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Abstract

CMOS Analog Integrated Circuit Design Techniques
for Low-Powered Ubiquitous Device

Jun PAN

With the continuously expanding of market for ubiquitous devices such as wireless

sensor nodes, portable devices, and implantable medical devices, low-power design

is becoming a critical priority in integrated circuit design. Low-power design can

increase lifetime and/or achieve a smaller size. Therefore, one of the focuses of this

dissertation is to improve the low-power design techniques.

On the other hand, the advancement in low-power design makes it possible that

ubiquitous device can be powered by low-power energy source such as ambient energy

or small size batteries. In many well supplied devices the problem related to power

is essentially related to cost. However for low-powered devices the problem of power

is not only economics but also becomes very essential in terms of functionality. Due

to the usual very small amount of energy or unstable energy available the way the

engineer manages power becomes a key point in this area. Therefore, another focus

of this dissertation is to try finding ways to improve the power management problem.

Complementary metal oxide-semiconductor (CMOS) has become the predomi-

nant technology in integrated circuit design due to its high density, power savings

and low manufacturing costs. The whole integrated circuit industry will still continue

to benefit from the geometric downsizing that comes with every new generation of

semiconductor manufacturing processes. Therefore, only several CMOS analog inte-

grated circuit design techniques are proposed for low-powered ubiquitous device in

this dissertation.

In the first chapter, the motivations and the backgrounds of this dissertation are





presented.

In the second chapter, the first key cell circuit, a low-power sub-1-V self-biased

low-voltage reference, is proposed for low-power electronic applications based on body

effect. A voltage reference with low sensitivity to the temperature and supply voltage

is one of the key issues in analog circuit design for ubiquitous device. A metal-oxide-

semiconductor field effect transistor (MOSFET) can be operated at a lower voltage by

forward-biasing the source-substrate junction. This approach has been investigated

in detail and used to design an ultra-low power CMOS voltage reference for operation

at sub-1 V. The issues of CMOS latchup and leakage have been investigated in detail

because of the forward biasing of the substrates of MOSFETs in CMOS. The proposed

reference has very low temperature dependence by using a MOSFET with body effect

compared with other reported low-power references. An HSPICE simulation shows

that the reference voltage and the total power dissipation are 181 mV and 1.1 µW,

respectively. The temperature coefficient of the reference voltage is 33 ppm/◦C at

temperatures from -40 to 100 ◦C. The supply voltage can be as low as 0.95 V in a

standard CMOS 0.35 µm technology with threshold voltages of about 0.5 V and -

0.65 V for n-channel and p-channel MOSFETs, respectively. Furthermore, the supply

voltage dependence is -0.36 mV/V (Vdd=0.95∼3.3 V).

In the third chapter, the second key cell circuit, a fast lock charge pump phase-

locked loop (CPPLL) without extra power dissipation is proposed. The low-power

PLL design technique is also one of the key issues in analog circuit design. To realize

fast lock without extra power dissipation, a continuous-time phase frequency detector

(PFD) based on the conventional tri-state PFD is proposed. The locking time of the

PLL can be substantially reduced with the proposed continuous-time scheme. During

the period that the best tracing and acquisition properties are required, the bandwidth

of the PLL is expanded to decrease the locking time with the proposed continuous-





time PFD. Afterwards, the bandwidth of the PLL is recovered to the original value to

minimize output jitter due to external noise. Therefore, no extra power is consumed

compared with conventional PLL. Any conventional tri-state PFDs can be improved

with the proposed continuous-time architecture. The proposed architecture is realized

in a standard CMOS 0.35 µm technology. The simulation results demonstrate that the

proposed continuous-time PFD is effective to get more speedy locking time without

extra power dissipation.

In the fourth chapter, a novel energy management circuit is proposed for self-

powered ubiquitous sensor modules using a variable and weak ambient energy. Energy

is requested by any kind of devices to become functional. Hence many concerns are

applied to power management schemes for any system engineers. In this chapter, the

background of ambient energy source and the properties of the selected ambient en-

ergy for ubiquitous sensor modules are reviewed firstly. Then, an energy management

circuit is proposed for self-powered ubiquitous sensor modules using vibration-based

energy. With the proposed circuit, the sensor modules work with low duty cycle op-

eration. Moreover, a two-tank circuit as a part of the energy management circuit is

proposed to solve the problem that the average power density of ambient energy al-

ways varies with time while the power consumption of the sensor modules is constant

and larger than it. In addition, the long start-up time problem is also avoided with

the timing control of the proposed energy management circuit. The CMOS imple-

mentation and silicon verification results of the proposed circuit are also presented.

Its validity is further confirmed with a vibration-based energy generation. The sensor

module is used to supervise the vibration of machines and transfer the vibration signal

discontinuously. A piezoelectric element acts as the vibration-to-electricity converter

to realize battery-free operation.

In the fifth chapter, a high efficiency charge pump power management circuit





is proposed. Charge pump circuits are frequently used in semiconductor integrated

circuits to provide a voltage that is higher than the voltage of a power supply. If

the output voltage of energy source for low-powered ubiquitous device is small, then

the high efficiency charge pump circuit is one of good solutions to convert a small

or weak input voltage to a higher stable DC voltage as power supply voltage for

ubiquitous device. In addition, the proposed circuit is particularly useful in flash and

EEPROM non-volatile memories because that programming or erasing the memory

cells needs very high positive and negative voltages. Besides, the charge pump circuit

has become an important circuit technique in low-supply-voltage system in order

to increase dynamic range and simplify circuit design. The proposed circuit can

reduce the equivalent on-resistance of the charge-transfer transistors and can avoid

the body effect due to the two pumping branches architecture. Therefore, its voltage

pumping efficiency is much higher than that of the conventional designs. Moreover,

the maximum gate-source, gate-drain and drain-source voltages of all transistors in

the proposed charge pump circuit do not exceed the power supply voltage Vdd. The

proposed charge pump circuit has been realized in a standard CMOS N-Well 0.35

µm technology. The measured results demonstrate that the proposed charge pump

circuit has very high voltage pumping efficiency without overstress and the proposed

charge pump circuit can be realized in any low-voltage single-well standard CMOS

technologies.

In the sixth chapter, the conclusions and the scope for future works are presented.

Keywords: CMOS, Low-Voltage, Low-Power, Ubiquitous, Voltage Reference,

Body Effect, PLL, Fast Lock, PFD, Continuous-Time, Frequency Jump, WSN, Battery-

Free, Ambient Energy, Power Management, Self-Powered, Vibration-Based Energy,

Two-Tank, Sensor Modules, Piezoelectric Element, Charge Pump, Overstress, High

Efficiency, Level Shifter.
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Chapter 1

INTRODUCTION

This chapter reviews the motivations, low-voltage low-power analog LSI design

techniques and potential ambient energy sources for ubiquitous device.

1.1 Motivations

The power consumption of integrated circuit has been increasing at an enormous rate

in this few years. For example, the power consumption of microprocessor is heading

towards 1000 watts as shown in Fig. 1.1 [1].

Hence, with the continuously expanding of market for ubiquitous devices low-

power design is becoming a critical priority in integrated circuit design. Low-power

design can increase lifetime and/or achieve a smaller size. Therefore, one of the

focuses of this dissertation is to improve low-power design techniques.

On the other hand, the advancement in low-power design makes it possible that

ubiquitous device can be powered by low-power energy source such as ambient energy

or small size batteries as shown in Fig. 1.2 [2]. In many well supplied devices the

problem related to power is essentially related to cost. However for the low-powered

devices the problem of power is not only economics but also becomes very essential

in terms of functionality. Due to the usual very small amount of energy or unstable

energy available the way the engineer manages power becomes a key point in this

area [3]. Therefore, another focus of this dissertation is to try finding ways to improve

the power management problem.

Complementary metal oxide-semiconductor (CMOS) has become the predomi-
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Figure 1.1: Microprocessor power trend.

nant technology in integrated circuit design due to its high density, power savings

and low manufacturing costs. The whole integrated circuit industry will still continue

to benefit from the geometric downsizing that comes with every new generation of

semiconductor manufacturing processes. Therefore, only several CMOS analog inte-

grated circuit design techniques are proposed for low-powered ubiquitous devices in

this dissertation.

1.2 Low-Voltage Low-Power Analog LSI Design Techniques

As CMOS technology scaling down, low-power design becomes a central priority for

ubiquitous devices. On the other hand, the supply voltage are dramatically reduced

as shown in Fig. 1.3 [4]. Digital integrated circuits designs can fully benefit from the

continuing down-scaling of CMOS processes as well as from the ongoing reduction of

supply voltage. In contrast to digital integrated circuits designs, analog integrated

circuits often cannot be designed with minimum length components for reasons of

gain, offset, etc. Furthermore, a low voltage supply does not necessarily decrease the

dissipation of the analog integrated circuits because it often leads to more complex

2



Figure 1.2: Image of future ubiquitous world.

designs, resulting in additional quiescent current. To obtain compact, low-voltage,

power-efficient analog integrated circuits, simple library cells with good performance

need to be developed.

Extremely low-power design was first explored in the 1970s for the applications

such as wristwatch and calculator circuits. Ultra-low-voltage CMOS digital operation

was demonstrated in [5]. The predicted CMOS logic operating at a supply voltage of

200 mV at room temperature and derived the fundamental limits of voltage scaling.

Low-power design drew attention beginning in 1990 with expansion in portable

electronic market. An overview describing change in power dissipation of CMOS

circuits changed since 1980 has been given in [6]. Commercial digital signal processor

(DSP) and microprocessor unit (MPU) were used as examples.

At low-voltage low-power integrated circuit design, the main constraints faces are

3



Figure 1.3: Supply voltages scaling of CMOS technology.

the device noise level and the threshold voltage (Vt). Reduction in Vt is dependent

on the device technology. Many new design techniques for low-voltage and low-power

analog circuits are available, for instance, MOSFETs operating in the sub-threshold

region, bulk driven transistors, self-cascode structures and floating gate approach.

These techniques will be briefly introduced as follows.

A. Forward Body-Bias Method

In general, the substrate terminal of MOSFET is tied to its source terminal. On

the other hand, a forward bias can be applied between the source and substrate

of a MOSFET when used as a four-terminal device as shown in Fig. 1.4. Under

the forward body-bias, the MOSFET threshold voltage is reduced. The back gate

forward body-bias method is compatible with standard CMOS process. In addition,

the threshold voltage of MOS transistors can be reduced electrically without any

4



Figure 1.4: Forward biased MOSFETs.

technology modification which provided an important solution to the threshold voltage

limitation. Recently, back-gate forward bias technique has been used extensively to

design low power digital and analog circuits [7].

B. Sub-Threshold Circuits

Circuits operating in the sub-threshold region have drew attention in recent years

because of the need for low-voltage and low-power circuits in human implantable

biomedical instruments. In sub-threshold region, MOSFETs have low saturation

voltages. This gives larger voltage swings at low-supply voltage even in cascaded

MOSFET structures. Similar to a bipolar transistor, the transconductance is ex-

pected to be large. However, it may be noted that the current Ids itself is low in

sub-threshold region, and transconductance cannot be high as in the case of bipolar

transistors [8].

C. Bulk-Driven MOSFETs

As shown in Fig. 1.5, a MOSFET input pair is biased in saturation mode so as

to have a continuous drain current. In addition, the input signals Vin1 and Vin2 are

applied at the bulk terminals. By using the bulk-driven transistors, the requirement

5



Figure 1.5: Bulk-driven MOSFETs.

of Vt is avoided. The voltage swing for low-voltage supply is increased and minimum

operational supply voltage is pushed to its limit [9].

D. Floating-Gate MOSFETs

The floating-gate MOSFET is similar to the conventional MOSFET in the sense

that the floating-gate is equivalent to the gate of a conventional transistor, except that

the floating-gate voltage Vfg is not controlled directly but by the control gates through

capacitance coupling as shown in Fig. 1.6. By some programming techniques, the

equivalent Vt can be changed seen from the control gates to have a low Vt MOSFET,

but the relatively complex programming circuits and/or higher programming voltage

limit its low voltage application [9].

E. Self-Cascode MOSFETs

Self-cascode configuration as shown in Fig. 1.7 can provide a high output impedance

with large voltage headroom than conventional cascade structures [9].

6



Figure 1.6: Floating-gate MOSFETs.

