA

to face recognition is that the performance would be deleteriously affected

by illumination changes.
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5.2.3 Linear Discriminant Analysis (LDA)

LDA [14] [39] is a well-known technique for finding a set of projecting vector

W LDA best discriminating different classes. The within-class scatter matrix

Sw and the between-class scatter matrix Sb are defined as below:

Sw =
1

n

c∑
j=1

∑
x∈cj

(x− x̄j)(x− x̄j)
T , (5.3)

Sb =
1

n

c∑
j=1

ni(x̄j − x̄)(x̄j − x̄)T , (5.4)

where ni denotes the number of samples in class cj(j = 1, 2, · · · , c), and n

denotes the total number of samples. x̄j denotes the average of samples in

cj-th class, x̄ denotes the average of all training samples. One way to find the

transformation matrix W LDA is to use Fisher’s criterion. It can be achieved

by maximizing the ratio as shown in equation (5.5),

J(W LDA) =
W T

LDASbW LDA

W T
LDASwW LDA

. (5.5)

W LDA can be constructed by the set of largest eigenvalues of SbS
−1
w . The

maximum value of discriminative space is c− 1, where c denotes the number

of classes, since the rank of Sb is c− 1.

5.2.4 Heteroscedastic Linear Discriminant Analysis (HLDA)

HLDA [17] is an extension of the simpler LDA method. Both LDA and

HLDA try to find the best linear discriminant, but they differ in the under-

lying assumptions. LDA simplifies most practical problems by assuming the

covariance matrices to be equal for all classes. The HLDA projection matrix,
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W HLDA, for a d−dimensional feature space, x, may be written as

y = W HLDAx =

[
W p

W d−p

]
x =

[
yp

yd−p

]
. (5.6)

where the top p dimensions, yp, are deemed to be those dimensions that

contain discriminatory information, the useful dimensions, and the final (d−
p)-dimensions, yd−p, contain no useful information, the nuisance dimensions.

HLDA transforms are trained using maximum likelihood (ML) estimation

and the EM algorithm.

µj =




µj,1
...

µj,p

µ0,p+1
...

µ0,n




=

[
µp

j

µ
(d−p)
0

]
, (5.7)

Σj =

[
Σp

j 0

0 Σ
(d−p)
0

]
. (5.8)

Here, µ
(d−p)
0 is common to all the class means, and the µp

j are different for

each class. The Σj have also been partitioned in the corresponding manner,

such that Σ
(d−p)
0 is common for all the classes, whereas Σp

j are different for

different classes.

P (xi) =
|W |√

(2π)d|Σg(i)|
exp

(
−

(yi − µg(i))
TΣ−1

g(i)(yi − µg(i))

2

)
(5.9)

where xi belongs to the group g(i). In order to get the best estimator for W ,

the log-likelihood of the data L =
∑n

i=1 log P (xi) under the linear transfor-

mation and under the constrained Gaussian model assumption for each class
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is formed as

log L = −1

2

n∑
i=1

{(W T xi − µg(i))
T Σ−1

g(i)(W
T xi − µg(i))

+ log((2π)d|Σg(i)|)}+ n log |W |. (5.10)

The above likelihood function can now be maximized with respect to its pa-

rameters. A straight-forward maximization with respect to various param-

eters can be a time consuming task. However the task can be considerably

simplified by first calculating the optimal values of the mean and variance

parameters in terms of the linear transformation W . Differentiating the

likelihood equation with respect to the parameter µj and Σj and finding the

point where the partial derivatives are zero, gives us the mean and variance

estimates:

µ̂p
j = W T

p x̄j, j = 1, · · · , c, (5.11)

µ̂
(d−p)
0 = W T

n−px̄, (5.12)

Σ̂
p

j = W T
p CjW p, j = 1, · · · , c, (5.13)

Σ̂
(d−p)

0 = W T
n−pCW n−p, (5.14)

where

x̄j =
1

nj

∑

g(i)=j

xi, (5.15)

x̄ =
1

n

n∑
i=1

xi, (5.16)

Cj =
1

nj

∑

g(i)=j

(xi − x̄j)(xi − x̄j)
T , (5.17)

C =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T . (5.18)
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Note that the µj, j = 1, · · · , c can be calculated if W is known, and

Σj, j = 1, · · · , c can be calculated if µj, j = 1, · · · , c and W are known, We

obtain the likelihood of the data (L(W ; {xi})) in terms of W by substituting

the values of the optimized µj, j = 1, · · · , c and Σj, j = 1, · · · , c in equation

(5.10). We can simplify (L(W ; {xi})) and then maximized with respect to

W to give

Ŵ = arg max

{
− n

2
log |W T

d−pCW d−p|

−
c∑

j=1

nj

2
log |W T

p CjW p|+ n log |W |
}

, (5.19)

where Ŵ is the estimate of the parameter W . At this point one may choose

to use only the first p columns of Ŵ to obtain the best discriminating pro-

jection under the Gaussian model assumption.

5.2.5 2-Dimensional Principal Component Analysis (2DPCA)

Let Xi ∈ <h×w, for i = 1, · · · , n be the n images in the training dataset. As

opposed to standard PCA, 2DPCA [49] is based on two-dimensional image

matrices rather than one-dimensional vectors, and obtains higher recognition

accuracy than PCA.

2DPCA projects an h×w random image matrix X onto w× w̃ transfor-

mation matrix W 2DPCA,

Y = XW 2DPCA, (5.20)

where Y denotes a h × w̃ feature matrix. Transformation matrix W 2DPCA

is calculated by solving the maximization problem of J(W 2DPCA):

J(W 2DPCA) = tr(C̃), (5.21)
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where C̃ denotes the covariance matrix of the projected training data, and

tr(C̃) denotes the trace of C̃. This maximization problem is equivalent to

solving the eigenvalue problem of image covariance (scatter) matrix G:

G =
1

n

n∑
i=1

(X i − X̄)T (X i − X̄). (5.22)

5.2.6 2DPCA+PCA

2DPCA needs more coefficients to represent an image, and the dimension

of the 2DPCA feature vector is always much higher. Thus, PCA is used

for further dimensional reduction after 2DPCA, i.e. 2DPCA+PCA. They

indicate that the performance of 2DPCA+PCA is still better than that of

PCA only for the same dimensionality.

5.3 Proposed Method

5.3.1 2-Dimensional Linear Discriminant Analysis (2DLDA)

2DLDA, based on 2DPCA and LDA, is proposed in this section. The main

difference between classical LDA and 2DLDA is data representation. LDA

works with vectorized representations of data, while 2DLDA works with

data in matrix representation. The within-class scatter matrix Sw and the

between-class scatter matrix Sb are defined in 2DLDA as well as in LDA:

Sw =
1

n

c∑
j=1

∑

X∈cj

(X − X̄j)(X − X̄j)
T , (5.23)

Sb =
1

n

c∑
j=1

nj(X̄j − X̄)(X̄j − X̄)T , (5.24)
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where X denotes an h × w random image matrix, X̄ denotes the average

of all training samples X i, and X̄j denotes the average of samples in cj-th

class. A w×d̃ transformation matrix W 2DLDA is calculated by equation (5.5).

Projecting X onto W 2DLDA yields an h× d̃ feature matrix Y = XW 2DLDA.

5.3.2 2DLDA+LDA

In this section, two-phased approach 2DLDA+LDA is employed: 2DLDA is

done for the first dimensionality reduction step such as from 32×32 to 32×10,

and LDA is used for the second dimensionality reduction such as from 320

dimensions to less than 10 dimensions.

One advantage of the 2DLDA+LDA approach is that it can solve the

S3 problem, since the transformation matrix is computable using a smaller

amount of data as compared to LDA. For example, in the case of 32×32

monochrome images, when we derive 6 component vectors (32×6 features

in total) using 2DLDA and the dimensionality is reduced from 192 to 10

using LDA, 192 images are sufficient, whereas more than 1,024 images are

necessary using LDA only approach.

5.3.3 The Other 2DLDAs

After 2004, the other 2DLDAs [50] [56] [57] [58] [59] [60] were proposed

independently at around the same time. They all treated the image data not

as vectors but as matrices.

