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Abstract

Estimation of Distribution Algorithm (EDA) is one of the most important branches
in Evolutionary Computation (EC). Different from the conventional Evolutionary
Algorithms (EAs) which use stochastic ways to simulate the biological genetic oper-
ators, i.e., crossover and mutation, for new population generation, EDA constructs
a probabilistic model using the techniques of statistics and machine learning to esti-
mate the probability distribution of the current population, and samples the model
to generate the new population. By explicitly estimating and recombining the good
partial solutions of the population, EDA has been successfully proven to outper-
form conventional EAs by avoding the premature convergence and speeding up the
evolution process in many problems.

The primary objective of this thesis is to propose a novel paradigm of EDA
named Probabilistic Model Building Genetic Network Programming (PMBGNP),
where the directed graph structure of a novel graph-based EA called Genetic Net-
work Programming (GNP) is used to represent its individuals. Different from most
of the current EDAs proposed in string structure based Genetic Algorithm (GA) and
tree structure based Genetic Programming (GP), the distinguished graph structure
allows PMBGNP to ensure higher expression ability. As a result, a sort of problems
can be explored and solved efficiently and effectively comparing with the conven-
tional research in EDA literature.

To achieve this objective, contributions of this thesis are presented on the fol-
lowing two aspects: algorithm part and application part.

From the perspective of algorithm part, first, the thesis proposes the high-level
PMBGNP to use Maximum Likelihood Estimation (MLE) to model the probability
distribution of the promising individuals. PMBGNP is empirically studied to show
the capability of speeding up the evolution efficiency by the estimation of probabil-
ity distribution. Second, the thesis addresses the issue of population diversity loss
by theoretical comparison with classical EDAs, and proposes a hybrid algorithm to
maintain the population diversity of PMBGNP. Third, the integration of PMBGNP
and Reinforcement Learning (RL) is studied. Inspired by behaviorist psychology,
RL concerns with reinforcing the growth of the individuals by learning their expe-
riences. The learning knowledge formulated by Q values can be approximated and
incorporated into the probabilistic modeling of PMBGNP to improve the perfor-
mance by constructing a more accurate model. Finally, PMBGNP is extended from
discrete optimization problems to continuous optimization problems.

From the viewpoint of application part, most of the current studies in EDA are
carried out in the benchmark problems of GA and GP, such as function optimization
and symbolic regression. Therefore, to accomplish one of the essential challenges of
EDA for novel applications, the thesis applies PMBGNP to two novel applications
of EDA, including data mining and the problems of controlling the agents’ behavior.
By comparing with the other state-of-the-art algorithms, PMBGNP is testified to
be capable of achieving better performances.
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1.1 Background

In real-worlds, various problems can be classified into the group of optimization
problems. Researchers in Computer Science or related fields have focused on solv-
ing the optimization problems by proposing numerous methods. Along with the
methods derived from the classical techniques of operational research or mathe-
matics which requires much prior knowledge to build the mathematical models of
problems, Evolutionary Computation (EC) provides an alternative direction to solve
the optimization problems. The class of algorithms from EC is generally called Evo-
lutionary Algorithms (EA or EAs).

Inspired by Darwin’s theory of natural evolution, EAs use iterative progress
to evolve a population of candidate solutions from the entire search space. The
population is evolved by the analog of natural selection and random variation derived
from biological evolution. Based on this concept, the population of EAs is evolved
towards more promising region of the search space which implies that the qualities
of solutions become better and better.

In general, the candidate solutions of the optimization problems are formulat-
ed by the individuals of EAs. In each iteration (generally called generation), a
population of candidate individuals is subject to evolution by means of three main
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biological evolution mechanisms, including selection, crossover and mutation. Se-
lection imposes the concept of "Survival-of-the-fittest" on the population to select
fitter individuals. Crossover imitates the concept of "Marriage" to generate better
offsprings by the gene swap of selected parents. Mutation changes a single individ-
ual by perturbing parts of its genes. Selection mainly acts as a force to improve the
quality of the current population to the next population by duplicating the fitter
individuals. Crossover and mutation simulate the genetic recombination to gener-
ate novel sets of individuals with higher quality by exploring the search space and
inserting the necessary diversity. The evolution process is executed iteratively until
the optimal or near optimal solutions are found.