F. Adaptive Body-Bias Generator

In some digital circuits, various modules or sub-circuits are not necessarily required

to operate under a fixed clock. Some of the modules or sub-circuits may be in standby

or operating at low performance level, while the other modules or sub-circuits may

keep working at their highest performance level. When operation or the switching

frequency is high, low threshold voltage is needed. When operation or the switch-

ing frequency is low, a high threshold voltage is helpful to reduce the total leakage

current. In such a circuit, varying body-bias can achieve optimized performance and

power consumption. Thus, an adaptive body-bias generator is highly desirable to vary

the body-bise of CMOS circuit. Therefore, a simple adaptive body-bias techniques

is proposed in [7]. Adaptive body-bias voltage is generated for various operation fre-

quencies. When operational frequency decreases, body-bias voltage is switched from

a forward body-bias to a reverse body-bias [7].

G. Silicon on Insulator (SOI)

Unlike CMOS-based chips that are doped with impurities that enable a chip to

store capacitance that must be discharged and recharged, SOI chips are formed by

setting transistors on a thin silicon layer that is separated from the silicon substrate
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Figure 1.7: Self-cascode MOSFETs.

by an insulating layer of thin silicon oxide or glass, which minimizes capacitance or

the energy consumed from the transistor as shown in Fig. 1.8 [10].

One can choose an appropriate technique a combination of these techniques for the

intended analog circuit design. However, how to design such low voltage/low power

analog circuit is one of most challenging works. There are not well-established design

technologies and theories regarding such topics.

1.3 Energy Source for Ubiquitous Device

Table 1.1 illustrates the finite power density of state-of-the-art energy sources [11].

Based on continued advances in power management techniques, it is projected that the

power consumption of future low to medium throughput DSPs will be scaled to 10’s to

100’s of microwatts. Several low-power wireless platforms with power consumption on

the order of several to tens of mill watts have recently become commercially available.

Solar cells offer excellent power density in direct sunlight. However, in dim office

lighting, or areas with no light, they are inadequate. Power scavenged from thermal

gradients is also substantial enough to be of interest if the necessary thermal gradients
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Figure 1.8: nMOST structures for bulk (a), PD-SOI (b), and FD-SOI (c).

Table 1.1: Average power density of various energy storage and scavenging devices.

Power Source Power Density µW

cm3 Lifetime

Lithium Battery 100 1 year

Micro Fuel Cell 110 1 year

Solar Cell 10-15000 ∞
Vibrational Converter 375 ∞

Air Flow 380 ∞
Temperature Gradients 50 ∞

are available. Fuel cells represent a potentially large improvement over batteries as

an energy reservoir. However, once started, they are not easily turned off.

Therefore, if the lifetime of a sensor node is more than a few years, and suffi-

cient light energy is not available, vibration conversion is an alternative. Low-level

mechanical vibrations are available in many environments, and therefore have a po-

tentially wider application domain than some of the sources such as solar, temperature

gradient, batteries [11].
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Figure 1.9: Conventional system block diagram [11].

1.4 Conventional Power Management Method

The block diagram of a conventional ubiquitous sensor module is depicted in Fig. 1.9

[11]. A large capacitor C is used to store the ambient energy and a voltage regulator

is used to generate a stabilized DC voltage as supply voltage of sensor module. If the

energy stored in C is large enough, the switch S1 is turned on to power on the sensor

module for a fixed period and then the switch is turned off. Next cycle is repeated in

the same way to guarantee that the sensor module can work well with this low duty

cycle operation when the input energy is abundant enough [11].

1.5 Our Contributions

Some of the novel ideas proposed in these dissertation are divided into two sections:

CMOS low-power design techniques section and power management section. The

novel ideas proposed in these dissertation are:

In the low-power design techniques section:

1. A very low-power voltage reference is proposed using body effect.

2. A continuous-time PFD is proposed to realize a fast lock PLL without extra

power consumption.
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In the power management section:

1. A power management circuit is proposed to manage a variable and weak am-

bient energy source.

2. A high efficiency charge pump power management circuit is proposed to convert

a small or weak input voltage to a higher and stable voltage as power supply voltage

for ubiquitous device.

1.6 Thesis Organization

The organization of the dissertation is as follows:

Chapter 1 presents the motivations and backgrounds such as the investigation of

low-voltage low-power analog LSI design technologies, energy sources and conven-

tional power management method for ubiquitous device.

Chapter 2 presents a low-power voltage reference using body effect.

Chapter 3 discuses a PLL with proposed continuous-time PFD to realize fast lock

without extra power consumption.

Chapter 4 presents a power management circuit to manage a variable and weak

ambient energy source.

Chapter 5 describes a high efficiency charge pump power management circuit.

Chapter 6 discusses the conclusions and future works.
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Chapter 2

A LOW-POWER SUB-1-V LOW-VOLTAGE REFERENCE

USING BODY EFFECT

In this chapter, the first key cell circuit, a low-power sub-1-V self-biased low-

voltage reference, is proposed for low-power electronic applications based on body

effect. A voltage reference with low sensitivity to the temperature and supply voltage

is one of the key issues in analog circuit designs and the ubiquitous devices demand

a novel ultra-low power low-voltage voltage reference. A metal-oxide-semiconductor

field effect transistor (MOSFET) can be operated at a lower voltage by forward-biasing

the source-substrate junction. This approach has been investigated in detail and used

to design an ultra-low power CMOS voltage reference for operation at sub-1 V. The

issues of CMOS latchup and leakage have been investigated in detail because of the

forward biasing of the substrates of MOSFETs in CMOS. The proposed reference has

a very low temperature dependence by using a MOSFET with body effect compared

with other reported low-power references. An HSPICE simulation shows that the

reference voltage and the total power dissipation are 181 mV and 1.1 µW, respectively.

The temperature coefficient of the reference voltage is 33 ppm/◦C at temperatures

from -40 to 100 ◦C. The supply voltage can be as low as 0.95 V in a standard CMOS

0.35 µm technology with threshold voltages of about 0.5 V and -0.65 V for n-channel

and p-channel MOSFETs, respectively. Furthermore, the supply voltage dependence

is -0.36 mV/V (Vdd=0.95∼3.3 V).
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2.1 Introduction

A voltage reference with low sensitivity to the temperature and supply voltage is one

of the key issues in analog circuit design. The recent advances in Wireless Sensor

Network (WSN) technologies have opened up the possibility of powering the sensor

nodes by scavenging ambient energies from sunshine, weak electric waves and vibra-

tion [1, 2]. These wireless sensor nodes have to operate with low-power supplies. To

design such ultra-low-power LSIs, a precision voltage reference with low power dissi-

pation is required. It is expected that the supply voltage of CMOS circuits will be

scaled down to about 1 V or less in few years. The conventional bandgap structures

will become impractical at that time.

Because the ultra-low-power operation is the stringent energy constraint for the

WSN application, the purpose of this work is to propose a low-voltage low-power

reference for the ubiquitous sensor nodes. The power dissipation of the whole circuit

should be as small as possible [2]. The proposed circuit in this paper can operate

at a supply voltage down to 1 V in a standard CMOS 0.35 µm technology with

threshold voltages of about 0.5 V and -0.65 V for n-channel and p-channel MOSFETs,

respectively. The circuit can work over a large temperature range. Furthermore, no

analog process options are required.

Most reported designs on voltage references are lack of low-voltage low-power

operation and structurally complicated. Considering CMOS voltage references, the

temperature coefficient (T.C.) of a design technique using subthreshold MOSFETs

is 119 ppm/◦C with a power dissipation of about 4.3 µW from a 1.2 V supply volt-

age [3]. A CMOS voltage reference, which is based on the weighted difference of

the gate-source voltage of two MOSFETs operating in saturation region, is presented

in [4]. The minimum supply voltage of this circuit is 1.4 V and the supply current is

9.7 µA. Another new CMOS voltage reference consisting of two pairs of transistors

is presented based on gate work function differences in poly-si [5]. Unfortunately,
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different conductivity type and impurity concentration of gate electrodes MOSFETs

are needed. The voltage references based on threshold voltage subtraction between

two MOSFETs [6,7] and threshold voltage summation [8] have been presented. How-

ever, both techniques require additional fabrication steps in CMOS technology. The

zero-temperature coefficient (ZTC) point has also been used for the design of CMOS

voltage references. It is not suitable for the ultra-low-power application due to the

several tens microwatts power dissipation [9]. A pure CMOS threshold voltage refer-

ence is proposed in [10]. The voltage references based on peaking current source are

presented in [11, 12]. However, the minimum supply voltages of these circuits are all

larger than 1 V.

The body effect describes the change in the threshold voltage by the change in

the source-substrate voltage. It is utilized as a bulk-driven differential input stage of

an amplifier [13]. Among all the published technologies, little work has been done on

how to modify the temperature coefficient of a MOSFET by using body effect and

how to realize a low temperature dependence reference by using body effect.

In this paper, the temperature performance of a MOSFET with body effect and

the principle of a low temperature dependence voltage reference by using body effect

are discussed. A new approach for designing a low-voltage low-power precision voltage

reference has been proposed by using forward-biased or reverse-biased body effect.

Later parts of this chapter are organized as follows. Section 2 briefly introduces

the conventional architecture. Section 3 discusses the proposed architectures and

their principle. Simulation results are given in section 4. The comparison with other

reported low-voltage references is discussed in section 5, followed by conclusions in

section 6.

2.2 Conventional Architecture

The conventional bandgap voltage reference cannot be designed to have a supply

voltage lower than 1.2 V because these circuits generate a voltage of 1.2 V. Therefore,
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Figure 2.1: A CMOS bandgap reference with sub-1-V operation.

some circuit techniques to scale down the reference voltage are used, and hence the

supply voltage can be lower than 1 V [14–17]. One of these circuits is shown in

Fig. 2.1 [14].

The reference voltage is given by [14]

Vref =
R3

R2

[

VEB2 +
R2

R1

VT ln(N)

]

, (2.1)

where VT (= kT/q, about 26 mV at T = 300 K)is the thermal voltage, k is Boltzmann’s

constant, q is the electron charge, T is absolute temperature and N is the emitter area

ratio of Q1 to Q2. Although these circuits can lower the supply voltage, they suffer

from the problem caused by the mismatch between the two R2s in practical IC design.

Moreover, these bandgap voltage references require three current branches. Even if

the high-gain amplifier can enforce Vds1 = Vds2, Vds3 may not equal to Vds1 and Vds2.

Therefore, this causes an error voltage, which is supply voltage and temperature

dependent, to the reference voltage. In addition, it is hard to reduce the total power

dissipation further. From Eq. (2.1), if a larger R1 is required to reduce the total power

dissipation, the values of R2 and R3 will be increased correspondingly.
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Therefore, a new approach to realize a low-voltage low-power reference is required.

The body effect is utilized to realize a sub-1-V self-biased low-voltage low-power

reference for micropower electronic applications in the next section.

2.3 Proposed Architectures and Principle

In this section, the architectures and the temperature performance of a MOSFET

with body effect, and the principle of a low temperature dependence reference using

body effect are discussed.

2.3.1 Proposed Architecture Using Forward-Biased Body Effect

A proposed circuit is shown in Fig. 2.2. It is composed of four MOSFETs (M1-M4)

and one resistor (Rb). MOSFETs M1 and M2 are operating in the subthreshold

region. The current mirror, composed of M3 and M4, enforces both current branches

having a fixed ratio of the current. The diode-connection devices, M1, M2 and Rb,

define the current level. The amplifier is used to enforce the two inputs having equal

voltage. The reference voltage Vref is the voltage across Rb; the current Ib is the

current flow through Rb. Note that the start-up circuit is not shown here.

In this proposed circuit, the substrate node of M1 is connected to its gate node.

The substrate-source PN junction of M1 is forward-biased by its gate-source voltage.

This circuit has only two current branches and the reference voltage Vref can be

directly derived from the the source node of M1 through such back-gate connection,

with only one resistor needed. Another proposed circuit with the same principle is

shown in Fig. 2.3 by using p-channel MOSFETs M1 and M2.

2.3.2 Principle

The circuit in Fig. 2.2 is used to demonstrate our design principle. Assuming that

the channel length is sufficiently long and Vds is the drain-source voltage, the repre-
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Figure 2.2: Proposed N-MOSFET type reference.

sentation for the gate-to-source voltage in a subthreshold n-channel MOSFET is [18]

Vgs = Vth + nVT ln

[

ID
(

W
L

)

It

]

, (2.2)

where Vgs and Vth are the gate-source voltage and threshold voltage of n-channel

MOSFET, respectively. Also, n is the subthreshold slope factor, W is the transistor

effective width of the channel, L is the transistor effective length of the channel, ID is

the drain current, and It is the drain current when Vgs = Vth, W/L = 1 and Vds ≫ VT .