Ye’s 2DLDA [50] aims to find the optimal transformation matrices Lk

and Rk such that the class structure of the original high-dimensional space

is preserved in the low-dimensional space. The algorithm is given in Table

5.1. They showed 2DLDA and the combination of 2DLDA and LDA, namely

2DLDA+LDA, where the dimension by 2DLDA is further reduced by LDA,

is competitive with classical LDA in terms of classification accuracy.
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Table 5.1: The procedure of Ye’s 2DLDA; X̄j denotes the average of samples
in class cj

Ye’s 2DLDA [50]
input: training data {X1, · · · , Xn},

test data X,
reduced row dimension w̃,

reduced column dimension h̃,
the number of iterations kmax

output: projected training data {Y 1, · · · ,Y n},
projected test data Y

Step 1: R0 = (Iw̃, 0)T , k = 1
Step 2: Compute SR

w =
∑nc

j=1

∑
X i∈cj

(X i − X̄j)Rk−1R
T
k−1(X i − X̄j)

T ,

SR
b =

∑nc

j=1 nj(X̄j − X̄)Rk−1R
T
k−1(X̄j − X̄)T

Step 3: Compute the first h̃ eigenvectors {φL
l }h̃

l=1 of (SR
w)−1SR

b

Step 4: Lk = [φL
l , · · · , φL

h̃
]

Step 5: Compute SL
w =

∑nc

j=1

∑
X i∈cj

(X i − X̄j)
T LT

k−1Lk−1(X i − X̄j),

SR
b =

∑nc

j=1 nj(X̄j − X̄)T LT
k−1Lk−1(X̄j − X̄)

Step 6: Compute the first w̃ eigenvectors {φR
l }w̃

l=1 of (SL
w)−1SL

b

Step 7: Rk = [φR
l , · · · , φR

w̃]
Step 8: If k < kmax, k = k + 1 and go to Step 2,

else output Y = LT
k XRk

Li et al. [56], Xiong et al. [57] and Chen et al. [60] proposed the exact

same algorithm as ours described in Section 5.3.1. They named this algo-

rithm 2D-LDA, two-dimensional Fisher discriminant analysis (2DFDA) and

MatFLDA, respectively.

Yang et al. [58] also developed 2DLDA. However they applied projections

twice: the first one is in a horizontal direction and the second is in a vertical

direction. Specifically, given image X, we obtain its feature matrix Y =

XR. Then, we transpose Y and determine the transformation matrix L

using the same manner. Projecting Y T onto L, we obtain ZT = Y T L. The

resulting feature matrix is Z = LT Y .
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Kong et al. [59] proposed 2D Fisher Discriminant Analysis (2D-FDA)

containing Unilateral 2D Fisher Discriminant Analysis (U2D-FDA) and Bi-

lateral 2D Fisher Discriminant Analysis (B2D-FDA). They considered a left-

multiplying U2D-FDA

Y = LT X (5.25)

and right-multiplying U2D-FDA.

Z = XR (5.26)

After performing the left- and right-multiplying U2D-FDA, Y and Z were

obtained for each image: They were combined together for recognition. The

steps for recognition were as follows: firstly Y and Z were transformed into

1D vectors for each image, then PCA was applied onto these vectors. Finally,

two shorter vectors were combined into one vector for classification.

5.3.4 2DHLDA

HLDA [17], viewed as a generalization of LDA, tries to find the best linear

discriminant, and removes the restriction that all the within-class covariance

matrices are the same. We propose 2DHLDA, which is an extension of the

2DLDA method and assumes the covariance matrices to be different for all

classes as well as in the case of HLDA. The 2DHLDA projection matrix

W 2DHLDA is written as

Y = W 2DHLDAX =

[
W p

W d−p

]
X =

[
Y p

Y d−p

]
. (5.27)

where W p is a matrix consisting of the first p of matrix W 2DHLDA and W d−p

consists of the remaining d − p rows, the top p dimensions contain discrim-
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inatory information, the useful dimensions, and the final d − p dimensions

contain the nuisance dimensions.

The optimal transformation matrix is calculated by maximizing the log-

likelihood Gaussian function in [17]. The final solution can be obtained as

Ŵ = arg max

{
− n

2
log |W T

d−pCW d−p|

−
c∑

j=1

nj

2
log |W T

p CjW p|+ n log |W |
}

, (5.28)

where

Cj =
1

nj

∑

g(i)=j

(X i − X̄j)(X i − X̄j)
T , (5.29)

C =
1

n

n∑
i=1

(X i − X̄)(X i − X̄)T , (5.30)

X̄j =
1

nj

∑

g(i)=j

Xi, (5.31)

X̄ =
1

n

n∑
i=1

Xi. (5.32)

5.3.5 2DHLDA+LDA

A two-phased approach 2DHLDA+LDA is also employed: 2DHLDA is done

for the first dimensionality reduction step from 32×32 to 32×10, and LDA

is used for the second dimensionality reduction from 320 dimensions to 4

dimensions.
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Figure 5.1: Sample images from WIT-DB

5.4 Experiments for Age-group Classification

5.4.1 Database

In this chapter, 26,222 images (14,214 male and 12,008 female images) are

used for testing. Figure 5.1 shows an example of the facial image used in

our study. The image size used here is a facial region of 32x32 pixels. We

separated age-groups into 11 classes, and our goal is to classify 11-class age-

groups with high accuracy. Table 5.2 shows the number of data in each age-

group class. These age-groups are based on actual age, and not appearance

age. As we mentioned in the previous chapter, these images were taken from

subjects in a wide variety of lighting conditions and age-groups, from 3 to

85 years of age, because our research is motivated by real-world application

that must be robust against lighting variations.

5.4.2 Outline of Experiments

12,008 female data and 14,214 male data are individually treated in this ex-

periment, and the performance of age-group classification is evaluated using

2-fold cross validation in each gender: approximately 6,000 female images

are used for training and the remaining images for tests, and by repeating

the same process by reversing, all the data are evaluated (same approach for

male data).

We use the new proposed methods, 2DLDA+LDA and 2DHLDA+LDA,

in order to reduce dimensionality for feature extraction, and also use PCA
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Table 5.2: The number of images used in this chapter.
class age-group # of female images # of male images

1 3-14 1,749 2,211
2 15-19 2,060 3,205
3 20-24 768 1,184
4 25-29 810 1,105
5 30-34 866 748
6 35-39 1,070 1,057
7 40-44 1,257 960
8 45-49 1,000 974
9 50-54 845 885
10 55-59 758 922
11 60-85 825 963

total 12,008 14,214

and LDA for comparison purposes. Training data and test data are plotted

in low-dimensional space to verify the position of each age-group data.

After the dimensionality reduction, we construct Gaussian models in low-

dimensional space, and make classifications by comparing the output likeli-

hoods from each model. Eleven Gaussian models from each 11 age-groups are

estimated in a low-dimensional 2DLDA+LDA (or 2DHLDA+LDA) feature

space. The Gaussian model is a type of probability distribution model. The

d-dimensional normal distribution density function is defined as

P (x,µ,Σ) =
1

(2π)
d
2 |Σ| 12

exp[−1

2
(x− µ)tΣ−1(x− µ)], (5.33)

where the vector µ is the mean of the normal distribution, and the matrix

Σ is the variance-covariance matrix. Gaussian components are estimated

using the Expectation Maximization (EM) algorithm. The age-group classi-

fication using test images is done based on likelihoods from each age-group

model after the process of 2DLDA+LDA (or 2DHLDA+LDA) projection.
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The likelihood scores for each class are computed and the class with the

highest likelihood is chosen. For the reason of the difficulty in age-group

classification, the classification rate in the 10-year range, which includes

the contiguous class with the higher likelihood, and in the 15-year range,

which includes both contiguous classes, are observed.

5.4.3 A Projection Example

To confirm the age-group classification ability of PCA, LDA, and 2DLDA+LDA,

projected training data and test data are plotted: 1st dimension (x-axis), 2nd

dimension (y-axis), 3rd dimension (x-axis), 4th dimension (y-axis), and so

on.

In the case of using 2DLDA+LDA (32×32 to 32×10 by 2DLDA), Figure

5.2 shows the first 6 dimension of projected training data (on the left) and

test data (on the right); from the top graph to the bottom graph, x-axis

and y-axis represent 1st and 2nd, 3rd and 4th, and 5th and 6th dimensions.

Training data is separated in 5th and 6th dimensions to some degree, whereas

separable classes are difficult to find in the test data. Test data seems to be

separable in the first 4 dimensions. For the reason of separability, the first 4

dimensions are used in the experiment in addition to using all the dimensions.

Furthermore, the point to observe is that the graphs in the first 2 dimensions

line up in order of age-groups from top-left to middle-left. Graphs in the first

2 dimensions using LDA are quite similar to ones in 2DLDA+LDA. On the

other hand, graphs in the PCA feature space are different from ones in the

2DLDA+LDA feature space: it seems to be difficult to classify age-groups

using not only the test data, but also the training data.
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5.4.4 Experimental Results

Figure 5.3, 5.4 and 5.5 show classification accuracy using PCA, LDA, 2DLDA+LDA

and 2DHLDA+LDA, when age-groups are in the 5-year, 10-year, and 15-year

range respectively. PCA dimension is set to 4, 10 and 50, LDA dimension is

set to 4, 10. In 2DLDA+LDA, 2DLDA dimension is set to 32×10 and LDA

dimension is set to 4 and 10. In 2DHLDA+LDA, 2DHLDA dimension is set

to 32×10 and LDA dimension is set to 4.