Comparing with the classical methods of operational research and mathematics
which require much knowledge on the modeling of the problems, and the classical
deterministic methods in which the same solution is always obtained under the same
conditions causing the local convergence, EAs show the advantages of simplicity of
implementation and flexibility of different problems. Most importantly, EAs are
essentially suitable for solving the problems that the optimal solution is hardly
found in acceptable execution time. This means that although they do not ensure
finding the global optimum (neither the classical optimization methods), EAs can
obtain quite attractive and acceptable solutions near to the optimum in acceptable
execution without mathematical modeling of the problems. As a result, EC has
been attracted much attention by researchers to propose numerous EAs in the past
several years.

1.1.1 Conventional Evolutionary Algorithms (EAs)

There have been several well-known EAs proposed in the past several years, such
as Genetic Algorithm (GA) [Holand 1975, Goldberg 1989a], Evolution Strategy
(ES) [Beyer 2002], Evolutionary Programming (EP) [Fogel 1994] and Genetic
Programming (GP) [Koza 1992, Koza 1994]. The main difference among these
algorithms relies on the representation of individual structures. GA encodes its
individual by a sequence of bit-strings, ES individuals are coded as vectors of real
numbers, EP represents its individuals by Finite State Machines (FSMs) and GP
uses tree structures to represent its individuals. Despite such a main difference,
these EAs share the same feature that they are population-based metaheuristic
optimization algorithms inspired by Darwin’s evolution theory.

A) Basic flowchart of EAs
All EAs are carried out in principle based on the flowchart illustrated in Fig.

1.1, including the following 5 steps.

1. Initialize population: A population of candidate solutions (individuals) is gen-
erated randomly.

2. Fitness evaluation: A problem specific fitness function (user-defined objective
function) is imposed to calculate the fitness value of each individual.
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Figure 1.1: Flowchart of EAs.

3. Selection: Based on the results of fitness evaluation, selection strategies are
applied to select fitter individuals for the generation of the new population.

4. Genetic operators: After the selection process, genetic operators, such as
crossover and/or mutation, are imitated to generate offspring by exploring
the search space of the selected individuals.

5. Terminal conditions: If the terminal conditions are satisfied, the evolution will
end. Otherwise, evolution continues to step 2. The terminal conditions are
generally user-defined, where the typical ones include whether the optimum
(or acceptable near optimum) is found, or whether the maximal number of
generations is reached.

An execution from step 2 to 5 is generally called one generation, where EAs
gradually find better individuals through natural evolution generation by generation.

B) Applications of EAs
In principle, EAs are designed to solve the optimization problems. The applica-

tion domains of different classical EAs are generally different due to the character-
istics of their individual representations.

In the brief expression, GA is mainly applied to solve the function optimization
problems. Similarly, ES is also used to solve function optimization problems, but
with continuous domain of the search space. Both of them use string structures to
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represent the search/problem space. Despite many benchmark functions introduced
and studied in GA and ES, numerous real-world applications could be expanded
in these fields. To name a few, these include scheduling problems, parameter op-
timization, data mining, financial engineering, bioinformatics, evolvable hardware,
etc.

GP is another one of the most important EAs. As the name implies, the fun-
damental basis of GP making it unique from GA is that GP is primarily used to
evolve a population of computer programs which are formulated by tree structures.
In other words, it is mainly designed as an automatic programming tool for problem
solving. More importantly, such tree structures provide more complex ways to rep-
resent solutions, which explores EAs to solve a large class of problems different from
the ones of GA. The tree structure is actually very close to the natural structures
of programs and algorithms, and it can represent various computer elements, such
as decision trees, rules and mathematical equations. As a result, GP has been suc-
cessfully applied to solve many problems, including symbolic regression, electrical
circuit design, data mining, classification, financial engineering, image processing,
game playing, intelligent agent control and robotics, etc. Moreover, GP has been
testified to automatically produce results which equal to or even better than those
produced by humans through numerous human-competitive competitions.

EP is another important variant of EAs, however, which has been merged into
the other EAs by the recent research due to the similarities in both algorithms and
applications. In the previous research, EP has been successfully applied to solve
the problems of ES and GP using its own encoding manners.

C) Problems of EAs
As discussed before, the analogs of natural evolution in classical EAs are the ones

called genetic operators, including crossover and mutation. Crossover and mutation
play the fundamental roles to guide the evolutionary search to optimal solutions.
Although the evolution is carried out with bias which means that crossover and
mutation are mainly applied to explore the search space towards the promising
individuals, these genetic operators actually are the variants of the stochastic search.
In other words, although classical EAs reproduce and combine the high-quality
partial solutions to form new solutions, the process is generally achieved implicitly
through problem-independent, stochastic and fixed crossover and mutation.