For n-channel MOSFET devices with substrate bias, the threshold voltage can be

expressed in the general form as [18]

Vth = Vth0 + γ
(
√

2φB + Vsb −
√

2φB

)

. (2.3)

In this equation, Vth0 is the threshold voltage with zero biased source-substrate

voltage, γ is the substrate back-bias factor, φB is the bulk Fermi potential, and Vsb is

the source-substrate voltage.
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Figure 2.3: Proposed P-MOSFET type reference.

Hence, Vref can be expressed as

Vref = Vgs2 − Vgs1

= γ
(

√

2φB −
√

2φB + Vsb1

)

+ nVT ln K, (2.4)

where

K =
ID2

(

W
L

)

1

ID1

(

W
L

)

2

=

(

W
L

)

4

(

W
L

)

1
(

W
L

)

3

(

W
L

)

2

. (2.5)

Figure 2.2 shows that Vsb1 = −Vgs1. Substitute it into Eq. (2.4). Therefore, only

Vgs1, φB and VT are dependent of temperature in Eq. (2.4). Differentiating Eq. (2.4)

with respect to temperature T gives

∂Vref

∂T
=

1

2
γ
[

(

2φB

)− 1

2

(

2
∂φB

∂T

)

−
(

2φB − Vgs1

)− 1

2

(

2
∂φB

∂T
− ∂Vgs1

∂T

)]

+n
VT

T
ln K. (2.6)

In Eq. (2.6), the T.C. of the first term is unknown; on the other hand, the second

term has a positive T.C.. Therefore, the temperature performances of φB and Vgs1

with a forward-biased body effect should be considered.
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Firstly, we discuss the T.C. of Vgs1 with a forward-biased body effect.

The simple relationship between the surface potential and the gate-source voltage

in the subthreshold region is given by [19]

Vgs1 ≈ Vth1 + n(T )[φs(T ) − 2φB(T )], (2.7)

where φs is the surface potential. The temperature model of the threshold voltage

is [19]

Vth1 = Vth1(T0) + (KT1 + KT2Vbs1)

(

T

T0

− 1

)

, (2.8)

where Vth1(T0) is the threshold voltage value at T0, KT1 is the T.C. for threshold

voltage, and KT2 is the body-bias coefficient of the Vth1 temperature effect. The

quantity for φs(T ) − 2φB(T ) as a function of the temperature results

φs(T ) − 2φB(T ) = [φs(T0) − 2φB(T0)]
T

T0

, (2.9)

and n(T ) ≈ n(T0) for temperature in the certain range we consider [3].

Substituting Vbs1 = Vgs1, Eq. (2.8) and Eq. (2.9) into Eq. (2.7) and differentiating

Eq. (2.7) with respect to temperature T yields

∂Vgs1

∂T
≈ n(T0)[φs(T0) − 2φB(T0)] + KT1 + KT2Vgs1

T0

[

1 − KT2

(

T
T0

− 1
)] . (2.10)

Denote that

Kgs =
∂Vgs1

∂T
. (2.11)

It is known that φs belongs to (φB, 2φB) in the subthreshold region, and the typical

values of KT1 and KT2 are -0.11 and 0.022, respectively [19].
[

1 − KT2

(

T
T0

− 1
)]

> 0

with T ranging from -40 to 100 ◦C. Vgs1 is a subthreshold region gate-source voltage

(about 0.3 V) and n(T0) ≈ 2. Hence, Kgs < 0 means that the Vgs of an n-channel

MOSFET with back-gate connection has a negative T.C..

Secondly, we discuss the T.C. of φB(T ).
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The expression of φB(T ) is [3]

φB(T ) = φB(T0)
T

T0

− 3kT

2q
ln

(

T

T0

)

+
Eg(T )

2q
− Eg(T0)

2q

T

T0

, (2.12)

where Eg is the energy gap of the silicon, expressed in eV, is [3]

Eg(T ) = 1.16 − 702 × 10−6

T + 1108
T 2. (2.13)

Differentiating of Eq. (2.12) with respect to temperature T and denoting that

KB =
∂φB(T )

∂T
=

φB(T0)

T0

− 3k

2q
ln

(

T

T0

)

− 3k

2q

−702 × 10−6
T 2 + 2216T

2q(T + 1108)2
− Eg(T0)

2qT0

. (2.14)

φB(T0) can be calculated by [3]

φB(T0) =
kT0

q
ln

[

NCH

ni(T0)

]

, (2.15)

where NCH is channel doping concentration, and ni(T ) is the intrinsic carrier concen-

tration.

KB is about -0.7 mV/◦K at T = 300 K by using Eqs. (2.14) and (2.15) . The Vgs

has a negative T.C. on the order of -2 mV/K. Hence, the first term of Eq. (2.6) has

a negative T.C..

Therefore, to make the T.C. of Vref equal to zero at a selected temperature T0, is

to make
∂Vref

∂T

∣

∣

∣

∣

T=T0

= 0. (2.16)

Thus K can be calculated by

K = exp

{

1

2
γ

[

(

2φB − Vgs1

)− 1

2

(

2
∂φB

∂T
− ∂Vgs1

∂T

)

−
(

2φB

)− 1

2

(

2
∂φB

∂T

)]

/

(

n
VT

T

)

}
∣

∣

∣

∣

∣

T=T0

.

(2.17)

Substituting Eqs. (2.11) and (2.14) into Eq. (2.17) gives

K = exp

{

1

2
γ

[

2KB(T0) − Kgs(T0)
√

2φB(T0) − Vgs1(T0)
− 2KB(T0)

√

2φB(T0)

]

/

(

nk

q

)

}

. (2.18)
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Remember that K is the product of the size ratio of M1 to M2 and the size ratio

of M4 to M3.

Note that the source-substrate junction of M1 is forward biased. Hence, the

threshold of M1 is reduced and the M1 must work in subthreshold region to avoid

turning on the PN junction.

The gate-source voltage temperature characteristics of M1 with and without forward-

biased connection are shown in Fig. 2.4. The horizontal axis is temperature; the ver-

tical axis is Vgs. The difference between Vgs2 and Vgs1 with forward-biased connection

is the reference voltage Vref . It is evident that the threshold of M1 is reduced and

the difference between Vgs2 and Vgs1 without forward-biased connection increases with

temperature increasing as usual. On the other hand, the difference between Vgs2 and

Vgs1 with forward-biased connection (Vref) almost keeps constant with temperature

increasing. From Eq. (2.10), the last term of numerator and the denominator are

the factors introduced by the forward-biased body effect. Since the KT2 is 0.022 and

Vgs1 is about 0.3 V, the last term of numerator has very little influence to the T.C.

of Vgs1. The T.C. of Vgs1 is mainly influenced by the denominator. The KT2 and

T0 are constants in the denominator of Eq. (2.10), therefore, the denominator de-

creases almost linearly with temperature increasing. Furthermore, the denominator

is positive within the temperature range we are considering and the absolute value of

the denominator decreases almost linearly with temperature increasing. Hence, the

T.C. of Vgs1 with forward-biased body effect is linear and a litter larger than the

T.C. of Vgs1 without body effect. So, the T.C. of a MOSFET M1 with forward-

biased connection can be modified the same as the T.C. of a MOSFET M2 without

forward-biased connection if an appropriate K is selected. Therefore, a Vref voltage

independent of temperature can be obtained by using Eq. (2.18). In general, the size

ratios of M1 to M2 and M4 to M3 are selected due to the trade-off between the total

power dissipation and the layout matching characteristics.
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Figure 2.4: Vgs comparison with forward-biased connection.

2.3.3 Voltage Reference Using Reverse-Biased Body Effect

A low temperature dependence voltage reference also can be realized by using a

reverse-biased body effect. The proposed circuit is depicted in Fig. 2.5. It is com-

posed of six MOSFETs and one resistor (Rb). MOSFETs M1, M2, Md1 and Md2

are operating in the subthreshold region. The current mirror composed of M3 and

M4 enforces both current branches having a fixed ratio of the current. The diode-

connection devices M1, M2 and Rb define the current level. The amplifier is used to

enforce the two inputs having equal voltage. The reference voltage Vref is the voltage

across Rb; the current Ib is the current flow through Rb. Note that the start-up

circuit is not shown here.

In this circuit, the substrate nodes of all MOSFETs are connected to their source

nodes except M1. The substrate-source PN junction of M1 is reverse-biased by Md1.
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Figure 2.5: Proposed voltage reference using reverse-biased body effect.

Let VsgMd1 be the same as VsgMd2, then the voltage Vref is given by

Vref = VsgM1 − VsgMd2. (2.19)

To simplify the analysis, the source-gate voltage of Md1 can be expressed as [3]

Vsgd1 = Vth(T0) + KMd1

( T

T0

− 1
)

, (2.20)

where KMd1 is the T.C. of VsgMd1 and it is a negative quantity. Based on the Eqs. (2.7),

(2.8), (2.9) and (2.20), the temperature performance of VsgM1 with reverse-biased

connection is then equal to

∂VsgM1

∂T
≈ KT1 + n(T0)[φs(T0) − 2φB(T0)]

T0

+
KT2

T0

[

KMd1

( T

T0

− 1
)

+ VsgMd1

]

. (2.21)

In this equation, the first term is the T.C. of M1 without body effect; the second

term is the additional effect caused by the reverse-biased body effect. Note that
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the source-substrate junction of M1 is reverse-biased. Hence, the absolute value of

threshold voltage of M1 is increased.

The source-gate voltage temperature characteristics of M1 with and without reverse-

biased connection are shown in Fig. 2.6. The horizontal axis is temperature; the verti-

cal axis is Vsg. The difference between Vsg1 with reverse-biased connection Vsg2 is the

reference voltage Vref . It is evident that the threshold voltage of M1 is increased and

the difference between Vsg1 without reverse-biased connection and Vsg2 increases with

temperature increasing as usual. On the other hand, the difference (Vref)between

Vsg1 with reverse-biased connection and Vsg2 almost keeps constant with temperature

increasing. From Eq. (2.21), since the second term KT2

T0

[

KMd1

(

T
T0

− 1
)

+ VsgMd1

]

is

positive and decreases with temperature, it causes that the T.C. of M1 with reverse-

biased connection is smaller than the T.C. of M1 without reverse-biased connection.

So, the T.C. of a MOSFET M1 with reverse-biased connection can be modified the

same as the T.C. of a MOSFET M2 without reverse-biased connection if an appro-

priate size ratio of M1 to M2 and M3 to M4 is selected. Therefore, a Vref voltage

independent of temperature can be obtained by using a reverse-biased body effect.

In summary, the merits of the voltage reference using body effect are: (1) The body

effect is utilized to modify the threshold voltage of a MOSFET to get an appropriate

quantity of Vref . (2) The temperature coefficient of a MOSFET with body effect can

be modified. (3) The biased voltage between source and substrate node is a dynamic

voltage varying with temperature.

2.4 Circuit Implementation and Simulation Results

In this paper, the proposed reference using forward-biased body effect is used to verify

the principle.

The minimum required power supply for the proposed circuit is given by

V ddmin = Vgs2 + Vds4. (2.22)
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Figure 2.6: Vsg comparison with reverse-biased connection.

2.4.1 Voltage Reference

The detailed sizes of MOSFETs as well as resistor value for the voltage reference are

shown in Table 2.1. The K is equal to 13.2. T0 is designed as 300 K.

The supply voltage dependence of the proposed voltage reference is shown in

Fig. 2.7. The supply voltage dependence at T=300 K is -0.36 mV/V.

The typical temperature dependence of the proposed voltage reference is shown

in Fig. 2.8. The typical value of Vref is 181 mV at a 0.95 V supply voltage. The

reference voltage variation is 0.28 mV (0.15 %) within the temperature range from

-40 to 100 ◦C. And the corner analysis results are shown in Table 2.2. The typical

T.C. of Vref is 11 ppm/◦C. However, the absolute values of Vref vary according to

different corner analysis because of the threshold voltage variation. This problem will

be solved as the technology advancements [10].
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Figure 2.7: Supply voltage dependence of Vref .

Figure 2.8: Temperature dependence of Vref at a 0.95 V supply voltage.
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Figure 2.9: Temperature dependences of Vref at different supply voltages.

Figure 2.10: Temperature dependences of Vref with different values of Rb.
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Table 2.1: Circuit parameters.

Element Value

M1 188/10 µm

M2 50/10 µm

M3 10/10 µm

M4 35/10 µm

Rb 800 kΩ

Table 2.2: Corner analysis.