Experimental results verify high efficiency of our approach, 2DLDA+LDA

and 2DHLDA+LDA. Figure 5.2 shows that in LDA and 2DLDA+LDA, using

the first 4 dimensions is better suited for making Gaussian models than by

using 10 dimensions. In every method, classification rates in male are higher

than the ones in female, and the result shows classifying age-group using

female images to be difficult.

Moreover, Figure 5.6 shows classification accuracy using 2DLDA+LDA,

which is superior to other methods. The row denotes the class based on

the actual age, and the column denotes the class based on experiment, and

the class with the higher classification rate is darker in color. In terms of

younger age-groups (under 19) and older age-groups (over 50), classification

rates are higher in each gender, however as for age-groups between 20 and

49, especially in females, classification decreases as shown in the figure.

5.5 Conclusion

In this chapter, we proposed two-phased approaches (2DLDA+LDA and

2DHLDA+LDA) for age-group classification using facial images under var-

ious lighting conditions. Our approach does not require PCA, which ex-

tracts lighting condition variations, and solves the S3 problem under a small

amount of samples. Additionally our experiments showed that 2DLDA+LDA
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and 2DHLDA approaches are superior to that using only LDA under a large

amount of samples. Then, effective feature extraction, which is not for light-

ing condition variation but for the age-group classification, was achieved. In

addition, highly discriminative Gaussian model classifiers made by using only

the first 4 dimensions were effective for classification.

For future work, we plan to solve some familiar problems, such as viewing

orientation, partial occlusion of facial features and facial expression. More-

over, we plan to evaluate the classification rates using images under unknown

lighting conditions.
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+:class 1, ©:class 2, ∗:class 3, •:class 4, ×:class 5, ¤:class 6,
♦:class 7, 4:class 8, 5:class 9, B:class 10, C:class 11

Figure 5.2: The projected data using 2DLDA+LDA (male).

63



Figure 5.3: The age-group classification rates (within the 5-year range) based
on different projection methods.

Figure 5.4: The age-group classification rates (within the 10-year range)
based on different projection methods.
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Figure 5.5: The age-group classification rates (within the 15-year range)
based on different projection methods.
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Figure 5.6: The confusion matrix of age-group classification rates based on
2DLDA+LDA. (top: female data, bottom: male data)
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Chapter 6

Comparison of Age-Group
Classification Performance
Using Actual-age-based Data
and Perceived-age-based Data

6.1 Abstract

From the difficulties in age-group classification described in the previous

chapter, data inconsistency and contradictions between classes will be espe-

cially focused on here.

When the previously described pattern recognition techniques are used,

one of the difficulties in classifying age-groups is that the training data in-

cludes inconsistency and contradictions. For instance, in the case of dis-

tinguishing between people in their 20’s and 30’s, adding people who look

older than 29 to a 20’s-based model and people who look younger than 30

to a 30’s-based model makes classifiers confused and incapable of properly

classifying subjects.

In order to solve this problem, we used perceived ages judged by human

observers. Two types of experiments for age-group classification based on

actual age and perceived age were performed using facial images.
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Firstly, system performance and the performance of human observers are

compared, to investigate whether the system can obtain equivalent accuracy

rates to human. Secondly, perceived-age-based training data are used instead

of actual-age-based training data to decrease the data contradictions between

classes as much as possible. Then, we determine which training data (actual-

age-based or perceived-age-based) can achieve the best class separability and

make it easier to classify age-groups.

The remainder of this chapter is organized as follows: In Section 6.2,

our database and the definition of the perceived age are described. Age-

group classification experiments using actual-age-based data and perceived-

age-based data are developed in Section 6.3. Finally, discussion and conclu-

sions are presented in Section 6.4.

6.2 Evaluation Methods

6.2.1 Giving a Perceived Age

We asked six people to look at the sample images and give a perceived age

in order to evaluate performance using not only the actual age but also the

perceived age. Several facial images from various angles for one subject are

observed, and one-year range of perceived ages are assigned not to images

but to subjects. Image samples used for judging include mainly the facial

region, but some samples also include the upper body region as shown in

Figure 2.1. Table 6.1 shows the number of images sorted based on actual

and perceived ages.

6.2.2 Age-group Classification Algorithm

Our age-group classification scheme is shown in Figure 6.1. The size of each

facial image used in this chapter is 64x64 pixels, with 256 grey levels per
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Table 6.1: The number of images based on actual and perceived ages

(a) Females

Class no. Age-group
Actual age Perceived age

The # The # The # The #
of person of samples of person of samples

1 3-14 364 1,746 351 1,675
2 15-19 349 2,060 318 1,869
3 20-24 152 763 176 942
4 25-29 197 813 188 772
5 30-34 192 866 254 1,153
6 35-39 227 1,070 259 1,208
7 40-44 256 1,253 224 1,096
8 45-49 198 1,000 168 867
9 50-54 163 845 164 802
10 55-59 148 758 159 862
11 60-85 154 825 139 753

Total 2,400 11,999 2,400 11,999

(b) Males

Class no. Age-group
Actual age Perceived age

The # The # The # The #
of person of samples of person of samples

1 3-14 461 2,205 432 2,063
2 15-19 589 3,205 538 2,874
3 20-24 224 1,184 241 1,382
4 25-29 286 1,105 231 936
5 30-34 198 748 262 1,020
6 35-39 262 1,057 253 1,018
7 40-44 191 960 223 1,066
8 45-49 187 974 204 1,025
9 50-54 167 885 191 1,017
10 55-59 166 922 141 781
11 60-85 157 963 172 1,026

Total 2,888 14,208 2,888 14,208

pixel, as shown in Figure 2.2. First of all, histogram equalization is applied

to all the images in order to eliminate illumination changes. In terms of
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Figure 6.1: Age-group classification scheme

feature extraction (projection onto a low dimensional space), 2DLDA+LDA,

which showed better performance in the previous chapter, is used. The first

projection 2DLDA reduces the dimensionality from a 64x64 matrix to a 64x10

matrix. After concatenating the resulting matrix column by column (or

row by row), we are able to obtain a 640 dimensional vector. The second

projection LDA also reduces the dimensionality from 640 to 10. Finally, k-

Nearest Neighbor classifiers (kNN) are used for the classification with k =

100.

6.2.3 Average Error Distance

In addition to classification rates for test data {X1, · · · , Xn}, the average

error distance is defined as

djk =
1

n

n∑
i=1

|j − k| (6.1)

and evaluated to measure the degree of the error. The variable j denotes the

class index based on actual age，and k denotes the class index determined by

experiments．The farther the age-group class chosen, the farther the distance

is. For example, when a person in their early 20’s (20 - 24) is misclassified,

being classified as a person in their late 40’s (45 - 49), this is more serious
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than the same subject being classified as a person in their late 20’s (25 - 29),

so that the average error distance is larger. Not only the error rates, but also

the degree of the errors can be calculated by using these distances.

6.3 Age-group Classification Experiments

6.3.1 Classification Performance Comparison between
System Evaluations and Human Evaluations

We analyze the classification accuracy achieved by six observers in order to

check if the system performance is comparable to human evaluations. Clas-

sification rates in every age-group are shown in Figure 6.2, average classifi-

cation rates and average error distances over the whole range of age-groups

are shown in Table. 6.2.

Table 6.2: Classification rates and average error distances between classes
using all image samples

Females Males
Accuracy Average Accuracy Average

rates error distances rates error distances
Observer-1 47.54 0.8392 54.95 0.6080
Observer-2 44.17 0.8154 49.45 0.6898
Observer-3 48.04 0.7238 57.76 0.5222
Observer-4 46.29 0.8029 51.87 0.6766
Observer-5 50.00 0.7433 58.62 0.5419
Observer-6 44.54 0.8142 52.35 0.6243
Our system 42.20 1.2473 48.53 0.8934

Figure 6.2 shows that our system performance and human performance

have higher rates when subjects are below 19 or over 60 years old, but most

accuracy rates are less than 50% in the rest of the age-groups. Table 6.2 also

shows that recognizing a female’s age-group is much more difficult than rec-

ognizing a male’s age-group in both cases of system and human evaluations.
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Figure 6.2: Classification rates in each age-group (accuracy based on human
eyes and system) using female data (top) and male data (bottom)
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From the analysis of whole experiments, our system performance can-

not achieve higher accuracy than human performance, but can get relatively

equivalent accuracy. However, experimental results on average error dis-

tances show that our system performance is in fact lower, and includes ob-

vious errors that do not appear in human evaluations. This is because the

human observers have at least two advantages. One of these advantages is

that they have the opportunity to view not only facial images but also the

upper body. Additionally, various angles of the face can be observed when

the perceived ages are given, whereas only one facial image is used to judge

age-groups in our system. In order to solve this problem, we expect that us-

ing the parts of upper body such as clothes, in addition to faces, will improve

our performance as we proposed in the previous chapter.