The previous research has stated that Building Block Hypothesis (BBH)
[Holand 1975] provides the fundamental basis that makes the stochastic heuristic
search of GA succeed in solving optimization problems.

Definition 1 (Building Block Hypothesis, BBH) GA is capable of performing
adaptation to seek near optimal performance by identifying and recombining the
Building Blocks (BBs).

Definition 2 (Building Blocks, BBs) BBs are the short, low-order, low
defining-length partial solutions (also called schemata) with fitness higher than the
average fitness. In short, BBs are the high-quality partial solutions.
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Figure 1.2: Example of crossover and mutation in GA.

In other words, GA is capable of identifying the BBs and effectively combin-
ing them to produce better solutions through genetic operators, such as crossover.
Although BBH is a hypothesis, various studies have addressed that it provides the
direction of understanding the success of GA when applied to practical problems in
certain degrees. Such theoretical foundation is later explored to the whole EC field
for the descriptions of the other EAs.

However, the main control mechanisms to enforce the evolution performance are
the two parameters called crossover rate Pc and mutation rate Pm. As an instance
shown in Fig. 1.2, in the commonly used genetic operators of GA called unifor-
m crossover and mutation, each gene/allele of GA individuals is selected as the
crossover and mutation points with the predefined probabilities Pc and Pm, respec-
tively. This means that after selecting the parents from the current population (this
process enforces the search with bias towards the fitter individuals), the evolution is
basically carried out by randomly selecting some genes of parents to swap or change.
It is generally hard to find the appropriate parameters for all problems, which means
that the parameters are problem-dependent. Too small Pc and Pm may cause the
low evolution efficiency and genetic drift, while too large Pc and Pm may lead to
the premature convergence and the loss of good solutions, respectively.

Such conventional methods have both advantages and disadvantages. First,
they show the advantage of simplicity of implementation. Meantime, because the
stochastic genetic operators will always reach different final solutions under different
trials, the local convergence of classical deterministic methods will be reduced in
certain degrees. However, one can easily observe that such kinds of stochastic ways
have risks for breaking down the BBs which cause the low evolution efficiency or
even make the problems unsolvable.
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1.1.2 Estimation of Distribution Algorithm (EDA)

To improve the performance by overcoming the above problems, researchers have
developed many improvements by following different directions. Among them,
one of the most famous topics is called Linkage-Learning (LL) [Goldberg 1989b,
Harik 1997]. In LL, the algorithms aim to learn the gene structures by grouping
the subset of genes which are dependent with each other. By explicitly grouping
and identifying these dependent genes, the BBs can be efficiently preserved and
recombined in certain degrees.

Another approach aiming to incorporating the BBs explicitly is called Esti-
mation of Distribution Algorithm (EDA) [Larrañaga 2002]. EDA is a variant of
EAs that guide the search towards the optimal solutions by building and sampling
explicit probabilistic models of promising candidate solutions. In other words, EDA
stores the linkage information into the probabilistic models to form the BBs, and as
a result, the BBs can be explicitly recombined through sampling the probabilistic
models. The fundamental basis of EDA is that it estimates the probabilistic models
from the promising solutions, and the models are used to replace the conventional
genetic operators, such as crossover and mutation, for the generation of the new
solutions. As a result, the control parameters such as Pc and Pm are neglected
which lead to the simplicity of the parameter tuning. More importantly, the
problem of designing EDA relies on the methods of probabilistic modeling, where
estimating the probability distribution from the promising solutions is carried
out by the techniques of statistic and machine learning. From the perspective of
machine learning, the selected promising solutions can be viewed as a set of samples
to be learnt. As a result, it is easy to apply the machine learning techniques to the
probabilistic modeling of EDA. To some extent, EDA actually builds the bridge
between EC and machine learning.

A) Basic flowchart of EDA
The detailed flowchart of EDA is shown in Fig. 1.3.
Despite the other steps, the generation of the new population in EDA is dif-

ferent from that of conventional EAs. EDA estimates the distribution of selected
individuals for the probabilistic model construction, and the model is sampled to
generate the new population. Consequently, the conventional genetic operators,
such as crossover and mutation, are replaced.