Type T.C. Vref

TT 11 ppm/◦C 181.18 mV

SS 33 ppm/◦C 211.2 mV

SF 33 ppm/◦C 211.2 mV

FS 24 ppm/◦C 151.2 mV

FF 24 ppm/◦C 151.1 mV

The temperature dependences of Vref at different supply voltages (Vdd= 0.95, 1.5,

2.0, 2.5, 3.3) are shown in Fig. 2.9. The voltage Vref at 300 K are 181.2 mV and 180.3

mV at a 0.95 V and 3.3 V supply voltage, respectively. The T.C. at Vdd=0.95 V is

11 ppm/◦C and increases to 21 ppm/◦C at Vdd=3.3 V.

The temperature dependences of Vref with different values of Rb is shown in

Fig. 2.10. The results are tabulated in Table 2.3. The T.C. at Rb=800 K is 11

ppm/◦C and increases to 35 ppm/◦C at Rb=720 K.

The substrate leakage current of M1 is shown in Fig. 2.11. The leakage current

increases with temperature increasing even if V sb1 decreases with temperature in-

creasing. The leakage current is 200 pA at 100◦C with a V sb1 of 200 mV. It is

negligible compared with Ib (226 nA).
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Table 2.3: Performances with different values of Rb.

Rb Vref T.C.

800 K 181.2 mV 11 ppm/◦C

880 K 178.7 mV 12 ppm/◦C

720 K 184.1 mV 35 ppm/◦C

2.4.2 Amplifier

The amplifier proposed in [20] is adopted for the proposed reference. The common-

mode feedback is implemented in the input differential pair stage of the amplifier to

reduce the minimum supply voltage.

2.5 Comparison with Other Reported Low-Voltage References

The circuit proposed by Banba in Fig. 2.1 is simulated with the same standard 0.35

µm CMOS process to be compared with ours. The results compared with other

reported low-voltage references are tabulated in Table 2.4. Note that the reported

voltage references [3, 12, 16] are chip measurement results. As shown in the table,

the minimum supply voltage, the supply current and the power dissipation including

both amplifier and start-up circuit of the proposed reference are the lowest, and at

the same time it can provide comparable performance on T.C. with sub-1-V supply

operation. Moreover, the supply voltage dependence of the proposed circuit is the

best because the proposed reference only has two current branches. In addition, the

architecture of the proposed reference is simple.

2.6 Conclusions

A new approach for designing a low-voltage low-power precision voltage reference has

been proposed by using forward-biased or reverse-biased body effect. The simulation

results demonstrate that the variations in the reference voltage can be kept very
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Figure 2.11: Substrate leakage current.

small within a temperature range from -40 to 100 ◦C by modifying the T.C. of a

MOSFET with body effect. The proposed reference can operate at a supply voltage

down to 0.95 V in a standard CMOS 0.35 µm technology with threshold voltages of

about 0.5 V and -0.65 V for n-channel and p-channel MOSFETs, respectively. The

minimum power dissipation is 1.1 µW and the supply voltage dependence is -0.36

mV/V (Vdd=0.95∼3.3 V). No particular analog process options are required. This

circuit with a simple architecture is suitable for low-voltage micro-power electronic

applications.
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Table 2.4: Comparison with other reported low-voltage references.

This work Banba [14] Leung [16] Cheng [12] Giustolisi [3]

Technology 0.35 µm 0.6 µm 0.35 µm 1.2 µm

CMOS CMOS CMOS CMOS

Vth Vthp= -0.65 V Vthp= -0.91 V - Vthp= -1.05 V

Vthn= +0.50 V Vthn= +0.53 V Vthn= +0.77 V

Min. Vdd 0.95 V 1.20 V 0.98 V 1.4 V 1.2 V

Supply Current 1.2 µA 1.95 µA 18.0 µA 2.3 µA 3.6 µA

PV dd 1.1 µW 2.34 µW 17.6 µW 3.2 µW 4.3 µW

Vref 181 mV 519 mV 603 mV 580 mV 295 mV

T.C. 33 ppm/◦C 17 ppm/◦C 15 ppm/◦C 62 ppm/◦C 119 ppm/◦C

Supply Voltage -0.36 mV/V -3.8 mV/V 4.2 mV/V 3.9 mV/V -

Dependence

at 27◦C
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Chapter 3

A FAST LOCK PHASE-LOCKED LOOP USING A

CONTINUOUS-TIME PHASE FREQUENCY DETECTOR

In this chapter, the second key cell circuit, a fast lock charge pump phase-locked

loop (CPPLL) is proposed. The low-power PLL design technique is also one of the key

issues in analog circuit designs. To realize fast lock without extra power dissipation, a

continuous-time phase frequency detector (PFD) based on the conventional tri-state

PFD is proposed. The locking time of the PLL can be substantially reduced with

the proposed continuous-time scheme. During the period that the best tracing and

acquisition properties are required, the bandwidth of the PLL can be increased to

decrease the locking time with the proposed continuous-time PFD. Afterwards, the

bandwidth of the PLL is recovered to the original value to minimize output jitter due

to external noise. Therefore, the proposed architecture can achieve fast lock without

extra power dissipation. Any conventional tri-state PFDs can be improved with the

proposed continuous-time architecture. The proposed architecture is realized in a

standard CMOS 0.35 µm technology. The simulation results demonstrate that the

proposed continuous-time PFD is effective to get more speedy locking time without

extra power dissipation.

3.1 Introduction

The PLLs find wide applications in high-speed data communication systems such

as clock-and-data recovery, microprocessor-clock generation, and frequency synthesis.

The PLLs efficiently perform clock recovery or clock generation with low-noise or

low-jitter clock signals and at the same time need to achieve fast locking [1, 2].
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However, there exits a tradeoff in selecting the PLL bandwidth. The transfer

function from the input noise source to the PLL output is lowpass. Therefore, the

loop bandwidth should be made as narrow as possible to minimize output phase jitter

due to external noise. The transfer function from internal oscillator noise source to

the PLL output is found to be highpass. Therefore, the loop bandwidth should be

made as wide as possible to minimize output jitter due to internal oscillator noise and

to obtain best tracking and acquisition properties [3].

In the conventional PLL design, a narrow-band loop filter is used to reduce output

jitters at a cost of large capacitor and resistor. In order to improve the locking time

characteristics, various structures have been proposed for the developments of the

conventional PLLs [2–7]. However, the proposed schemes might cause some problems

such as a larger power dissipation, larger chip size, or a significant amount of phase

noise.

Currently, the research works about PFDs mainly focus on how to reduce dead

zone with high frequency operation [8–10]. The PFD is used to detect phase difference

of two inputs and generates two pulse signals for driving the charge pump. The two

output signals are discontinuous signals in the conventional technologies. In this

paper, a continuous-time PFD is proposed to generate continuous signals based on

the conventional tri-state PFD to drive the following charge pump circuit. With the

proposed scheme, when the phase difference is larger than a preset value, the loop

bandwidth of the PLL is expanded to obtain best tracking and acquisition properties.

After the phase difference is reduced within the preset value, the loop bandwidth of

the PLL is recovered to the original value to minimize output phase jitter due to

external noise [11].

This chapter is organized as follows. Section 2 introduces the proposed architec-

ture and its principle. Simulation results are given in section 3. The comparison with

other reported PLLs is discussed in Section 4 followed by conclusions in section 5.
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Figure 3.1: Timing diagram of conventional PFD.

3.2 Proposed Architecture and Principle

A charge pump PLL is composed of five major blocks: PFD, charge pump, loop

filter, voltage-controlled oscillator (VCO) and frequency divider. The PFD is a tri-

state machine. The timing diagram of the conventional PFD is depicted in Fig. 3.1.

The PFD can detect the phase and frequency difference between FFEF and FFEB.

Then, it generates an Up signal if FFEF leads FFEB or a Dn signal if FFEF lags FFEB.

The open loop transfer function of the conventional charge pump PLL is given

by [12]

Gs =
Icp · F (s) · KV CO

2π · s · N , (3.1)

where Icp is the charge pump current, F (s) is the transfer function of the loop filter,

KV CO is the VCO gain and N is the frequency divider modulus.

For a third-order PLL, the loop bandwidth is approximately [1]

ωBW
∼= Icp · KV CO · R2

2π · N . (3.2)
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Figure 3.2: Block diagram of proposed continuous-time PFD.

The natural frequency (ωN) and the damping factor (ζ) are given by [1]

ωN
∼=

√

(IcpKV CO)/(2πNC2), (3.3)

ζ ∼= ωNR2C2/2, (3.4)

where C2 and R2 are the capacitance and resistor in the loop filter.

3.2.1 Proposed Continuous-Time PFD

The block diagram of the proposed continuous-time PFD is shown in Fig. 3.2. It is

based on the conventional tri-state PFD [13] and is composed of a conventional PFD,

two delay cells, two D flip-flops (DFFs), two OR gates and two inverters.

The delay cells are used to generate a delay Td which should be larger than the

dead zone of the conventional tri-state PFD. The reference frequency and feedback

frequency are delayed by Td and then feed two DFFs with input CLK, respectively.

The outputs of conventional PFD Up1 and Dn1 are distributed into the input D of
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Figure 3.3: Timing diagram of proposed continuous-time PFD.

two DFFs via two inverters, respectively. Afterwards, Q̄ of DFF with Up1 and Dn1

are connected to the OR gates, respectively. Then, the two OR gates generate the

final output signals Up and Dn for driving the charge pump circuit.

Therefore, when the pulse width of Up1 or Dn1 is larger than Td, Q̄ of DFF

is high and its state is sustained during this whole period of reference frequency to

realize coarse-tuning. If the following pulse width is still larger than Td, the high

state is sustained during the following period. If the following pulse width is less than
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Figure 3.4: Transfer function curve of proposed continuous-time PFD.

Td, Q̄ of DFF is low. The continuous-time architecture is disabled and the output

pulse width of Up or Dn is the same as the narrow width of Up1 or Dn1 to realize

fine-tuning. Therefore, the proposed architecture can achiever fast lock without extra

power dissipation.

The timing diagram of the proposed continuous-time PFD is shown in Fig. 3.3.

As shown in this figure, Up1 and Dn1 are discontinuous signals. For the Up and Dn

signals, when the pulse width of Up1 or Dn1 is larger than Td, the corresponding

output of Up or Dn is a continuous signal. When the pulse width of Up1 or Dn1 is

less than Td, the corresponding output of Up or Dn becomes a discontinuous signal

with the same pulse width as Up1 or Dn1.

The transfer function curve of proposed continuous-time PFD is depicted in Fig. 3.4.

According to the timing diagram, the continuous-time architecture is activated only

when the pulse width of Up1 or Dn1 is larger than Td. The proposed architecture is
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Figure 3.5: Proposed PLL using continuous-time PFD.

used to realize coarse-tuning because more current will be charged into or discharged

from the loop filter. Therefore, the phase difference can be reduced rapidly to de-

crease the locking time. When the pulse width of Up1 or Dn1 is reduced within Td,

only the conventional PFD works to realize fine-tuning. As illustrated in Fig. 3.4, the

average charge pump current of the continuous-time operation is much larger than

that of the discontinuous-time operation. The gain of conventional PFD with charge

pump is given by

Kd =
Icp

2π
. (3.5)

Therefore, when the pulse width of Up1 or Dn1 is larger than Td, the transfer

function of the proposed continuous-time PFD with charge pump can be expressed

as

|Kd| = KIcp, (|Φe| ≥ Φd) (3.6)

where K means that the charge pump current in the continuous-time operation is K
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Figure 3.6: The whole proposed PLL behavioral model.

times larger than the charge pump current in the discontinuous-time operation.

3.2.2 Proposed PLLs with Continuous-Time PFD

The proposed continuous-time architecture can be used to improve any conventional

tri-state PFDs. A PLL has been shown using the proposed continuous-time PFD

in Fig. 3.5. In this proposed PLL, a continuous-time PFD takes the place of the

conventional discontinuous-time PFD. In the charge pump circuit, the first and the

second charge/discharge current paths are controlled by the discontinuous-time signals

and the continuous-time signals, respectively. When the PLL is in the out of lock state
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Figure 3.7: The proposed PFD behavioral model.

and the phase difference is large, the continuous-time circuit is activated. Therefore,

more current will be injected into the loop filter. The locking time is reduced. When

the PLL is in the near locking state, the pulse width of Up1 or Dn1 is less than Td.

Only the conventional PFD exists to realize the fine tuning.