6.3.2 Accuracy Comparison between Actual-Age-Based
Training Data and Perceived-Age-Based Train-
ing Data

We construct perceived-age-based training data instead of actual-age-based

training data and compare the results of the two methods in order to reduce

the unbalanced data and improve separability between classes. Average per-

ceived ages given by six observers are used in our experiment as shown below.

(Evaluation-1) Training data and test data are configured with

actual ages

(Evaluation-2) Training data and test data are configured with

perceived ages

(Evaluation-3) Training data is configured with perceived ages,

and test data is configured with actual ages

(Evaluation-4) Training data is configured with actual ages,

and test data is configured with perceived ages
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Table 6.3: Classification rates and average errors between classes when train-
ing data and test data are based on actual age and perceived age

(a) Females
Accuracy rates [%] Average

5-year range 10-year range 15-year range error distances
Evaluation-1 42.20 60.51 69.34 1.2473
Evaluation-2 39.36 61.21 71.21 1.1716
Evaluation-3 38.60 59.81 70.66 1.2157
Evaluation-4 38.04 57.56 67.85 1.2807

(b) Males
Accuracy rates [%] Average

5-year range 10-year range 15-year range error distances
Evaluation-1 48.53 71.27 80.10 0.8934
Evaluation-2 49.51 74.11 82.88 0.8220
Evaluation-3 47.89 72.14 80.47 0.8969
Evaluation-4 47.68 70.78 80.37 0.8846

(c) Totals
Accuracy rates [%] Average

5-year range 10-year range 15-year range error distances
Evaluation-1 45.63 66.34 75.17 1.0554
Evaluation-2 44.87 68.21 77.54 0.9821
Evaluation-3 43.64 66.49 75.98 1.0429
Evaluation-4 43.26 64.73 74.64 1.0659

Evaluation-1 is a normal actual-age-based experiment. Evaluation-2 is a

perceived-age-based experiment, and better clustering and separability can

be expected using perceived ages compared to actual-age-based methods.

Evaluation-3 is expected to give equal separability to evaluation-2, and is

used in situations where there are many data samples, but the subjects’ ages

are unknown. Evaluation-4 cannot be used in every situation. However, it is

useful in cases where there are too many sample images and their perceived

ages are needed.
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Evaluations are carried out using the accuracy rate and the average error

distance in every age-group. As for accuracy in every age-group, k-nearest

neighbor classifiers are used and three ranges of accuracy rates are computed:

the classification rate in the 5-year range, which only includes a class with the

maximum number of nearest neighbors, in the 10-year range, which includes

the contiguous class with the larger number of nearest neighbors, and in the

15 year range, which includes both contiguous classes.

Experimental results are shown in Table 6.3. These four evaluation meth-

ods have almost the same performance in terms of classification accuracy, but

one that uses perceived ages can reduce the average error distances and have

good separability, whereas one that uses actual ages cannot.

6.4 Discussion and Conclusions

In this chapter, two types of evaluations were carried out using perceived

age based on observations by six people. Firstly, we compared the system

performance to the person’s performance using actual age. Secondly, we com-

pared actual-age-based classifiers to perceived-age-based classifiers in order

to reduce the number of contradictory data samples between classes and to

enhance class separability.

Our experiments showed that system performance was about as high as

that which was achieved by observers in terms of classification accuracy, but

still had room for improvement in terms of average error distances; there

were obvious errors in our system that did not appear in human evaluations.

Our experiments also showed that better clustering could be performed and

average error distances could be reduced using perceived-age-based data in-

stead of actual-age-based data. These results show that using only consistent

data samples gives better performances in cases of 2DLDA or LDA projec-

tion. In real-world installations such as convenience stores, shop clerks’ cus-
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tomer analyses at cash registers heavily rely on the customer’s perceived age,

since their actual ages are unknown. We found that it was better to con-

struct training data not by using actual ages but by using perceived ages.

Moreover, when there are many training samples without actual ages given,

constructing the training data based on perceived age is generally successful

and gives an approximately equivalent performance to that based on actual

age. In addition, we confirmed that the results differed only slightly when

there were many training samples based on actual age, so therefore giving

perceived age was not necessarily required.
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Chapter 7

Age-group Classification based
on Multiple Two-Dimensional
Feature Extraction Algorithms

7.1 Introduction

In this chapter, we focus on the fusion of multiple two-dimensional feature

extraction algorithms to improve the age-group classification accuracy.

As for the appearance-based approaches in face recognition, 2DPCA [49]

and 2DLDA [50] have been proposed in recent years, and these have shown

better performances than conventional PCA or LDA [12] [14]. In this chapter,

these two-dimensional approaches are adopted for the age-group classifica-

tion. There are several variations to use the two-dimensional approaches.

However, all of the previous approaches only focused on the use of one vari-

ation and had no interest for the combination of these variations. We found

that the different two-dimensional approaches gave different types of errors

even by extracting from one sample image. For all these reasons, a fusion-

based age-group classification method, which combines multiple classifiers

using different two-dimensional feature extraction methods from one sample

image, is proposed in order to reduce the error rates in classifying age-groups.

This idea is based on the theory that fusion of multiple data can achieve bet-
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ter performance when they can overcome the shortcomings of each other. It

has been shown theoretically that a more accurate classifier can be obtained

by combining multiple classifiers [20]. These information fusion techniques

are usually used in the multimodal systems [28] [46], for example, recogniz-

ing a person by using facial image and voice, recognizing gender using facial

image and body size information, and so on. However, even for the single

source systems which use only one source originally, if we can prepare mul-

tiple classifiers with variations, which have different types of errors, we can

improve the performance by combining them.

Bagging, the other classifier combination approach, makes variations in

classifiers by giving perturbation in the training dataset of each classifier [13].

Boosting introduces weight for each training sample and makes variations by

changing the weight set of each classifier [29]. In this chapter, we try to

make variations in classifiers by changing the analysis methods applied to

the source, especially in terms of two-dimensionality of facial data analysis.

In our approach, firstly, the row and column directions of two-dimensional

projections (2DPCA or 2DLDA) have been done, and PCA or LDA is used

for further dimensional reduction after the first two-dimensional projection,

i.e. 2DPCA+PCA and 2DLDA+LDA. (Here, the notation ”A+B” repre-

sents ”apply method A then method B”.) Multiple classifiers from each

direction are made in lower dimensional feature space. Two types of normal-

ization methods and four types of fusion methods are used for integrating

different kinds of information. Multiple scores from multiple classifiers us-

ing 2DPCA+PCA and 2DLDA+LDA are also combined to achieve better

classification accuracy. Finally, experiments are conducted to compare the

performance of the proposed method with existing methods and to evaluate

the effectiveness of our method.

The rest of this chapter is organized as follows: Section 7.2 reviews the
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two-dimensional algorithms; Section 7.3 presents our proposed method; our

experiments are introduced in Section 7.4; We conclude in Section 7.5.

7.2 Two-dimensional Algorithms

There are many ways to reduce the dimensionality. In recent years, 2DPCA

[49] and 2DLDA [50] became prevalent because of the better performance

compared to conventional PCA or LDA. The nonlinear feature extraction

methods, such as Kernel Principal Component Analysis (KPCA) [21] and

Kernel Fisher Discriminant Analysis (KFDA) [30] are also used. However,

one of the drawbacks of kernel methods is too time consuming not only in the

training process, but also in the classification process especially for a large

data set without the sparse algorithms. For these reasons, in this section,

we focus on multiple two-dimensional projections in the row and the column

directions by using 2DPCA and 2DLDA.

Here, 2DPCA and 2DLDA, which are used in our experiments, are briefly

introduced.

7.2.1 Row-based 2DPCA (R-2DPCA) and Column-based
2DPCA (C-2DPCA)

Yang’s 2DPCA [49], referred as row-based 2DPCA in this chapter, uses row-

directional base vectors. That means the Yang’s 2DPCA is antisymmetric

in the treatment of the rows and the columns of images. Thus, we prepare

another 2DPCA, column-based 2DPCA which uses column-directional base

vectors. We expect this slight difference produces different error tendencies

between two classifiers with respective 2DPCA, and also expect the combi-

nation of them improves the performance.