Definition 3 (Truncation selection) In truncation selection, the individuals of
the population are ordered by fitness, while the top N (user-defined integer) individ-
uals are selected.

In most EDAs, the selection strategy is truncation selection [Mühlenbein 1996].
As a result, the probabilistic model represents the probability distribution (proba-
bility density in the case of continuous domains) of the promising individuals.

B) Brief introduction of EDA: a case study
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Figure 1.3: Flowchart of EDA.

To make an intuitive explanation of EDA, one of the most earliest EDAs: Uni-
variate Marginal Distribution Algorithm (UMDA) [Mühlenbein 1996] is taken as an
example.

In UMDA, the individuals are represented by GA’s bit-string structure. In the
chromosome of individuals, different genes are assumed to have no relationship. As a
result, each gene consists of two probability vectors, Pi(0) and Pi(1), corresponding
to the probabilities that the value of gene i is 0 or 1, respectively, where condition
Pi(0) + Pi(1) = 1 is maintained.

In the example of Fig. 1.4, the problem to be solved is a benchmark function
named OneMax problem, where the objective is to find the optimal solution which
can maximize the following fitness function:

f(X) =

n∑
i=1

xi, (1.1)

where,
n: the number of genes in GA.
X: chromosome of GA;
xi ∈ {0, 1}: value of gene i of chromosome X.

As a result, X can be represented by the formula X = {xi|i = 1, 2, ..., n}.
The number of genes is set at 5, and the population size is 4. As a result,

the optimal chromosome is "11111" with the fitness value of f = 5. The initial
population Pop(0) is generated randomly (which is equivalent to P (0) = P (1) =
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Figure 1.4: Example of UMDA. (Problem: OneMax; Fitness function: f(X) =∑n−1
i=0 Xi; Selection strategy: truncation)

0.5 for all genes). After the fitness evaluation, truncation selection is applied to
select the best 2 individuals. Then, Maximum Likelihood Estimation (MLE) is
applied to count the frequencies of 0 and 1 over all genes of the best individuals.
These frequencies constitute the probabilistic model of UMDA. The mathematical
expression of UMDA can be written as follows:

Pi(1) =

N∑
x=1

xi

N
, (1.2)

where,
N : the number of best individuals (truncation selection size).

Accordingly, Pi(0) can be calculated by 1− Pi(1). Since the probability vectors
are calculated by only considering the frequencies of genes from the best individuals,
the probabilistic model can be thought as a representative which can express the
features of the best individuals to bias the search of evolution. The next population
Pop(1) is generated by sampling the probabilistic model. This process is repeatedly
executed until the terminal conditions. The evolution of UMDA is clearly shown
in Fig. 1.4 where better population can be generated by learning and sampling the
probabilistic model.

UMDA is one of the simplest EDAs, however, which has been proven to provide
competitive, or even better results than GA in various problems. Similar versions
of UMDA include Population-based Incremental Learning (PBIL) [Baluja 1994]
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(a) Univariate model (b) Pairwise model (c) Multivariate model

Figure 1.5: The examples of probabilistic models in EDA classified by different de-
pendencies of variables (Univariate model: UMDA; Pairwise model: MIMIC; Mul-
tivariate model: BOA). The nodes in the graphical models represent the variables,
where the connections denote the interactions between the variables.

and Compact GA (CGA) [Harik 1999].

C) Classification of EDA
Since the proposal of EDA, it has received much attention in the last decade,

where many algorithms have been proposed to draw its success. There are many
ways to classify the existing EDAs, such as dependency of variables (model com-
plexity), individual representation, problem domains and application aspects.

From the perspective of dependency of variables (model complexity), EDA can
mainly be classified into three classes: univariate model, pairwise model and multi-
variate model.

1. Univariate model : The idea of EDA was first introduced in binary GA. In the
earliest algorithms so called univariate model-based EDAs, different genes are
assumed to have no relationship and each genes consists of two probability
vectors, P (0) and P (1), corresponding to the probabilities that the value of
this gene is 0 or 1. The representatives of univariate model-based EDAs include
PBIL, UMDA and CGA, etc. Later, some researchers extended it from GA’s
bit-string structure to GP’s tree structure to propose a GP version called
Probabilistic Incremental Program Evolution (PIPE) [Salustowicz 1997].