The Td can be calculated as

Td =
C1 · ∆f

Icp · KV CO

, (3.7)

where ∆f is the output frequency jumping.

Hence, the loop bandwidth of the proposed PLL is approximately

ωBW1
∼= K · Icp · KV CO · R2

N
, (3.8)
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Figure 3.8: Conventional PLL Vctrl voltage.

which is 2πK times larger than the bandwidth of the conventional PLL in Eq. (3.2).

It shows that the bandwidth can be expanded further with a large K in Eq. (3.8).

In the proposed PLL, the natural frequency (ωN1) and the damping factor (ζ1)

now become

ωN1
∼=

√

(KIcpKV CO)/(NC2), (3.9)

ζ1
∼= ωN1R2C2/2, (3.10)

which are
√

2πK times larger than the natural frequency and damping factor of the

conventional PLL in Eq. (3.3) and Eq. (3.4) .

The locking time is [14]

TL
∼= 2π

ωN1

. (3.11)

44



Figure 3.9: Proposed PLL Vctrl voltage.

Hence, the locking time is decreased due to a larger natural frequency and damping

factor when the continuous-time circuit is activated.

3.3 Simulation Results

The principle of proposed PLL is confirmed in MATLAB Simulink. The whole pro-

posed PLL and the proposed PFD behavioral models are shown in Fig. 3.6 and

Fig. 3.7. The MATLAB simulation results of VCO control voltages of conventional

PLL and proposed PLL with K=1 are depicted in Fig. 3.8 and Fig. 3.9. The lock-

ing times of the conventional PLL and proposed PLL with K=1 are 5.50 µs and

2.0 µs within 1% final frequency. Therefore, the behavioral model simulation results

confirmed the effectiveness of the proposed PLL.
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The proposed PLL has been realized in a standard 0.35 µm CMOS process with

a 3.3 V supply voltage. Icp and N are designed as 30 µA and 8, respectively. The

output frequency of VCO is 400 MHz.

The VCO control voltages of the conventional discontinuous-time PLL, the pro-

posed PLL with K=1 and K=2 and the dual-loop PLL [6] are shown in Fig. 3.10. The

locking times of the proposed PLL with K=1 and K=2 and the dual-loop PLL [6]

are 1.96 µs, 1.26 µs and 2.67 µs compared with the 5.50 µs of the conventional

discontinuous-time PLL. There are 64.4 % and 77.1 % reductions of the locking times.

The frequency jump waveforms of the conventional PLL and the proposed PLL

are depicted in Fig. 3.11. The locking times of the positive switching waveform and
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(a) Frequency jump waveform of conventional PLL.

(b) Frequency jump waveform of proposed PLL.

Figure 3.11: Frequency jump waveforms.
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Table 3.1: Comparison with reported PLLs.

Items Proposed PLL Proposed PLL Con. D.T. Dual loop [6]

with K=1 with K=2 PLL

Technology 0.35 µm CMOS

Supply voltage 3.3 V

Charge pump current 30 µA

Output frequency 400 MHz

Divider modulus 8

Locking time 1.96 µs 1.26 µs 5.50 µs 2.67 µs

Locking time 0.13/0.1 µs - 0.76/0.64 µs -

@ 10 MHz frequency jump

the negative switching waveform of the conventional PLL are 0.76 µs and 0.64 µs

compared with 0.13 µs and 0.10 µs of the proposed PLL for a frequency jump of 10

MHz. There are about 82.9 % and 84.4% reductions of the locking times.

3.4 Comparison with Other Reported PLLs

The summary of comparison with other reported PLLs is listed in Table 3.1. Accord-

ing to this table, the locking times of the proposed PLLs are substantially reduced. In

addition, the proposed PLL has very simple architecture which can reduce the power

dissipation and chip size.

3.5 Conclusions

A continuous-time phase frequency detector (PFD) based on the conventional tri-

state PFD is proposed for fast lock charge pump phase-locked loops (CPPLLs) in

this chapter. When the PLL is in the out of lock state and the phase difference is

large, the continuous-time circuit is activated. More current will be injected into the
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loop filter, therefore, the locking time is reduced. When the PLL is in the near locking

state, only the conventional PFD exists to realize the fine tuning. Any conventional

tri-state PFDs can be improved with the proposed continuous-time architecture. The

simulation results demonstrate that the proposed continuous-time PFD is effective to

reduce the locking time without extra power dissipation.
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Chapter 4

AN ENERGY MANAGEMENT CIRCUIT FOR

SELF-POWERED UBIQUITOUS SENSOR MODULES

USING VIBRATION-BASED ENERGY

In this chapter, a novel energy management circuit is proposed for self-powered

ubiquitous sensor modules using a variable and weak ambient energy. Energy is re-

quested by any kind of devices to become functional. Hence many concerns are applied

to power management schemes for any system engineers. In this chapter, the back-

ground of ambient energy source and the properties of the selected ambient energy for

ubiquitous sensor modules are reviewed firstly. Then, an energy management circuit

is proposed for self-powered ubiquitous sensor modules using vibration-based energy.

With the proposed circuit, the sensor modules work with low duty cycle operation.

Moreover, a two-tank circuit as a part of the energy management circuit is utilized

to solve the problem that the average power density of ambient energy always varies

with time while the power consumption of the sensor modules is constant and larger

than it. In addition, the long start-up time problem is also avoided with the tim-

ing control of the proposed energy management circuit. The CMOS implementation

and silicon verification results of the proposed circuit are also presented. Its validity

is further confirmed with a vibration-based energy generation. The sensor module

is used to supervise the vibration of machines and transfer the vibration signal dis-

continuously. A piezoelectric element acts as the vibration-to-electricity converter to

realize battery-free operation.
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Figure 4.1: Proposed system block diagram of the sensor module.

4.1 Introduction

Wireless Sensor Network (WSN) has become a popular research topic in recent years.

A WSN is composed of a large number of wireless sensor nodes that are densely

scattered in a sensor field to transmit data from one to ten meters in range. Ad-

vances in low power Very Large Scale Integration (VLSI) design have opened up the

possibility of powering the ubiquitous sensor modules by scavenging ambient energy,

thus, eliminating the need for batteries and extending the lifetime of sensor mod-

ules infinitely [1, 2]. There are many potential ambient energy sources, such as solar

power [3], vibration-based power [1, 2, 4–7], thermoelectric power [8–11], fluid flow

power, and electromagnetic field power [12].

Any kind of device needs energy to become functional. In many easy-to-supply

devices the problem related to energy is essentially associated with cost. However in
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the WSN world the problem of energy goes beyond economics and becomes essential in

terms of functionality. Due to the usual small amount of energy available the way the

engineer manages energy becomes a key point in this industry [13]. In truth, several

problems resulted from the circuit designs are not fully addressed in the conventional

architecture.

One of these problems is that there is a lack of an effective energy management

circuit in the sensor module. The power consumption of the sensor module, larger

than the average power density of ambient energy, remains constant while the ambient

energy varies according to its environment. For example, the solar power density is

150 µW/cm3 in a cloudy day. It is much less than that of a power density of 1500

µW/cm3 in a sunny day [1]. The scavenged vibration-based energy always varies with

different equipments. Even the scavenged energy from the same equipment will also

vary according to their working conditions. Among all the published technologies,

little work has been done on how to efficiently manage the scavenged ambient energy

to deal with the variations of ambient energies.

Therefore, when the input energy is overabundant, the surplus energy is wasted

due to the limited capacity of the only capacitor; when it is insufficient, the sensor

module will not work well. Hence, a novel energy management circuit is desired

to target commonly occurring vibrations in typical office buildings, manufacturing

and assembly plant environments, and homes in order to maximize the potential

applicability of the sensor module [2].

The second problem is that a large super capacitor (for example, on the order of 1

Farad, size: φ21.5×8mm [14]) used in most approaches would lead to a very long start-

up time before the sensor module working [2]. Given the assumption that the average

current of scavenged energy is on the order of 0.1 mA and the full charging voltage of

the capacitor is 3.3 V, therefore, the start-up time will be over 9 hours. During this

period, the switch S1 is always turned off and the sensor module does not work in

the conventional system. If the sensor module is used in, for example, family security
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application, the security information during this period will be missed. Obviously,

this long start-up time problem caused by using large super capacitor makes this

approach impracticable.

The focus of this paper is to try finding paths to solve these problems, what at

the end means to increase the expected life-time of the sensor modules. Therefore,

an energy management circuit is proposed for self-powered ubiquitous sensor mod-

ules using vibration-based energy. A 2-stage two-tank circuit as a part of the energy

management circuit is utilized to solve the energy variation problem. The 2-stage two-

tank circuit is mainly composed of a small capacitor and a bigger capacitor. With an

appropriate timing control, the small capacitor is quickly charged to a predetermined

voltage to avoid the long start-up time problem firstly, and then the bigger capacitor

is slowly charged to a predetermined voltage subsequently to deal with the variation

of ambient energy. Moreover, the 2-stage two-tank circuit can be expanded to an

N-stage two-tank circuit. A high level of integration is realized because the proposed

energy management circuit is integrated onto one chip. The proposed energy manage-

ment circuit scavenges the vibration-based ambient energy (low level vibrations) and

regulates it as the supply voltage of sensor module to realize a self-powered operation.

In addition, the proposed energy management circuit determines the period during

which the vibration signal is detected and transferred to the air by the sensor module.

This chapter is organized as follows. Section 2 discusses the proposed energy man-

age circuit. Silicon verification results are given in section 3, followed by conclusions

in section 4.

4.2 Proposed Energy Management Circuit

In this section, the principle of the proposed two-tank circuit and the operations of

the control circuits are presented. In addition, some simulation results are given.
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4.2.1 System Requirements

The proposed circuit must meet such requirements:

1. To realize a self-powered operation, the proposed circuit can operate without

any batteries or any separate voltage sources.

2. The scavenged energy can power on the sensor module for about 100 ms with

a 3 mW power dissipation.

3. The proposed circuit can be realized with a standard CMOS process. The

breakdown voltage of the CMOS process is 3.3 V and the supply voltage of the sensor

module is 1.5 Vdc.

4.2.2 Proposed Two-Tank Circuit and Principle

The proposed system block diagram of the sensor module is depicted in Fig. 4.1. A

proposed energy management circuit takes the places of the large capacitor C and

voltage regulator in the conventional sensor module. The proposed circuit includes a

two-tank circuit, control circuits and a series regulator. The two-tank circuit is used

to effectively manage the scavenged ambient energy. The series regulator generates a

regulated DC voltage as a supply voltage of the sensor module. The sensor module

monitors the signal generated by the piezoelectric element and transfers the detected

signal to the air. The control circuits determine the system timing sequence.

4.2.2.1 Vibration to Electricity Conversion

The sensor module scavenges vibration-based energy as power supply with piezoelec-

tric elements due to it’s high power density compared with other methods. A survey

of different power sources demonstrated that the power density of vibrations is 250

µw/cm3 [1, 2]. The piezoelectric element can be mounted on any equipment which

have low level vibrations. In order to reduce the volume of the sensor module, the

same piece of piezoelectric element provides the energy and detected signal. It is
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realized by the control circuits.

For our ubiquitous sensor module, a PZT piezoelectric element (size: 9 ×33 mm)

acts as the vibration-to-electricity converter [15]. The element is driven with a low

level vibration at 60 Hz with a typical acceleration magnitude of 2.25 m/s2, which

is equivalent to those measured on a small microwave oven. For one piece of this

element, the average continuous output power is over one hundred microwatts and

the amplitude of output voltage is a several volts sinusoidal wave based on our test

results. For example, if the load is 120 KΩ, the output power is over 140 µW and the

output voltage is about 6 VAC [4].

4.2.2.2 Proposed 2-Stage Two-Tank Circuit

As we know, the power consumption of the sensor module is on the order of several

milliwatts. However, the energy source can provide only several hundred microwatts

with several pieces of such elements in parallel connection. Therefore, the sensor

module has to work with a low duty cycle operation. The operation of this module

includes two phases. The first phase is called scavenging energy phase in which the

energy scavenged from the piezoelectric element is stored in the two-tank circuit. The

second phase is called transmission phase in which the energy stored in the two-tank

circuit is discharged to the sensor module.

A parallel 2-stage two-tank circuit is shown in Fig. 4.2. In this figure, Vc1 refers

to the voltage across C1 and Vc2 refers to the voltage across C2. The waveforms

of Vc1 and Vc2 in start-up state is shown in Fig. 4.3(a) and the waveforms of Vc1

and Vc2 in fully charged state is shown in Fig. 4.3(b). The fully charged state starts

from when Vc2 reaches Vfull. In this paper, the upper limit Vfull of Vc1 and Vc2 is

3.3 V due to the breakdown voltage. Vmin is 2.0 V due to the voltage loss of series

regulator.