In Yang’s 2DPCA shown in Table 7.1, the eigenvectors of C(r) only re-

flect the information between rows of images, in other words, 2DPCA only
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works in the column directional reduction. We call this method ”Row-based

2DPCA (R-2DPCA)”. We also prepare ”Column-based (C-2DPCA)”, which

uses the column direction of images. These methods are shown in Table

7.1 and 7.2. Here, X̄ denotes the average of all training samples, and X̄j

denotes the average of samples in class cj. In all our experiments, PCA is

used for further dimensional reduction after 2DPCA, i.e. 2DPCA+PCA.

R-2DPCA+PCA and C-2DPCA+PCA will be noted as method 1 and 2,

respectively, and used them in the following chapter.

Table 7.1: The procedure of Row-based 2DPCA (R-2DPCA) (J. Yang’s
2DPCA [49])

Method 1: Row-based 2DPCA (R-2DPCA)
input: training data {X1, · · · ,Xn},

test data X,
reduced row dimension w̃

output: projected training data {Y 1, · · · ,Y n},
projected test data Y

Step 1: Compute image covariance matrix

C(r) = 1
n

∑n
i=1(X i − X̄j)

T (X i − X̄j)

Step 2: Compute the first w̃ eigenvectors {φ(r)
l }w̃

l=1 of C(r),

W
(r)
2DPCA ← [φ

(r)
1 , · · · , φ

(r)
w̃ ]

Step 3: Project test image X onto W
(r)
2DPCA yields

an h by w̃ matrix Y = XW
(r)
2DPCA

7.2.2 Row-based 2DLDA (R-2DLDA) and Column-based
2DLDA (C-2DLDA)

Ye’s 2DLDA [50] shown in Table 5.1 used the projections in the row and col-

umn directions at the same time, whereas we prepare two different 2DLDA,

row-based 2DLDA and column-based 2DLDA, in which the treatment of rows

and columns of images are antisymmetric, in order to produce different error

tendencies.
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Table 7.2: The procedure of Column-based 2DPCA (C-2DPCA)
Method 2: Column-based 2DPCA (C-2DPCA)
input: training data {X1, · · · , Xn},

test data X,

reduced column dimension h̃
output: projected training data {Y 1, · · · ,Y n},

projected test data Y
Step 1: Compute image covariance matrix

C(c) = 1
n

∑n
i=1(X i − X̄j)(X i − X̄j)

T

Step 2: Compute the first h̃ eigenvectors {φ(c)
l }h̃

l=1 of C(c),

W
(c)
2DPCA ← [φ

(c)
1 , · · · , φ

(c)

h̃
]

Step 3: Project test image X onto W
(c)
2DPCA yields

an h̃ by w matrix Y = W
(c)
2DPCAX

One disadvantage of Ye’s 2DLDA is the difficulty of finding the optimal

Lk and Rk simultaneously. They derive an iterative algorithm. The optimal

Lk is computed for a fixed Rk, then best Rk is computed for a fixed Lk and

this procedure is repeated for a series of rounds.

On the contrary, we define Row-based 2DLDA (R-2DLDA), Column-

based 2DLDA (C-2DLDA) as shown in Table 7.3 and 7.4. In order to improve

the classification accuracy, we project images into the row and the column

directions separately, and construct classifiers in each direction. In all our

experiments, LDA is used for further dimensional reduction after 2DLDA,

i.e. 2DLDA+LDA. R-2DLDA+LDA and C-2DLDA+LDA will be noted as

method 3 and 4, respectively, and used them in the following chapter.

7.3 Our Proposed Method

We propose a new method for age-group classification based on one facial

image. The most important part of our strategy is to extract different types of

features in consideration of fusion by using R-2DPCA, C-2DPCA, R-2DLDA
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Table 7.3: The procedure of Row-based 2DLDA (R-2DLDA)

Method 3: Row-based 2DLDA (R-2DLDA)
input: training data {X1, · · · ,Xn},

test data X, reduced row dimension w̃
output: projected training data {Y 1, · · · ,Y n},

projected test data Y
Step 1: Compute image within-class scatter matrix

S(r)
w = 1

n

∑nc

j=1

∑
X i∈cj

(X i − X̄j)
T (X i − X̄j),

and image between-class scatter matrix

S
(r)
b = 1

n

∑nc

j=1 nj(X̄j − X̄)T (X̄j − X̄)

Step 2: Compute the first w̃ eigenvectors {φ(r)
l }w̃

l=1 of (S(r)
w )−1S

(r)
b ,

W
(r)
2DLDA ← [φ

(r)
1 , · · · , φ

(r)
w̃ ]

Step 3: Project test image X onto W
(r)
2DLDA yields

an h by w̃ matrix Y = XW
(r)
2DLDA

Table 7.4: The procedure of Column-based 2DLDA (C-2DLDA)

Method 4: Column-based 2DLDA (C-2DLDA)
input: training data {X1, · · · , Xn},

test data X, reduced column dimension h̃
output: projected training data {Y 1, · · · ,Y n},

projected test data Y
Step 1: Compute image within-class scatter matrix

S(c)
w = 1

n

∑nc

j=1

∑
X i∈cj

(X i − X̄j)(X i − X̄j)
T ,

and image between-class scatter matrix

S
(c)
b = 1

n

∑nc

j=1 nj(X̄j − X̄)(X̄j − X̄)T

Step 2: Compute the first h̃ eigenvectors {φ(c)
l }h̃

l=1 of (S(c)
w )−1S

(c)
b ,

W
(c)
2DLDA ← [φ

(c)
1 , · · · , φ

(c)

h̃
]

Step 3: Project test image X onto W
(c)
2DLDA yields

an h̃ by w matrix Y = W
(c)
2DLDAX

and C-2DLDA from one facial image.
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7.3.1 Our Strategy

Our age-group classification scheme is shown in Figure 7.1. First of all, R-

2DPCA, C-2DPCA, R-2DLDA and C-2DLDA are used in the first dimension

reduction step respectively. As the dimensionality of the input data space in-

creases, it becomes exponentially more difficult to find global optima for the

parameter space to fit models. This is well known as the curse of dimension-

ality. Our experiment actually showed that 2DPCA (2DLDA) without PCA

(LDA) produced worse classification accuracy. Therefore, PCA and LDA are

now used for further dimensional reduction after a two-dimensional reduc-

tion step. The number of dimensions are experimentally chosen based on the

classification accuracy in each projection method. After reducing the dimen-

sions, for each gender, Gaussian models, which are shown in equation (5.33),

are constructed on four different feature spaces such as R-2DPCA+PCA,

C-2DPCA+PCA, R-2DLDA+LDA and C-2DLDA+LDA spaces.

In the testing phase, the likelihoods for each class are computed by the

log posterior probability;

s(cj|xi) = log Pr[cj|xi] = log
Pr[xi|cj]∑nc

i=1 Pr[xi|cj]
, (7.1)

and the class with the highest likelihood is chosen by comparing the output

likelihoods from each class.

The next step is to integrate the likelihoods to get a higher accuracy

than that of each individual classifier. The premise of fusion is that different

classifiers or features can overcome the drawbacks of each other. In theory,

integrating different data or classifiers can achieve better performance when

they are independent of each other or they can overcome the shortcomings

of each other. Since the likelihoods in the different feature spaces are het-
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erogeneous, the likelihoods need to be normalized to be comparable to each

other before combining them. The most commonly used normalization and

fusion techniques are mentioned in Section 7.3.2 and 7.3.3, respectively.

7.3.2 Normalization Techniques

Two different normalization methods are exploited to transform heteroge-

neous scores into a common domain.

Min-max: The simplest normalization technique is the Min-max normal-

ization. Min-max normalization is best suited for the case where the bound

(maximum and minimum values) of the scores produced by a matcher are

known. Given a set of output scores {sj}, j = 1, · · · , nc, the normalized

scores are given by

snew =
sold −minj sj

maxj sj −minj sj

. (7.2)

Min-max normalization retains the original distribution of scores except for

a scaling factor and transforms all the scores into a common range [0, 1].

Z-score: The most commonly used score normalization technique is the z-

score that is calculated using the arithmetic mean and standard deviation

of the given data. This scheme can be expected to perform well if prior

knowledge about the average score and the score variations of the matcher

is available. This is calculated using the mean µ and the standard deviation

of the scores σ from each model. Normalized scores are given by

snew =
sold − µ

σ
. (7.3)
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7.3.3 Fusion Techniques

We have investigated four types of integration techniques such as sum, prod-

uct, max and min rule [20] at the confidence level.