The univariate model-based EDAs have been proven to work fairly well for
linear problems and some sorts of real-world applications. However, for many
problems where the variables are strongly related (interact with each other),
the univariate model generally fails due to the fact violating its assumption of
no interactions between variables.

2. Pairwise model : Later studies extend EDA to pairwise model. In pairwise
model, the genes are assumed to have pairwise interactions, which means that
the probabilistic model can represent not only the BBs of order one (single
gene) but also the BBs with order two (two genes). In other words, the
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pairwise model consists of marginal probabilities and conditional probabilities
to cover the genes without and with pairwise interactions. Pairwise model is
more complex than univariate model, but it can model more complex BBs.

The classical pairwise model-based EDAs include Mutual Information Max-
imization for Input Clustering (MIMIC) [Bonet 1997], Combining Optimiz-
ers with Mutual Information Trees (COMIT) [Baluja 1997] and Estimation
of Distribution Programming (EDP) [Yanai 2003], etc. The current studies
investigate that the pairwise model can outperform the univariate model in
quadratic problems, however, estimating the distribution also costs more time
due to its complexity.

3. Multivariate model : Naturally, recent studies care more on extending EDA
to cover multivariate interactions. In that sense, the BBs with any order are
to be identified, however, which is not an easy task. The key point of the
multivariate model is to identify and group multiple variables which are relat-
ed with each other. To achieve this task, researchers have proposed various
algorithms by integrating machine learning techniques.

In Extended CGA (ECGA) [Harik 2006], the probabilistic model is represent-
ed by multiple marginal distributions corresponding to the BBs. The variables
are first considered independent, and each variable corresponds to a marginal
probability. During evolution, the variables are merged as much as possible
by using a measure called Minimum Description Length (MDL). As a result,
the variables are grouped into various disjoint sets, where the variables of the
same set are considered to be interacted with each other. Since there is no
restriction for the size of the disjoint sets, ECGA is capable of representing the
BBs with any order. However, since each variable can be only grouped into
one set, ECGA cannot solve the problems where the variables of different BBs
are overlapped (overlapping BBs). Factorized Distribution Algorithm (FDA)
[Mühlenbein 1999b] predefines a probabilistic model based on the factorized
distribution given by the problem, where it learns the parameters of the model
during evolution to model the multivariate interactions. However, the required
factorized distribution is generally unknown in real-world problems. As a re-
sult, FDA is mainly applied to solve some theoretical problems, such as addi-
tively deceptive functions. A wide study on EDA is to apply Bayesian network
to capture the multivariate interactions among variables. The representatives
include Bayesian Optimization Algorithm (BOA) [Pelikan 2002a], Estimation
of Bayesian Network Algorithm (EBNA) [Etxeberria 1999] and Learning F-
DA (LFDA) [Mühlenbein 1999a]. In these EDAs, Bayesian network is used
to represent the probabilistic model, in which the connections between the
variables denoted by the nodes of Bayesian network actually represent the
corresponding multivariate interactions. Bayesian network is generally con-
structed through learning the promising individuals obtained by truncation
selection, and used to sample the new population. However, the construction
of the Bayesian network itself in every generation is actually an optimization
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problem. As a result, even the greedy algorithms are generally employed to
construct the Bayesian network, this process is still quite time consuming.

Obviously, modeling the BBs with higher order can represent the real probability
distribution of problems more accurately than the simpler models, however, which
requires to pay the price for the exponential increase of computation time.

From the perspective of individual representation, the existing EDAs can main-
ly be classified into two classes: Probabilistic Model Building Genetic Algorithm
(PMBGA) [Pelikan 2002b] and Probabilistic Model Building Genetic Programming
(PMBGP) [Shan 2006].

The class of EDAs using GA’s bit-string structure for individual representation
is generally called PMBGA. Most of the existing EDAs introduced above belong
to this class. After the proposal of EDA using GA’s bit-string structure, some
work extended EDA to tree structure GP to propose a new research topic called
PMBGP. As the name implies, PMBGP mainly focuses on learning the tree struc-
ture of GP to model the probability distribution and use it for sampling the new
population. Extending EDA from the string structure to tree structure provides a
more complex way to represent solutions, which explores it to solve a large class of
problems, such as program evolution. Divided by model complexity, the existing
PMBGPs include univariate model-based PIPE, pairwise model-based EDP, mul-
tivariate model-based Extended Compact GP (ECGP) [Sastry 2003] and Program
Optimization with Linkage Estimation (POLE) [Hasegawa 2008], which identify and
recombine the BBs with different orders in the tree structure of GP.