During the scavenging energy phase, S1 is turned on; S2 and S3 are turned off

initially. Hence, only C1 is quickly charged to Vfull (3.3 V) within several seconds.
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(a) Scavenging energy phase.

(b) Transmission phase.

Figure 4.2: 2-stage two-tank circuit.

After that, S3 is slightly turned on to act as a variable resistor in series connection

with C2. Then C2 begins to be charged slowly while the voltage Vc1 remains constant.

The piezoelectric element now only serves as an energy source. After a trigger signal

changes its state from high to low within a predetermined short period to avoid the

very long start-up time problem, S1 and S3 are turned off; S2 is turned on and Vout

appears immediately. As shown in Fig. 4.3(a) and (b), Vout appears to power on the

sensor module without considering the voltage Vc2. So, the operation enters into the

transmission phase.

During the transmission phase, the series regulator output Vout appears to power

on the sensor module. Only the energy stored in C1 is discharged to the sensor

module at first and at the same time the voltages Vc1 and Vc2 are monitored. The
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(a) Start-up state.

(b) Fully charged state.

Figure 4.3: Waveforms of 2-stage two-tank circuit.

vibration signal is detected and transferred to the air during this phase. If the voltage

Vc2 is larger than the voltage Vc1, S3 is turned on and the energy stored in C2 also

discharges to the load together with C1. The piezoelectric element only serves as

a signal source. After a predetermined period passed or when the voltage Vc1 falls

down to Vmin (2.0 V), S1 is turned on and at the same time S2 and S3 are turned

off. Then the operation enters into the scavenging energy phase. Another cycle is

repeated in the same way.
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In the fully charged state, the charge time of C1 is calculated that

Tc1 =
C1 ∗ ∆V 1

Iavg

, (4.1)

where ∆V 1 = V full − V min is the voltage variation of C1 and Iavg is the average

input current. For example, C1= 470 µF, ∆V 1=3.3-2.0=1.3 V, Iavg=0.1 mA, the Tc1

is about 6 s. The voltage variation of C2 is given by

∆V 2 =
Iavg ∗ Tc2

C2
, (4.2)

where Tc2 is the predetermined charge or discharge time of C2.

4.2.2.3 Proposed N-Stage Two-Tank Circuit

Based on the 2-stage two-tank circuit, two types of N-stage two-tank circuits are

proposed. The parallel N-stage two-tank circuit, so named because all the capacitors

are connected in parallel, is proposed in Fig. 4.4. The series N-stage two-tank circuit,

so named because all the capacitors are connected in series, is shown in Fig. 4.5.

VR1, VR2, ..., and VRN refer to the voltage controlled resistances, respectively. Vc1,

Vc21, Vc22, ..., and Vc2N refer to the voltages across C1, C21, C22, ..., and C2N,

respectively. The value of C1 is the smallest one among all the capacitors.

For the parallel N-stage two-tank circuit, the operations are similar to the opera-

tions of the 2-stage two-tank circuit.

During the scavenging energy phase, S1 is turned on and S2 is turned off initially.

The capacitor C1 is quickly charged to Vfull to avoid the long start-up time problem,

meanwhile, the resistances VR1, VR2, ..., and VRN are turned off to prevent C21,

C22, ..., and C2N from being charged. Only after the voltage Vc1 reaches Vfull, the

value of VR1 is slightly decreased by the control circuit. The voltage Vc1 is held

constant at Vfull and the surplus energy is stored into the large capacitor C21. In

the same way, after Vc2(I-1) (I=2, 3, ..., N) reaches Vfull, the value of VRI is slightly

decreased by the control circuit. The voltage Vc1, Vc21, ..., and Vc2(I-1) are held at
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Figure 4.4: Parallel N-stage two-tank circuit.

Vfull and the surplus energy is stored into the larger capacitor C2I. After a trigger

signal changes its state from high to low, the operation enters into the transmission

phase.

During the transmission phase, S1 is turned off and S2 is turned on initially. The

resistances VR1, VR2, ..., and VRN are turned off. The scavenged energy in C1 is

discharged to the load. When the control circuit detects that the voltage Vc1 is equal

to Vc21, VR1 is set to zero and the energies stored in C1 and C21 are discharged to

the load together. In the same way, when the control circuit detects that the voltage

Vc2(I-1) is equal to Vc2I, VRI is set to zero and the energies stored in Vc2I and

C1, C2, ..., and C2(I-1) are discharged to the load together. After a predetermined

discharge period passed or when the voltage Vc1 falls down to Vmin (2.0 V), S1 is

turned on and S2 is turned off. Then the operation enters into the scavenging energy

phase. Another cycle is repeated again and again. If the input energy is large enough,
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Figure 4.5: Series N-stage two-tank circuit.

the capacitors C21, C22, ..., and C2N will be fully charged to Vfull one by one. How

many stages are used depends on the load condition and the input average power

density.

The equivalent capacitor during scavenging energy phase is given by

Cequ =











C1, for Vc1 < Vfull (4.3)

C1 +

N
∑

I=1

C2I. for Vc1 = Vfull (4.4)

In the fully charged state, the equivalent capacitor during transmission phase is

given by

Cequ = C1 +

N
∑

I=1

C2I. (4.5)

For the series N-stage two-tank circuit, the operations are as follows. During the

scavenging energy phase, S1 is turned on and S2 is turned off. The C1 in series

connection with C21, C22, ..., and C2N is quickly charged at start-up period due to
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the smallest C1 while the resistances VR1, VR2, ..., and VRN are turned off to prevent

C21, C22, ..., and C2N from being charged. After the tank voltage Vtank reaches

Vfull, the value of VR1 is slightly decreased. The tank voltage is held constant at

Vfull and the surplus energy is stored into the larger capacitor C21 in series connection

with C22, C23, ..., and C2N. In the same way, after the voltage Vc2(I-1) also reaches

Vfull, the value of VRI is slightly decreased. The tank voltage is held at constant and

the surplus energy is stored into the larger capacitor C2I in series connection with

C2(I+1), C2(I+2), ..., and C2N. After a trigger signal changes its state from high

level to low level, the operation enters into the transmission phase.

During the transmission phase, S1 is turned off and S2 is turned on. The resis-

tances VR1, VR2, ..., and VRN are turned off. The scavenged energies in C1 in series

connection with C21, C22, ..., and C2N are discharged to the load. When the control

circuit detects that the voltage Vtank is equal to Vc21, the VR1 is set to zero and the

energies stored in C21 in series connection with C22, C23, ..., and C2N are discharged

to the load together. In the same way, when the control circuit detects the voltage

Vtank is equal to Vc2I, VRI is set to zero and the energies stored in C2I, C2(I+1),

..., and C2N are discharged to the load together. After the predetermined discharge

period passed, S1 is turned on and S2 is turned off. Then the operation enters into

the scavenging energy phase. Another cycle is repeated again and again, until the

voltages Vc21, Vc22, ..., and Vc2N reach fully charged voltage Vfull one by one.

In summary, the merits of the N-stage two-tank circuit are: (1) A smallest C1 is

used to avoid long start-up time problem. Only after Vc1 reaches Vfull and C2 is

charged at a predetermined period, Vout appears, rather than C21, C22, ..., C2N are

also charged to Vfull. (2) The capacitors C21, C22, ..., C2N are used as batteries to

store the surplus energy when input energy is abundant enough and the stored surplus

energy can be discharged to the sensor module when input energy is insufficient. (3)

It is possible to power on different loads by using an appropriate N-stage architecture.
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Figure 4.6: Control circuit for S1 and S2.

4.2.3 Control Circuits

In this paper, a parallel 2-stage two-tank is used to verify the principle of the proposed

two-tank circuit. Therefore, a control circuit composed of two sections is proposed to

determine the timing sequence of the proposed energy management circuit.

Figure 4.6 shows the control circuit for S1 and S2. The signal Hysout is the output

of a hysteresis comparator and is used to monitor the voltage Vc1 [16]. The signal

Clkout, which could be a clock signal or an output of a micro MCU, is a trigger signal.

In this paper, a clock generator is used to generate Clkout signal. Hysout, Clkout,

a NOR gate, an NMOS transistor and a series regulator determine the operations to

C2. The series regulator composed of an amplifier and S2 with a resistor generates

a stabilized DC voltage as a supply voltage of sensor module. The drain terminal of

Saux2 is connected to the internal node of the amplifier. CNT2 is used to act as an

enable signal to turn on or turn off the amplifier of series regulator. When CNT2 is

high, S2 will be turned off. When CNT2 is low, S2 acts as the pass device of the

series regulator.

The operations are as follows. When Vc1 reaches Vfull, Hysout signal changes
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its state from high to low. This allows Clkout signal to change its state from low to

high, and the on state of Clkout signal determines the charge period of C2. During

this period, when Vc2 also reaches Vfull, S1 will be turned off to prevent C2 from

being over-charged. When Clkout signal changes its state from high to low, S1 is

turned off and S2 is turned on. The sensor module enters into transmission phase.

The energies stored in C1 and C2 are discharged to the sensor module. While Vc1 is

down to Vmin, Hysout signal changes its state from low to high, S1 is turned on and

S2 is turned off. Meanwhile, Clkout signal still low, S3 is turned off and the input

energy is charged to C1 only. After Vc1 reaches Vfull again, S3 is turned on and C2

will be charged again.

In Fig. 4.6, the upper part circuit determines the operation of S1 and the lower

part circuit determines the operation of S2.

Figure 4.7 shows the control circuit for S3 to determine the operation to C2. Dur-

ing scavenging energy phase, when Vc1 is equal to Vfull and Vc2 is less than Vfull,

S3 is turned on to charge C2. During this phase, the output of the lower Op-Amp is

always zero. Therefore, the upper Op-Amp, the NOR gate and S3 form a negative

feedback system. It is used to stabilize Vc1 to Vfull and to charge C2 by the input

scavenged energy. During transmission phase, when Vc2 is larger than Vc1, S3 is

turned on again to discharge C2 to the sensor module together with C1. In Fig. 4.7,

the upper Op-Amp compares the voltage Vc1 with Vfull to determine the moment

when the C2 begins to be charged. The lower Op-Amp compares the Vc1 with Vc2

to determine the moment that C2 begins to be discharged.

As shown in Fig. 4.6 and Fig. 4.71, the supply voltage of the control circuit is

also the varying voltage Vc1 rather than a stabilized DC voltage. Because the whole

circuit is a self-powered circuit, therefore, an extra voltage regulator will consume

1In the actual circuits, Vfull, Vc1 and Vc2 are reduced by the same factor and then introduced
to the input terminals of the Op-Amp. Vfull denotes a reference voltage.
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Figure 4.7: Control circuit for S3.

some energies. The self-powering is realized with the NMOS transistors Saux1 and

S1 with a resistor in Fig. 4.6. CNT1 is zero and Saux1 is off initially. S1 is turned

on because it is tied like a diode. Hence, C1 is charged by the scavenged energy from

zero to Vfull. As Vc1 increasing, the control circuits begin to work and then take

over the whole circuit operations.

During the start-up state, only the energy stored in C1 is utilized as the sup-

ply voltage both of control circuits and sensor module through a series regulator.

Therefore, the value of C1 is determined by

C1 =
Iload ∗ Tload ∗ Vfull

∆V 1 ∗ Vout

. (4.6)

where Iload is the average supply current of sensor module and Tload is the operat-

ing time of sensor module. Given the assumption that Iload=2 mA, Tload=100 ms,

Vfull=3.3 V, △V 1= 3.3-2.0= 1.3 V and Vout=1.5 V, therefore, the minimum C1 is

340 µF. In practice, a 470 µF C1 is mandated.

In summary, the control circuits are used to determine the timing sequence of

switches S1, S2 and S3. The timing sequence determines that the scavenged energy

can charge C1 and C2 one by one. The timing sequence determines the operating

time of sensor module at a predetermined period 100 ms also.
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4.2.4 Simulation Results

In order to verify the principle of the proposed architecture, an Hspice simulation was

carried out with a standard 0.35 µm CMOS process. C1 is 470 µF from Eq. (4.6).