Sum Rule: Let xi be the feature vector presented to the ith classifier. The

integration process is given using the evidence provided by nr classifiers. The

sum rule assigns the input data to class c such that

c = argmax
j

nr∑
i=1

s(cj|xi). (7.4)

The sum rule assumes that the posteriori probabilities computed by the in-

dividual classifiers do not deviate much from the prior probabilities. This

rule is applicable when there is a high level of noise leading to ambiguity in

the classification problem.

Product Rule: The product rule assigns the input data to class c such that

c = argmax
j

nr∏
i=1

s(cj|xi). (7.5)

This rule is based on the assumption of statistical independence of the mul-

tiple representations.

Max Rule: The max rule assigns the input data to class c such that

c = argmax
j

max
i

s(cj|xi). (7.6)
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The max rule approximates the mean of the posteriori probabilities by the

maximum value.

Min Rule: The min rule assigns the input data to class c such that

c = argmax
j

min
i

s(cj|xi). (7.7)

The min rule is derived by bounding the product of posteriori probabilities.

7.4 Experiments

7.4.1 Evaluation Methods

The number of images used in this chapter is 26,222 (14,214 male and 12,008

female images). Table 5.2 in Chapter 5 shows the amount of data in each

age-group class. Age-groups are based on actual age, and not perceived age.

The image size used in this chapter is a facial region of 32x32 pixels, as shown

in Figure 5.1.

In our experiments, age-groups are divided into 11 classes as shown in

Table 5.2, which are based on 5-year range classification. Our goal is to

classify 11-class age-groups with a high degree of accuracy.

We evaluate our proposed fusion-based two-dimensional method (method

1+2+3+4) on WIT-DB and compare with Yang’s 2DPCA (method 1) and

Ye’s 2DLDA. Here, method 1, 2, 3 and 4 are the R-2DPCA+PCA, C-

2DPCA+PCA, R-2DLDA+LDA and C-2DLDA+LDA, respectively. For all

the experiments, the Gaussian models are applied for classification and 2-

fold cross validation is used for estimating the classification accuracy. The

dimensionality in the transformed space is determined by experiments for

each method.
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Due to the difficulty in age-group classification, the classification rate

in the 10-year range, which includes the contiguous class with the higher

likelihood, and in the 15-year range, which includes both contiguous classes,

are observed.

In addition to classification rates, the average error distance defined in

6.2.3 is used to measure the degree of the error.

7.4.2 Experimental Results

Table 7.5: Classification rates achieved by different normalized and fu-
sion methods using method 1+2+3+4. Method 1, 2, 3 and 4 are the R-
2DPCA+PCA, C-2DPCA+PCA, R-2DLDA+LDA and C-2DLDA+LDA, re-
spectively.

age-group range Sum Rule Product Rule Max Rule Min Rule
5-year 47.3 47.1 45.0 46.3

Z-Score 10-year 68.5 68.1 66.7 67.2
15-year 76.8 76.8 74.5 76.3
5-year 47.3 47.1 44.3 46.4

Min-max 10-year 68.5 68.5 64.4 67.3
15-year 76.9 76.9 71.0 76.2

Table 7.6: Average error distances assessed by different normalized and
fusion methods using method 1+2+3+4. Method 1, 2, 3 and 4 are the
R-2DPCA+PCA, C-2DPCA+PCA, R-2DLDA+LDA and C-2DLDA+LDA,
respectively.

Sum Rule Product Rule Max Rule Min Rule
Z-Score 0.96 0.96 1.06 0.98

Min-max 0.96 0.96 1.16 0.98

Figure 7.2 and 7.3 present the comparisons of our proposed fusion-based

method based on multiple two-dimensional algorithms and classical PCA,

LDA, 2DPCA and 2DLDA approach on classification accuracy. The number

87



of R-2DPCA, C-2DPCA, R-2DLDA and C-2DLDA dimensions were chosen

as 32x16, 20x32, 32x10 and 10x32, respectively by experiments based on the

accuracy rates. The number of PCA and LDA dimensions were chosen as

64 and 10 as well. In Ye’s 2DLDA, the dimension was firstly reduced to

10x10, and then reduced to 10 by LDA. In this figure, min-max normaliza-

tion and sum rule fusion techniques are used for the reason that they are

better than other techniques in terms of accuracy rates on the whole. Figure

7.2 and 7.3 show that by combining a row-based method and column-based

method (method 1+2 and method 3+4), classification accuracy is improved.

Figure 7.2 and 7.3 also show that by combining multiple classifiers based

on 2DPCA+PCA and 2DLDA+LDA is further improved. Our experiments

on WIT-DB have shown that integration of appropriate information can im-

prove the age-group classification rates. This suggests that 2DPCA+PCA

features and 2DLDA+LDA features have provided different information that

can compensate for each other. Figure 7.4 also shows that the margin of error

can be reduced, which means some obvious errors can be eliminated. As a

result, our fusion method (method 1+2+3+4) has proven to be superior to

conventional PCA, LDA, Yang’s 2DPCA [49] and Ye’s 2DLDA [50].

Table 7.5 shows classification rates achieved by different normalization

and fusion methods using method 1+2+3+4. Table 7.6 shows average error

distances achieved by different normalization and fusion methods based on

method 1+2+3+4. These tables show that the sum rule consistently provides

the best performance regardless of normalization methods. The product rule

has been found to have comparable performance to the sum rule, however

it is sensitive to errors. As the sum rule is much less affected by estimation

errors, this may provide a plausible explanation for its superior performance.

Therefore, choosing the sum rule would be the preferable choice.

Our proposed method achieved the best performance by using four types
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of projections methods (R-2DPCA+PCA, C-2DPCA+PCA, R-2DLDA+LDA

and C-2DLDA+LDA) and sum rule fusion technique based on min-max or

z-score normalization. Experimental results also show that 7.2% and 5.7%

relative reduction in error over a performance baseline of Yang’s 2DPCA and

Ye’s 2DLDA in the 5-year range classification, 10.6% and 12.9% in the 10-year

range classification, and 12.1% and 17.6% in the 15-year range classification.

7.4.3 Discussions

In order to check whether our system’s accuracy was comparable to human

evaluation in terms of assessing a person’s actual age, additional experiments

have been performed using perceived age, which was given by 6 subjects.

When the age-group range is 5 years, average accuracy rate based on hu-

man evaluation was 50.8% (maximum rate: 54.7%, minimum rate: 47.1%),

whereas our system’s accuracy rate was 47.3%. Our system differed only

slightly and but fell short of the accuracy achieved by human evaluations.

Human’s ability in judging the age seems to depend on various experiences

and previous knowledge during their whole lives. On the other hand, the

appearance-based approaches only use the training data and then they can-

not get a full picture of what that person has experienced. One of the reasons

why multiple two-dimensional methods are used is that the variation of the

feature extraction can be increased instead of the variation of faces to boost

the accuracy. If there are wider variations, we will reduce obvious errors from

a single classifier model that do not occur with humans.

When the baseline classification rates are considered, there is room for

improvement in the 5-year range, while there is less room for improvement in

the 15-year range. In view of the difficulties in classification, however, 5-year

range classification is more challenging than 15-year range classification. For

these reasons, the improvement rates in all 5-year, 10-year and 15-year ranges
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Table 7.7: Confusion matrices for females’ age-group classification. Horizon-
tal: true class, vertical: classified class. (a) Yang’s 2DPCA (b) Ye’s 2DLDA
(c) fusion-based two-dimensional algorithm

(a)

age-group 3-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-85

3 - 14 76.4 8.2 5.7 1.3 2.7 2.7 1.4 0.7 0.3 0.3 0.2
15 - 19 6.8 60.0 15.7 6.3 3.6 2.8 3.0 1.2 0.4 0.2 0.2
20 - 24 6.0 26.8 25.0 12.8 13.5 4.8 5.2 4.4 0.7 0.3 0.5
25 - 29 2.7 4.6 12.4 38.2 18.0 7.8 6.7 6.2 2.5 0.7 0.4
30 - 34 3.5 3.9 12.7 17.7 17.8 10.9 12.1 13.4 4.7 2.3 1.0
35 - 39 4.0 3.4 6.0 11.5 10.6 23.9 21.4 11.4 4.7 2.2 0.9
40 - 44 2.2 5.7 3.6 3.9 8.4 19.7 23.1 19.3 6.6 4.8 2.8
45 - 49 0.2 3.2 4.5 1.4 9.8 9.0 17.5 25.9 13.2 10.2 5.1
50 - 54 0.1 0.4 1.9 1.0 7.0 4.1 7.3 17.3 20.8 24.1 16.0
55 - 59 0.1 0.1 0.9 0.4 2.2 1.6 5.2 11.1 21.9 32.7 23.8
60 - 85 0.1 0.0 0.2 0.2 1.6 1.1 2.9 6.9 18.1 28.5 40.4