The class of the above PMBGPs is also called prototype tree-based PMBGP,
which directly extends EDA to standard GP for learning its tree structure. There
is another class of PMBGPs that applies EDA to Grammar guided GP (GGGP)
[Whigham 1995, McKay 2010] named grammar model-based PMBGP [Shan 2004,
Shan 2006]. Another work called N-gram GP [Poli 2008b] explores PMBGP to
linear GP.

Considering the classification of EDA by problem domains, the EDAs mentioned
above are generally used for the problems of discrete domains, which can be broadly
called discrete EDA. Another wide range of EDAs extends the existing discrete
EDAs to solve problems of continuous domains, which we called continuous EDA
[Larrañaga 1999, Bosman 2006].

From the application aspects, most of the classical EDAs are studied to clarify
their performances in the benchmark problems of GA and GP, i.e., function opti-
mization problems by PMBGAs, symbolic regression and Royal trees problems by
PMBGPs. Apart from these, various EDAs and their extensions have also been suc-
cessfully applied to a sort of applications, such as dynamic problems [Yang 2008],
bioinformatics [Santana 2008a], multiobjective optimization problems [Zhang 2008]
and reinforcement learning problems [Handa 2009], etc.
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1.2 Research objective

The primary objective of this thesis is to propose a novel paradigm of EDA named
Probabilistic Model Building Genetic Network Programming (PMBGNP), where
the directed graph structure of a novel graph-based EA called Genetic Network
Programming (GNP) [Hirasawa 2001, Mabu 2007b] is used to represent its individ-
uals. Different from most of the current EDAs belonging to PMBGA and PMBGP,
the distinguished graph structure allows PMBGNP to ensure higher expression a-
bility, where a large number of problems can be explored and solved efficiently and
effectively comparing with the conventional research in EDA literature.

In other words, the study of this thesis is mainly to fulfill the following two
challenges of EDA:

1. In most of the current bit-string, tree structures-based EDAs, the abilities
of representing solutions and the evolution are not enough in terms of the
system modeling. Meantime, there is little work on extending EDA to the
graph structure based EAs, which have higher expression abilities than that
of GA and GP.

2. Due to the restrictions of bit-string and tree structures, most of the current
EDAs are carried out in the benchmark problems of GA and GP, where one
of the essential challenges in EDA is to explore it to various other problems.

This thesis proposes the graph-based EDA: PMBGNP, which extends the bit-
string structure based PMBGA and tree structure based PMBGP to a directed graph
structure. Due to the characteristics of its graph-based individual representation,
PMBGNP is applied to solve the novel problems of EDA, including data mining and
the problems of controlling the agents’ behavior. Moreover, another advantage of
PMBGNP by combining EDA and GNP is that, it is capable of not just estimating
the probabilities of the connections of nodes, but also the contents of the nodes
to evolve the optimal directed graph structures, while the conventional EDAs only
estimate the probabilities of the contents of genes/nodes.

During this study, various extensions of PMBGNP are proposed to improve its
performance based on different sights.

1.3 Organization of the thesis

Besides the first chapter introducing the background of this thesis, the rest of the
thesis is divided into six chapters.

1.3.1 Chapter 2: Probabilistic Model Building Genetic Network
Programming (PMBGNP)

Chapter 2 describes the algorithm of PMBGNP in details, where the individual
representation, probabilistic modeling and methods of sampling the new population
are introduced.
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To verify its performance, PMBGNP is applied to solve the data mining prob-
lems, including the time series traffic dataset and the UCI benchmark datasets. The
superiority of PMBGNP is cleared by comparing it with the conventional EAs and
classical data mining methods.

1.3.2 Chapter 3: Hybrid PMBGNP

Chapter 3 addresses the issue of population diversity loss in the topic of PMBGNP
by theoretical comparison with classical EDAs, including PMBGA and PMBGP. As
a result, a hybrid algorithm is proposed in PMBGNP to maintain its population
diversity.

In this chapter, PMBGNP is applied to solve a problem of controlling the agents’
behavior, i.e., robot control. The effectiveness of hybrid PMBGNP and its theoret-
ical ability to maintain the population diversity are testified through the empirical
studies.