To simplify the simulation, the small values of C2 = 4700 µF is used. The simulation

results of timing waveforms during start-up state are shown in Fig. 4.8. The horizontal

axis is the time and the unit is second. The vertical axis is voltage and the unit is

volt. The curves are Vc1, Hysout, Clkout, CNTC2, Vc2, CNT1, CNT2 and Vout,

respectively. CNT1, CNT2 and CNTC2 are used to control the operation of S1, S2

and S3, respectively. It is shown that the C1 is quickly charged to Vfull with several

seconds (about 4.7 s) then C2 is slowly charged. When a predetermined charging

period of C2 passed and Clkout signal changed its state from high to low, Vout

appears to power on the sensor module during the start-up state, then the sensor

module begins to work. However, in the conventional architecture, the sensor module

have to wait until a big capacitor is charged to Vfull for a very long period. So, the

long start-up time problem can be solved by the proposed two-tank circuit. During

the start-up state, the energy consumption of the sensor module is only provided by

C1.

The simulation results of timing waveforms during fully charged state are shown

in Fig. 4.9. After a long period, C2 is also charged to Vfull. It is shown that when

Clkout signal is high, the CNTC2 signal controls S3 slightly on to charge C2. When

Vc2 reaches Vfull also, the CNT1 signal turns off S1. However, due to a slight power

dissipation of the control circuit, Vc1 slightly decreases and S1 is needed to be slightly

turned on to charge C1 and C2. Thus, there are some variations in CNT1 signal during

scavenging energy phase. CNT2 signal turns on S2 only after Vc1 reaches Vfull and

the Clkout signal falls from high to low. During the fully charged state, the energy

to power on the sensor module is provided by C1 and C2.

The input power energy is on the order of several hundred microwatts (For our
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Figure 4.8: Simulation results during start-up state.

application, when the duty cycle is 0.1 , at least three PZT pieces are required in

parallel operation). The two-tank circuit with its control circuit consumes about 50

µW in total in this example. The sensor module dissipates about 3 mW from a 1.5 V

DC supply. The scavenging energy phase is about 550 ms and the transmission phase

is about 100 ms in fully charged state.

4.3 Silicon Verification

To validate the proposed circuit, the 2-stage parallel two-tank circuit has been fab-

ricated in a standard 0.35 µm CMOS process. The die photograph is presented

in Fig. 4.10. The proposed energy management circuit occupies a chip area of

80×360µm2 without PADs.
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Figure 4.9: Simulation results during fully charged state.

The test conditions are: C1 = 470 µF, and C2 = 4700 µF. In practice, even a

larger super capacitor on the order of 1 Farad (size: φ21.5×8mm [14]) could be used,

however the small C2 capacitor is convenient for the test because it is easier to see

the charge/discharge cycles on the C1 and C2. The power consumption of loads is

about 2.3 mW. The start-up time is 4.7 s, which is much shorter compared with the

several hours start-up time of conventional architecture.

The waveforms of Vc1 and Vc2 are shown in Fig. 4.11. It is shown that when Vc1

reaches 3.3 V, C2 begins to be charged. After a predetermined period, the energy

stored in C1 is discharged to the load during the transmission phase. While the Vc1

decreases to Vc2, the energies stored in C1 and C2 are discharged to the load together.

The waveforms of Vc1 and Vout are shown in Fig. 4.12. It is shown that during the
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Figure 4.10: Chip die photograph.

transmission phase, Vout appears and the energies stored in C1 and C2 are discharged

to the load.

The waveforms of Vc1 and clock signal are shown in Fig. 4.13. It is shown that

the low level state of clock signal Clkout is used to determine the transmission period.

The waveforms of CNT1 and CNT2 are shown in Fig. 4.14. When the CNT1

signal is low, S1 is turned on. When CNT2 is high, S2 is turned off1.

In summary, the two-tank circuit operates like a battery whose capability is ad-

justable. In practice, the problem that how many stages are used depends on the

load condition and the input average power density. Besides, the input energy of the

two-tank could be the vibration-based energy or any other ambient energies.

4.4 Conclusions

An energy management circuit for efficiently managing the scavenged ambient energy

has been proposed for ubiquitous sensor modules using vibration-based energy gen-

eration. The implementation of the proposed circuit with a standard CMOS process

is presented and further validated by experimental results.

1Vc2 is not charged to Vfull in the experimental result. Therefore, CNT1 signal has no variations
as shown in Fig. 4.9
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Range H: 0.2 s/div, V: 1.0 V/div

Figure 4.11: Measured Vc1 and Vc2 signals.

Range H: 0.2 s/div, V: 1.0 V/div

Figure 4.12: Measured Vc1 and Vout signals.
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Range H: 0.2 s/div, V: 1.0 V/div

Figure 4.13: Measured Vc1 and Clkout signals.

Range H: 0.2 s/div, V: 1.0 V/div

Figure 4.14: Measured CNT1 and CNT2 signals.
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The energy management circuit can avoid the long start-up time problem and

can improve the level of integration. Based on our experimental results, the proposed

energy management circuit can be used as a battery for any ubiquitous sensor modules

using different ambient energies. The proposed energy management circuit is effective

in managing the scavenged ambient energy and maximizing the potential applicability

of the sensor module.
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Chapter 5

A CHARGE PUMP CIRCUIT WITHOUT OVERSTRESS

IN LOW-VOLTAGE SINGLE-WELL CMOS PROCESS

In this chapter, a high efficiency charge pump power management circuit is pro-

posed. Charge pump circuits are frequently used in semiconductor integrated circuits

to provide a voltage that is higher than the voltage of a power supply. In case that

the scavenged voltage of energy source is small, then the high efficiency charge pump

circuit is one of good solutions to convert it to a higher voltage for ubiquitous de-

vice. In addition, the proposed circuit is particularly useful in flash and EEPROM

non-volatile memories because that programming or erasing the Flash memory cells

needs very high positive and negative voltages. Besides, the charge pump circuit

has become an important circuit technique in low-supply-voltage system in order to

increase dynamic range and simplify circuit design.

The proposed circuit not only completely switch on or switch off the charge-

transfer transistors but also can reduce the equivalent on-resistance of these transistors

compared with conventional circuits. In addition, the body effect is eliminated due to

the proposed two pumping branches architecture. Therefore, its voltage pumping effi-

ciency is much higher than that of the conventional designs. Moreover, the maximum

gate-source, gate-drain and drain-source voltages of all transistors in the proposed

charge pump circuit do not exceed the power supply voltage Vdd. The proposed

charge pump circuit has been realized in a standard CMOS N-Well 0.35 µm technol-

ogy. The measured results demonstrate that the proposed charge pump circuit has

very high voltage pumping efficiency without overstress. Hence, the proposed circuit

is suitable for implementation in low-voltage single-well CMOS process.
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Figure 5.1: Dickson charge pump circuit.

5.1 Introduction

Charge pump circuits play a key role in semiconductor integrated circuits where a

voltage that is higher than the voltage of a power supply.

The most popular architectures are based on Dickson [1] topology as shown in

Fig. 5.1. However, the traditional Dickson structure has poor pumping efficiency

because that the threshold voltage becomes larger due to the body effect as the

voltage of each pumping node is pumped higher. In addition, all MOSFETs suffer

from high-voltage overstress on their gate oxides because that the maximum voltage

difference of each stage is 2V dd.

Many improvements based on Dickson structure have been proposed. The schemes

proposed in [2–4] still suffer from high-voltage overstress. In addition, they also suffer

from body effect issue and their voltage pumping efficiencies are degraded due to a

diode-connected MOSFET in the last stage as shown in Fig. 5.2 [2]. A charge pump

circuit composed of PMOS and NMOS devices on a triple well technology is presented

in [5–7]. Triple well process requires additional masking and process steps compared

to the standard CMOS process [8]. The propose charge pump circuit in [8] has to

satisfy a condition to achieve a correct functionality. However, the condition depends

on parasitic capacitance which always varies with different process and layout designs.
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Figure 5.2: Proposed charge pump circuit in [2].

In addition, the minimum supply voltage is limited by this condition which makes

it impracticable for low-voltage applications. The use of low-voltage MOSFETs can

overcome the poor voltage pumping efficiency problem due to the higher threshold

voltage of high-voltage MOSFETs [3]. In addition, the gate-oxide reliability issue must

also be considered in the design of charge pump circuit, especially in the low-voltage

single-well CMOS process with the technology advanced [5]. In this paper, a high

pumping efficiency all PMOS charge pump circuit without high-voltage overstress

is proposed in a low-voltage CMOS process. With the proposed architecture, the

charge pump circuit achieves high voltage pumping efficiency without high-voltage

overstress.

This chapter is organized as follows. Section 2 introduces the proposed architec-

ture. Experimental results are given in section 3, followed by conclusions in section

4.
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5.2 Proposed Architecture

In this section, a novel driver circuit with a proposed level shifter is introduced to fully

switch on charge-transfer transistors and to prevent the charges back to the previous

stage. To avoid body effect, a symmetrical architecture is introduced in the proposed

circuit.

5.2.1 Proposed Level Shifter

A proposed level shifter with its transient responses are presented in Fig. 5.3. The

level shifter is a part of the proposed driver circuit for charge-transfer transistors.

It is composed of two PMOS transistors Ma1-Ma2 and two small capacitors Ca1-

Ca2. Ca1 and Ca2 are driven with two out-of-phase clock signals CLKC and CLKD,

respectively. The outputs are derived from dr1 and dr2 nodes. If the input is Vin

and the amplitude of clock signals is Vdd, as illustrated in Fig. 5.3(b), the output

voltage of dr1 is between Vin and Vin-Vdd and the output voltage of dr2 is between

Vin-Vdd and Vin. Note that the maximum gate-source, gate-drain and drain-source

voltages of all transistors in the proposed lever shifter are Vdd.

5.2.2 One Stage of the Proposed Charge Pump Circuit

One stage of the proposed charge pump circuit is shown in Fig. 5.4. Note that several

stages can be cascaded. To avoid body effect, only PMOS transistors are used and the

bulks of the PMOS transistors are connected in the way as shown in Fig. 5.4. In is the

input terminator and out is the output terminator. This is a symmetrical structure

including four charge-transfer transistors Mp1-Mp4, a driver circuit including level

shifter and two driving transistors Ma3-Ma4, two small driving capacitors Cd1-Cd2

and two pumping capacitors C1-C2. The driver circuit is used to fully switch on Mp1

and Mp2 and to prevent the charges back to the previous stage. A six-phase clock

including CLKA, CLKB, CLKC, CLKD, CLKE and CLKF has been designed using
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(a) Proposed level shifter.
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Figure 5.3: Proposed level shifter with its transient responses.

a single clock as reference. The clock signals are shown in Fig. 5.5. As shown in this

figure, each signal varies from 0 to Vdd. Clock signals CLKA and CLKB are two

non-overlapped signals with a preset dead time. CLKE and CLKF are also out-of-

phase. CLKC and CLKD are the signals which change their values from Vdd to 0

only during the dead time period between CLKA and CLKB.
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Figure 5.4: One stage of the proposed charge pump circuit.

5.2.3 Operation

The operation of proposed charge pump circuit can be divided into four time intervals.

The states of six clock signals with voltage values of each nodes in the proposed one

stage charge pump circuit are tabulated in Table 5.1. The states of each transistor

during each interval are shown in this table also. According to the table, the maximum

voltage of each transistors is Vdd. Therefore, the overstress is avoided. Actually, T1,

T3 and T2, T4 intervals are opposite of each other. The detailed operations are as

follows.

During the interval T1, as shown in Table 5.1, the source-gate voltage of Mp3 is

Vdd. Therefore, it is fully switched on, the energy stored in C1 is discharged to the

next stage while Mp4 is off. During this interval, Mp2 is on only when CLKE changed

its state to 0. Then, the energy stored in the previous stage is charge to C2 while

Mp1 is off. At the same time, Ma3 is also on, the voltage of dr3 is the same as the

voltage of Net1. Therefore, PMOS Mp1 is fully switched off to prevent charge stored
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Figure 5.5: Clock signals.

in C1 back to the previous stage. On the contrary, during the interval T3, Mp2 and

Mp3 will be switched on.

During the interval T2, CLKC is 0. Therefore, Ma2 and Ma3 are switched on.

Then, nodes Net1 and dr3 have the same voltage Vin. Hence, during the next interval,

when CLKF changed its state to 0, Mp1 can be switched on. On the contrary, during

the interval T4, Ma1 and Ma4 will be switched on.

5.3 Experimental Results

5.3.1 Simulation Results

A four-stage charge pump circuit is presented in Fig. 5.6 as an example to verify the

proposed principle. For the proposed charge pump circuit, there is no limitation on
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Table 5.1: Time intervals.