(b)

age-group 3-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-85

3 - 14 71.4 10.9 3.7 1.5 4.0 3.1 2.5 1.5 0.7 0.2 0.3
15 - 19 5.9 73.2 6.7 3.8 2.5 4.4 1.9 1.2 0.3 0.1 0.1
20 - 24 6.8 29.7 10.9 11.9 14.6 7.4 9.9 5.3 1.7 0.8 1.0
25 - 29 2.4 9.4 5.8 29.6 18.3 14.0 10.5 6.1 3.3 0.7 0.0
30 - 34 2.8 5.5 6.2 15.8 17.4 15.1 14.9 12.7 5.8 1.7 2.0
35 - 39 5.3 5.7 3.4 7.9 9.9 27.2 20.3 12.3 5.6 1.4 1.0
40 - 44 3.6 8.0 1.8 2.9 9.9 19.3 25.8 16.0 7.2 2.6 3.0
45 - 49 0.6 8.5 1.5 1.3 8.8 10.1 19.0 24.3 11.8 7.3 6.8
50 - 54 0.5 1.3 1.1 0.7 4.0 2.4 11.5 17.5 24.7 16.0 20.4
55 - 59 0.0 0.4 0.4 0.5 3.3 0.7 7.9 13.2 22.3 18.3 33.0
60 - 85 0.0 0.2 0.2 0.1 0.9 1.6 4.9 10.3 20.4 19.9 41.6

(c)

age-group 3-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-85

3 - 14 78.3 8.1 4.1 1.8 2.5 2.7 1.5 0.6 0.2 0.1 0.1
15 - 19 4.8 72.7 7.9 4.8 2.9 3.5 2.2 1.1 0.1 0.1 0.0
20 - 24 5.5 30.3 18.4 12.5 14.7 6.3 7.4 3.7 0.8 0.3 0.3
25 - 29 0.9 5.9 7.3 41.6 19.6 8.6 9.4 4.8 1.7 0.1 0.0
30 - 34 2.2 2.9 6.5 19.4 21.9 14.6 14.6 11.8 4.4 1.2 0.7
35 - 39 3.4 3.5 3.6 10.5 11.7 27.6 22.2 12.5 3.8 0.6 0.8
40 - 44 1.4 5.5 1.9 2.2 9.2 21.8 29.2 20.3 4.9 1.9 1.8
45 - 49 0.2 4.4 2.5 1.5 6.5 9.0 22.0 28.8 14.3 6.3 4.5
50 - 54 0.0 0.1 0.6 0.5 4.0 2.8 11.0 19.4 23.7 17.3 20.6
55 - 59 0.0 0.1 0.1 0.3 1.6 0.5 5.7 11.6 25.3 21.1 33.6
60 - 85 0.0 0.0 0.0 0.0 1.1 1.1 4.2 7.2 18.1 17.9 50.4
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Table 7.8: Confusion matrices for males’ age-group classification. Horizontal:
true class, vertical: classified class. (a) Yang’s 2DPCA (b) Ye’s 2DLDA (c)
fusion-based two-dimensional algorithm

(a)

age-group 3-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-85

3 - 14 85.0 8.5 2.4 0.6 0.9 0.3 1.3 0.6 0.2 0.1 0.2
15 - 19 6.2 64.5 19.4 4.2 1.8 1.0 1.8 0.9 0.1 0.1 0.1
20 - 24 5.5 39.9 29.8 11.5 4.9 3.0 3.4 1.4 0.2 0.1 0.4
25 - 29 1.5 4.4 8.1 45.2 20.6 13.5 3.9 2.0 0.5 0.0 0.4
30 - 34 0.5 4.4 2.8 32.6 25.8 19.3 7.5 3.3 2.7 0.0 1.1
35 - 39 1.1 1.6 3.8 22.0 23.0 24.6 13.0 6.4 2.6 1.1 0.9
40 - 44 2.3 2.1 4.3 5.5 7.0 16.5 21.2 18.0 14.6 6.3 2.4
45 - 49 0.6 2.8 1.8 3.1 4.7 10.9 17.4 19.9 21.3 13.2 4.4
50 - 54 0.3 1.2 1.5 1.0 1.7 4.3 13.9 16.5 25.1 22.8 11.6
55 - 59 0.2 0.3 0.4 0.1 0.4 2.3 5.3 12.6 21.0 27.7 29.6
60 - 85 0.3 0.4 0.0 0.1 0.1 1.1 3.3 5.4 13.9 30.9 44.3

(b)

age-group 3-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-85

3 - 14 83.0 9.8 1.0 0.4 0.5 0.8 2.4 0.8 0.5 0.5 0.2
15 - 19 4.1 78.8 10.2 2.5 0.2 1.2 1.5 0.8 0.7 0.1 0.1
20 - 24 4.1 54.0 18.5 12.3 2.5 4.6 2.2 1.4 0.3 0.2 0.1
25 - 29 0.9 6.7 2.9 45.8 16.1 19.0 4.3 2.5 1.2 0.3 0.4
30 - 34 0.8 6.0 2.0 32.1 17.4 27.9 4.6 5.6 2.5 0.5 0.5
35 - 39 0.7 3.7 3.2 21.7 18.6 31.1 9.2 8.5 1.7 0.9 0.8
40 - 44 1.8 4.5 2.1 6.6 4.5 15.9 22.7 17.1 10.8 8.9 5.2
45 - 49 0.7 2.6 0.8 2.1 2.7 12.7 17.8 25.0 14.9 14.3 6.6
50 - 54 0.1 3.1 1.2 1.1 0.7 5.1 15.9 22.9 17.1 16.6 16.2
55 - 59 0.0 0.0 0.2 0.4 0.8 2.0 8.6 15.8 14.3 25.5 32.4
60 - 85 0.2 0.9 0.0 0.0 0.1 1.1 4.1 9.6 11.7 30.1 42.2

(c)

age-group 3-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-85

3 - 14 87.3 8.5 1.0 0.5 0.1 0.4 1.7 0.6 0.1 0.0 0.0
15 - 19 3.3 79.2 12.4 2.4 0.2 0.4 0.9 1.0 0.3 0.0 0.0
20 - 24 3.6 51.6 23.0 12.7 1.9 3.1 2.6 1.1 0.2 0.1 0.1
25 - 29 0.5 5.7 5.1 52.5 14.9 15.5 3.4 1.7 0.5 0.1 0.2
30 - 34 0.0 5.4 2.7 34.8 16.0 28.5 6.3 4.7 1.3 0.1 0.3
35 - 39 0.8 1.9 2.2 21.1 17.5 34.0 11.8 7.6 2.2 0.7 0.4
40 - 44 1.6 2.4 2.5 5.2 2.5 19.2 25.3 22.5 10.3 5.5 3.0
45 - 49 0.4 1.2 1.0 1.3 2.9 14.3 22.0 24.9 15.6 13.1 3.3
50 - 54 0.0 0.8 0.3 0.5 0.6 5.5 18.5 22.5 19.6 19.0 12.8
55 - 59 0.0 0.0 0.0 0.1 0.4 1.4 6.2 14.9 17.3 23.6 36.1
60 - 85 0.1 0.2 0.0 0.0 0.0 0.7 3.5 7.8 10.2 28.8 48.7
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cancel each other out and they are approximately equivalent at around 3-5%.

These improvements seem to be slightly lower then expected. As we men-

tioned, these classification results come close to approximating performance

of human ability, which is considered as marginal performance. As far as we

are concerned, a certain level of improvement can be achieved. If the dra-

matically higher accuracy is required, it is necessary to use not only facial

region but also other regions, for instance, hair, clothes or height etc.

In addition, in order to confirm the age-group classification ability of

2DPCA and 2DLDA, projected training data are plotted. Figure 7.5 shows

examples of projected male training data. This figure shows 1st dimension (x-

axis) and 2nd dimension (y-axis) of R-2DLDA+LDA and R-2DPCA+PCA.

The data samples in the R-2DPCA+PCA space are spread out irregularly,

whereas the ones in the R-2DLDA+LDA are in order of age-group. For this

reason, 2DLDA+LDA methods have better performance than 2DPCA+PCA

in a 10 or 15-year range because of less obvious errors, and they might highly

contribute to the integration of classifiers.