1.3.3 Chapter 4: PMBGNP using both of good and bad individu-
als

Chapter 4 and chapter 5 focus on proposing a new framework of PMBGNP: studying
on the integration of PMBGNP and Reinforcement Learning (RL).

Classical EDAs including PMBGNP generally use truncation selection to es-
timate the distribution of the promising individuals while ignoring the bad ones.
However, various studies in conventional EAs have reported that the bad individu-
als may affect and help the problem solving. In chapter 4, an extended PMBGNP
is proposed to accelerate the evolution of PMBGNP by extracting the good sub-
structures from the bad individuals. This target is achieved by designing a RL tech-
nique to learn the experiences of individuals. The learning knowledge is formulated
by Q values, which can measure the quality of the sub-structures of PMBGNP. By
incorporating the learnt Q values, the good sub-structures from the bad individuals
can be extracted and combined into the probabilistic modeling of PMBGNP.

1.3.4 Chapter 5: Reinforced PMBGNP

On the other hand, the algorithm of integrating RL can be used from the other sights
of EDA. In most of the advanced EDAs, the complex machine learning techniques
are used, such as Bayesian network and Markov/Conditional random fields, but they
are very time consuming for constructing the probabilistic model. There is limited
work on studying the other machine learning techniques to boost the performance of
EDA, such as RL. This chapter proposes an algorithm named Reinforced PMBGNP
to incorporate the learning knowledge, i.e., Q values, into the probabilistic modeling
of PMBGNP to construct a more accurate model.
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1.3.5 Chapter 6: Continuous PMBGNP

PMBGNP and its variants mentioned above are all used for solving the discrete
optimization problems. Therefore, they cannot deal with (or directly handle) con-
tinuous variables. In this chapter, a continuous PMBGNP algorithm is proposed to
directly optimize the continuous variables.

To achieve this task, the continuous variables are represented by Gaussian dis-
tribution, where the parameters, such as mean value µ and standard deviation σ,
are updated by RL techniques. The proposed algorithm is applied to the robot
control, where the experimental results show its superiority over the conventional
algorithms.

1.3.6 Chapter 7: Conclusions

The last chapter concludes the thesis by drawing the unique features of PMBGNPs
and their contributions.

Based on the current studies on PMBGNPs, the future research directions are
finally discussed.
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Probabilistic Model Building
Genetic Network Programming

(PMBGNP)
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2.1 Introduction

In the last few years, there has been a significant development of Estima-
tion of Distribution Algorithm (EDA) in both theory and practice [Baluja 1994,
Mühlenbein 1996, Larrañaga 2002, Zhang 2004]. Different from the conventional
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evolutionary algorithms (EAs) which use stochastic ways to simulate the biologi-
cal genetic operators for new population generation, EDA constructs a probabilistic
model using the techniques of statistics or machine learning to estimate the probabil-
ity distribution of the current population, and samples the model to generate the new
population. Many studies have investigated that EDA can outperform conventional
EAs by avoiding the premature convergence and speeding up the evolution process
in some problems [Pelikan 2002a, Zhang 2005, Santana 2008a, Hasegawa 2008]. A
large number of studies have been conducted on EDA to propose numerous algo-
rithms. Particularly, from the perspective of individual representation, EDA can be
mainly classified into two categories, which are Probabilistic Model Building Genetic
Algorithm (PMBGA, or Genetic Algorithm based EDA) [Pelikan 2002b] and Prob-
abilistic Model Building Genetic Programming (PMBGP, or Genetic Programming
based EDA) [Shan 2006]. PMBGA employs GA’s string structure to represent its
individuals and is mainly applied to solve optimization problems, while PMBGP
uses GP’s tree structure to represent its individuals for program evolution.

In this chapter, a novel graph-based EDA named Probabilistic Model Building
Genetic Network Programming (PMBGNP) [Li 2010a, Li 2010c] is described. The
aim of developing PMBGNP is to extend EDA from the string and tree struc-
tures to the graph structure with higher expression ability, where the directed
graph (network) structure of Genetic Network Programming (GNP) [Hirasawa 2001,
Mabu 2007b] is employed. Some previous studies have shown the superiority of
graph-based EAs in terms of higher expression ability than that of conventional GP
[Hirasawa 2001, Mabu 2007b, Teller 1995, Poli 1996, Miller 2000]. GNP is one of
such graph-based EAs, which extends GA and GP by using a directed graph (net-
work) structure to represent its individuals. Different from the other graph-based
EAs, GNP is firstly designed for solving the problem of controlling the agents’ be-
havior, while in recent years, it has been extended to many other problems, such as
multi-agent systems [Eguchi 2006], data mining [Shimada 2006b], elevator system
control [Hirasawa 2008] and intrusion detection system [Mabu 2011a], etc. Since
PMBGNP uses GNP’s directed graph structure, it ensures higher expression ability
than the conventional EDAs, i.e., PMBGA and PMBGP.