Intervals

Items T1 Interval T2 Interval T3 Interval T4 Interval

CLKA Vdd 0 0 0

CLKB 0 0 Vdd 0

CLKC Vdd 0 Vdd Vdd

CLKD Vdd Vdd Vdd 0

CLKE Vdd→ 0→Vdd Vdd Vdd Vdd

CLKF Vdd Vdd Vdd→ 0→Vdd Vdd

Net1 Vin+Vdd Vin Vin Vin

dr1 Vin Vin-Vdd Vin Vin

dr3 Vin+Vdd Vin Vin→Vin-Vdd Vin

→Vin

Net2 Vin Vin Vin+Vdd Vin

dr2 Vin Vin Vin Vin-Vdd

dr4 Vin→Vin-Vdd Vin Vin+Vdd Vin

→Vin

ON Trs. Mp2, Mp3, Ma2, Ma3 Mp1, Mp4, Ma1, Ma4

Ma3 Ma4

OFF Trs. Mp1, Mp4, Mp1, Mp2, Mp2, Mp3, Mp1, Mp2,

Ma1, Ma2, Mp3, Mp4, Ma1, Ma2, Mp3, Mp4,

Ma4 Ma1, Ma4 Ma3 Ma2, Ma3
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Figure 5.6: Proposed charge pump circuit by cascading stages.

the number of the cascaded stages. While, for the Dickson architecture, the number

of cascaded stages is limited due to the body effect. As shown in Fig. 5.6, there are

two charge transfer branches, branch A and branch B. The clock signals of these two

branches are intertwined. In addition, clock signals of branches A and B are out-

of-phase. Therefore, branch A and branch B can pump the output voltage to high,

alternately. The N-stage output voltage of the proposed charge pump circuit with
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current load is given by [9]

Vout = (1 + N)V dd − RoutIout, (5.1)

where N is the number of the stages, Rout is the charge pump output resistance and

Iout is the current delivered to the output. Rout is given by

Rout =
N

fCST

coth

(

Ton

γonCp

)

, (5.2)

where f and CST are the operating frequency and the total capacitance in each charge

pump stage, respectively. Ton is the on time of charge transfer switch, γon is the on-

resistance of charge transfer switch and Cp is the pumping capacitor of each stage.

γon can be expressed as

γon =
1

µCox(W/L)Vov

, (5.3)

where symbols W , L, µ and Cox have their usual meanings, and Vov is the overdrive

voltage of charge-transfer transistor.

The Vov of the proposed charge pump circuit is

Vov = V dd − |V thp| − Iout

fCST

, (5.4)

where V thp is the threshold voltage of PMOS.

The Vov of the Racape’s circuit [8] is

Vov = V dd − 2|V thp| − Iout

fCST

. (5.5)

As shown in Eqs. (5.4) and (5.5), the Vov of Racape’s circuit is smaller than that of

the proposed circuit. Therefore, the equivalent on-resistance of the proposed circuit

is smaller than that of Racape’s circuit and the Vout of the proposed circuit is larger

than that of Racape’s circuit.

The proposed charge pump circuit in Fig. 5.6 and the Racape’s circuit [8] are

designed in a standard 0.35 µm CMOS N-well process for comparison. The operating

frequency is preset to 1 MHz. The total pumping capacitor of each stage is 20 pF.
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Figure 5.7: Simulated Vout of the proposed circuit, Racape’s circuit [8] and Dickson
circuit with Vdd=1.65 V and different load in an ideal case.

The simulated output voltages of the proposed charge pump circuit, Racape’s

circuit [8] and Dickson charge pump circuit with different output currents are shown

in Fig. 5.7. Vdd is 1.65 V. All the simulations are in an ideal case that parasitic

capacitors are not included. For fair comparison, the pumping capacitors and charge-

transfer transistors in Dickson circuit are designed two times larger than the devices

in the proposed circuit and Racape’s circuit. As shown in Fig. 5.7, the output voltages

of the proposed charge pump circuit with different output currents are much higher

that those of Racape’s circuit and Dickson charge pump circuit. Especially, with

a higher output current of 150 µA, the proposed charge pump circuit still has the

best pumping performance because that the MOSFETs in the proposed charge pump

circuit are fully switched on or switched off. Since the proposed charge pump circuit

has two pumping branches, the degradation of the output voltage is smaller while the

output current increases. The output voltages of the proposed circuit are larger than
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Figure 5.8: Simulated Vout of the proposed circuit with different Vdd.

those of the Racape’s circuit especially when the load current increases due to the

smaller on-resistance.

The simulated output voltage of the proposed charge pump circuit with different

Vdd are compared in Fig. 5.8. The ideal results are shown in the upper curve and the

simulation results are shown in the lower curve. All the simulations are in the ideal

case. As shown in Fig. 5.8, the voltage pumping efficiency can reach as high as 95%

with different Vdd.

5.3.2 Comparison with Reported Charge Pump Circuits

The summary of comparison with Dickson’s charge pump circuit and Racape’s circuit

is tabulated in Table 5.2. According to the table, the maximum Vdd of the proposed

charge pump circuit is twice of that in Dickson’s circuit. The pumping efficiency of

the proposed circuit in ideal case is 96% compared with 55.8% of Dickson’s circuit

and 93% of Racape’s circuit. The pumping efficiency of the proposed circuit in ideal
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Table 5.2: Comparison with reported charge pump circuits.

This work Dickson [1] Racape [8]

Technology 0.35 µm CMOS

Vthp= -0.65 V
Vth

Vthn= +0.50 V

Max. Vdd 3.3 V 1.65 V 3.3 V

Min. Vdd |Vthp|(1 + Cpar†

Cd1

) - 2|Vthp|(1 + Cpar

Cd1

)

Eff. @ 0 µA 96% 55.8% 93%

Eff. @ 50 µA 80.6% 24.6% 66.7%

†Note: Total parasitic capacitance at nodes dr3 or dr4.

case with 50 µA load is 80.6% compared with 24.6% of Dickson’s circuit and 66.7%

of Racape’s circuit. The minimum Vdd of the proposed circuit is the half of that

in Racape’s circuit. The proposed circuit has very high voltage pumping because

that the charge-transfer transistors can be fully switched on and switched off. The

difference of efficiency increased when the same load is added due to the two branches

architecture of the proposed charge pump circuit.

5.3.3 Silicon Verification

To validate the proposed circuit, the 4-stage circuit has been fabricated in a standard

0.35 µm CMOS process. The die photograph is presented in Fig. 5.9. The proposed

energy management circuit occupies a chip area of 500×1200µm2 without PADs.

The measured output voltages of the proposed charge pump circuit without load

and with different Vdd are shown in Fig. 5.10. From this figure, the calculated voltage

pumping efficiency reachs as high as 84% with 2 V Vdd. The output voltages are

limited by the breakdown voltages of the parasitic pn-junctions when the input voltage

is larger than 2.5 V [5].
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Figure 5.9: Chip die photograph.
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Figure 5.10: Measured Vout of the proposed circuit without load and with different
Vdd.
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Figure 5.11: Measured Vout of the proposed circuit with Vdd=3.3 V and different
loads.
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Figure 5.12: Measured Vout of the proposed two-stage, three-stage, and four-stage
circuit with Vdd=2.0 V and different loads.
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Figure 5.13: Parasitic capacitors in the proposed charge pump circuit.

The measured output voltages of the proposed charge pump circuit with Vdd=3.3

V and different loads are shown in Fig. 5.11. The measured output voltages of the

proposed two-stage, three-stage, and four-stage charge pump circuit with Vdd=2.0 V

and different loads are presented in Fig. 5.12.

5.3.4 Discussions

As shown in the simulation results and measurement results, the measured output

voltages are little lower than the simulation output voltages because of the parasitic

capacitor of each stages as shown in Fig. 5.13. In real circuit, the parasitic capacitor

Cp is taken into account by reducing the clock signals because a voltage divider is

formed by C1 and Cp. In the ideal case, the voltage step of each stage between input

terminal and output terminal is V dd. However, in the real circuit the voltage step

of each stage becomes V dd C
C+Cp

due to the voltage divider. Therefore, the measure
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output voltages are little lower than the simulation results. The parasitic capacitance

is caused by process, bonding wires and the package. Besides, as shown in Fig. 5.10

and Fig. 5.11, the maximum output voltage of the proposed circuit is limited by the

breakdown voltage between N-well and P-substrate [5].

5.4 Conclusions

A high efficiency all PMOS charge pump circuit without high-voltage overstress is

proposed in this chapter. The proposed driver circuit with six-phase clock generator

can reduce the equivalent on-resistance of charge-transfer transistors. Moreover, the

driver circuit can completely switch on the charge-transfer transistors and can prevent

charge back to the previous stage. In addition, the body effect is eliminated due to

the proposed two pumping branches architecture. Therefore, its voltage pumping

efficiency is much higher than that of the conventional charge pump circuits.

The measured results confirmed that the proposed charge pump circuit has a high

pumping efficiency without overstress and the proposed charge pump circuit can be

realized in any low-voltage single-well standard CMOS technologies.
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Chapter 6

CONCLUSIONS AND FUTURE WORKS

In this dissertation, several low-power design techniques and power management

circuits for ubiquitous device are proposed, which are summarized as follows.

6.1 Summary of Low-Power Design Techniques

Threshold voltage of a MOSFET can be reduced electrically by using forward biased

body-effect which helps in reducing the supply voltage and power dissipation. In ad-

dition, the temperature characteristic can be modified by body-effect. The proposed

reference can operate at a supply voltage down to 0.95 V in a standard CMOS 0.35

µm technology with threshold voltages of about 0.5 V and -0.65 V for n-channel and

p-channel MOSFETs, respectively. The minimum power dissipation is 1.1 µW and

the supply voltage dependence is -0.36 mV/V (Vdd=0.95∼3.3 V). No particular ana-

log process options are required. This circuit with a simple architecture is suitable

for low-voltage micro-power electronic applications.

A continuous-time phase frequency detector (PFD) based on conventional tri-state

PFD is proposed for fast lock charge pump phase-locked loops (CPPLLs). When the

PLL is in out of lock state and the phase difference is large, the continuous-time circuit

is activated. More current will be injected into the loop filter, therefore, the locking

time is reduced. When the PLL is in near locking state, only the conventional PFD

exists to realize the fine tuning. Therefore, the proposed architecture can achieve

fast lock without extra power dissipation. Any conventional tri-state PFDs can be

improved with the proposed continuous-time architecture. The simulation results

demonstrate that the proposed continuous-time PFD is effective to reduce the locking
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time without extra power dissipation.

6.2 Summary of Power Management Circuits

An energy management circuit for efficiently managing the scavenged ambient energy

has been proposed for ubiquitous sensor modules using vibration-based energy gen-

eration. The implementation of the proposed circuit with a standard CMOS process

is presented and further validated by experimental results. The energy management

circuit can avoid the long start-up time problem and can improve the level of integra-

tion. Based on our experimental results, the proposed energy management circuit can

be used as a battery for any ubiquitous sensor modules using different ambient ener-

gies. The proposed energy management circuit is effective in managing the scavenged

ambient energy and maximizing the potential applicability of the sensor module.

A high efficiency all PMOS charge pump circuit without high-voltage overstress

is proposed in this paper. The proposed driver circuit with six-phase clock generator

can reduce the equivalent on-resistance of charge-transfer transistors. Moreover, the

driver circuit can completely switch on the charge-transfer transistors and can prevent

charge back to the previous stage. In addition, the body effect is eliminated due to

the proposed two pumping branches architecture. Therefore, its voltage pumping

efficiency is much higher than that of the conventional charge pump circuits. The

measured results confirmed that the proposed charge pump circuit has a high pumping

efficiency without overstress and the proposed charge pump circuit can be realized in

any low-voltage single-well standard CMOS technologies.

6.3 Future Research Works

For the low-power voltage reference design, the future works should focus on how to

improve the output initial accuracy performance of reference voltage due to the large

deviation of threshold voltage of MOSFET, the MOSFET layout mismatching, the

absolute value deviation of resistor, and the offset voltage of amplifier. At the same
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time the noise of the voltage reference should be considered especially for implantable

medical device application.

For the PLL design, the future works may focus on the jitter and power reduction

of voltage control oscillator (VCO) because the VCO is the key cell cell in PLL design

and the noise performance of VCO determines the overall PLL noise performance.

For the power manager circuit design, the future works may focus on how to

increase efficiency of the whole system.

For the charge pump circuit design, the future works may focus on how to reduce

the complexity of drive circuit and chip size.
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