We also analyze the difference between males and female. Figure 7.2 and

7.3 show that classification rates in males are approximately 7-10% higher

than the ones in females in every method, and this result shows classify-

ing age-groups using female images to be difficult. These figures, however,

indicate the tendency of improvement is almost the same in every method.

Here we will focus on the age-group-specific accuracy rates. In the first

place, two different aspects of the imbalance between the amount of samples

in each category (age-group) are considered. The first experiment is designed

using the same number of training samples for every class to reduce the in-

fluence of imbalance, which means the number of training samples is limited.

This experiment shows that the accuracy rates are generally 1% lower than

the ones that use all training samples. However, the tendency of superiority
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or inferiority over the methods is almost equivalent. The next experiment is

designed using the same number of test samples for every class. These classi-

fication rates in 5, 10 and 15 year ranges are approximately 8%, 6% and 4%

lower respectively, compared with the original results. This could be because

there are many younger samples included in WIT-DB and they may be easier

to be classified. In this experiment, the differences of superiority or inferior-

ity between the methods are not observed as well. In the second place, we

also provide detailed results of the age-group-specific accuracy rates to check

if there are some categories that are easier to be classified than others. Table

7.7 shows the confusion matrices for females’ age-group classification rates

and Table 7.8 is for males’. In terms of younger age-groups (under 19) and

the oldest age-group (over 60), classification rates are higher in each gender,

however as for age-groups between 20 and 59, classification rates decrease.

In addition, our classification method approximately quadruples the com-

putational cost. However, on a Pentium IV 3.07 GHz Windows machine, it

takes only 1.34 milliseconds for one classification on average and works effec-

tively as a real-time application.

7.5 Conclusion

In this chapter, new types of age-group classification methods are proposed to

develop a demographic analysis system for market research purposes. A large

data set, which includes more than 26,000 image samples, is constructed and

age-groups are subdivided into smaller ranges such as a 5-year range. The

problem of achieving high accuracy within a 5-year range is difficult even by

human evaluations. Using a single classifier to solve this problem, the more

categories, the more misclassifications seem to be made. Some data samples

were misclassified into a quite different category, but the differences between

the true classes’ scores and the falsely predicted classes’ scores are subtle in
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some instances. Hence, extracting as many different features as possible from

a single source and finding out another classifier, which confidently claims

that this category is correct, is one of the solutions to improve the accuracy

in the 5-year range.

In order to reduce as many errors as possible, two-dimensional-based di-

mensional reduction methods are used. There are three main reasons why we

use 2DPCA (2DLDA) not other traditional methods such as PCA (LDA).

One of them is the fact that Yang et al. [49] and Ye et al. [50] carried out ex-

periments to compare the performance between 2DPCA (2DLDA) and PCA

(LDA), and found that two-dimensional algorithms had better performance

in terms of recognition rates. We also proved that the classification rates

across all trials were almost the same or higher using 2DPCA (2DLDA) than

PCA (LDA). The second reason is that the extraction of image features is

computationally more efficient using 2DPCA (2DLDA) than PCA (LDA).

In contrast to the covariance matrix (the scatter matrix) of PCA (LDA),

the size of the image covariance matrix is much smaller. As a result, it is

easier to evaluate the covariance matrix accurately and less time is required

to determine the corresponding eigenvectors. The third reason, which is the

most important point in this chapter, is that two-dimensional algorithms can

extract two different features from two types of directions such as a row direc-

tion and column direction. Thus, higher accuracy rates can be expected by

combining a row direction based method and column direction based method.

Based on these reasons, we focused on the antisymmetry of two-dimensional

feature extraction algorithms and constructed multiple classifiers with dif-

ferent error tendencies by preparing the rows and columns of images. To

be more precise, the images are projected into a row direction and column

direction separately using 2DPCA or 2DLDA for dimension reduction, and

PCA or LDA is used for further dimensional reduction; R-2DPCA+PCA,
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C-2DPCA+PCA, R-2DLDA+LDA and C-2DLDA+LDA. After the normal-

ization process, multiple scores are integrated by using sum, product, max

and min rules. Our proposed method showed the best performance by using

four types of projections methods (R-2DPCA+PCA, C-2DPCA+PCA, R-

2DLDA+LDA and C-2DLDA+LDA), and also achieved approximately the

same accuracy as human evaluations, proving that our system would be sub-

stitutable for existing marketing research system.
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Figure 7.1: Our age-group classification scheme
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Figure 7.2: The classification accuracy of females’ age-groups based on dif-
ferent approaches. Method 1, 2, 3, and 4 are the R-2DPCA, C-2DPCA, R-
2DLDA, and C-2DLDA, respectively. Min-max normalization and sum rule
fusion techniques are used. (Top: within the 5-year range; Middle: within
the 10-year range; Bottom: within the 15-year range)
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Figure 7.3: The classification accuracy of males’ age-groups based on different
approaches. Method 1, 2, 3, and 4 are the R-2DPCA, C-2DPCA, R-2DLDA,
and C-2DLDA, respectively. Min-max normalization and sum rule fusion
techniques are used. (Top: within the 5-year range; Middle: within the
10-year range; Bottom: within the 15-year range)
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Figure 7.4: The average error distances based on different approaches.
(Top: Females, Bottom: Males) Min-max normalization and sum rule fu-
sion techniques are used. Method 1, 2, 3 and 4 are the R-2DPCA+PCA,
C-2DPCA+PCA, R-2DLDA+LDA and C-2DLDA+LDA, respectively.
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Figure 7.5: Examples of projected male training data using R-2DLDA+LDA
(top) and R-2DPCA+PCA (bottom)
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Chapter 8

Conclusion

8.1 Contributions

The main goal of this work was to improve the gender/age-group classification

rates on a large data set. In this dissertation we have advanced the state of

the art in gender and age-group classification in the following ways.

In Chapter 2, we have designed a large-scale database which includes more

than 5,500 Japanese subjects (about 2,500 females and about 3,000 males),

where there are more than 26,000 images. We have attempted to classify

gender and age-groups using this database with a wide variety of age-groups

and illumination changes. This set is much larger than those in other re-

searchers’ classification experiments and the classification performance turns

out to be fairly good.

In Chapter 3 and 4, we have developed and implemented two new types

of gender classification methods based on the integration techniques. In the

first method, a person’s hairstyle, tie and décolletage information is extracted

and used as well as facial information. Bayes’ rule is then applied to integrate

these four types of information. In the second method, facial area and neck

area have been separately analyzed and the final decision has been made

based on integration techniques such as distance summation, GMM based
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integration and SVM based integration. We have also proved that even if

only one single source is used, feature extraction can produce variations and

boost performance. We finally found that the best classification rate has

been achieved with GMM based or SVM based integration.

In Chapter 5, we have proposed new algorithms called 2DLDA and 2DHLDA

for age-group classification. Through new two-dimensional approaches, we

have successfully achieved better performance than the conventional statis-

tical learning methods such as PCA, LDA and 2DPCA.

In Chapter 6, we have carefully studied the differences between actual

ages and perceived ages of the subjects. We have found that perceived ages

can be used instead of actual ages, or can be even better in terms of data

consistency. Using perceived age data, better class separability have been

obtained.

In Chapter 7, finally, multiple two-dimensional feature extraction algo-

rithms have been proposed for age-group classification. We have extended

2DPCA and 2DLDA such that they operate using two different orientations

each (specifically row and column directions), named R-2DPCA, C-2DPCA,

R-2DLDA and C-2DLDA. The best performance has been achieved using

four types of projection methods (R-2DPCA+PCA, C-2DPCA+PCA, R-

2DLDA+LDA and C-2DLDA+LDA).

We suggest that the results of our research can be used for developing

real-world applications for gender and age-group classification.

8.2 Discussion of Future Work

The experimental results that have been presented in this dissertation are

based mainly upon frontal facial images. Since the chances that we can

obtain frontal view images are much lower in real-life environments, system

performance would be less than optimal. In future work, more data based
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on images from non-frontal views (perhaps at multiple angles) should be

collected from more subjects. Thereafter, we would be able to make our

system far more robust and useful.

At this point, when we perform the classification test, only one frame is

utilized. In future work, extending the integration technique to multi-frame

images (movies, for example) could be an important next step. With multi-

ple frames, our gender/age-group classification system would most certainly

become more reliable.

Age data has been categorized into 5, 10 or 15-year ranges, and classifica-

tion algorithms have been applied. However, age data can be considered to

be a continuous value, and this would be even more natural. Another idea is

to treat age recognition problems not as clustering problems but as regression

problems, for instance using Support Vector Regression (SVR) [54] or other

regression methods.
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