As many other EAs, standard GNP adopts crossover and mutation to generate
the offspring and the major drawback of GNP is the heavy computation required.
In GNP, the interrelations of the BBs are kept implicitly between different nodes in
the individuals of GNP. In other words, the BBs of GNP is represented by the nodes
with connections between each other. Generally speaking, reproducing the BBs is
the principle of GNP for solving problems, which can be explained by the BBH
straightforwardly. However, as the other conventional EAs, crossover and mutation
of GNP sometimes may break the BBs, which causes the problems of premature
convergence and local optimum. This inspires the proposal of PMBGNP, which
integrates the idea of EDA to the framework of GNP.

This chapter starts by describing the directed graph structure of GNP used in
PMBGNP. Section 2.3 describes the probabilistic modeling of PMBGNP in details.
Section 2.4 provides the details of producing the new population by sampling the
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probabilistic model and organizes the detailed procedure of PMBGNP. In section
2.5, PMBGNP is applied to solve the data mining problems, including the time
series traffic dataset and UCI benchmark datasets. Finally, the summary of this
chapter is presented.

2.2 Directed graph (network) structure of PMBGNP

The primary feature of PMBGNP is that it extends EDA from the string and tree
structures to a graph structure, i.e., the directed graph structure of GNP, to rep-
resent its individuals. This section introduces such distinguished directed graph
structure in details.

2.2.1 Basic structure and comparison

PMBGNP uses the directed graph (network) structure of GNP to represent its
individuals. Its basic structure is shown in Fig. 2.1, which can be represented by the
phenotype and genotype expression. Phenotype shows the directed graph structure
in which nodes are connected by directed branches, and genotype demonstrates the
bit-strings encoding of the chromosomes.

Each program (individual) is composed of one start node, multiple judgment
nodes and processing nodes. The start node having no function and conditional
branch is only used to decide the first node to be transited, while the judgment
nodes and processing nodes have some functions depending on the concrete prob-
lem. Judgment nodes work as "if-then" type decision-making functions to judge
the environments by dealing with the specific inputs of the problems, such as the
returned sensor information/values of the agents. Each judgment node has several
conditional branches corresponding to several judgment results, which can be de-
fined flexibly by the problems. Processing nodes preserve the processing functions
to the environments, such as determining the agent’s actions. Each processing node
has no conditional branch, since the processing function only determines the agent’s
actions. By separating judgment and processing functions, the directed graph struc-
ture of GNP can handle various combinations of judgments and processing. That
is, the evolution can efficiently produce the compact programs by only selecting the
necessary judgments and processing.

The number of judgment nodes and processing nodes is predefined by designers
appropriately. Therefore, the directed graph structure of GNP never causes the
bloat problem of GP [Hirasawa 2001]. Such a directed graph structure can perform
quite well by realizing the repetitive processes based on the frequent reuse of nodes,
which works like Automatically Defined Functions in GP. As a result, the directed
graph structure of GNP can generate efficient programs based on both the current
and past information.

In addition to GNP, a class of graph-based EAs has been proposed, such as Paral-
lel Algorithm Discovery and Orchestration (PADO) [Teller 1995], Parallel Distribut-
ed GP (PDGP) [Poli 1996], Cartesian GP (CGP) [Miller 2000] and EP [Fogel 1994].
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Figure 2.1: Directed graph (network) structure of GNP (and PMBGNP).

Each node of PADO consists of two parts: an action and a branching decision,
where the program executes from the start node to the terminal node using stack
and explicit indexed memory. In PDGP, the graph is represented as a fixed-sized, 2-
dimensional grid, and the running of PDGP programs can be seen as a propagation
of the input values from the leaf node to the root node of the graph. Similarly, CGP
defines its graph structure as a 2-dimensional grid of nodes. However, its programs
are represented by linear chromosomes containing integers, while the executions of
the programs are done by the genotype-phenotype mapping from the integers to the
grid. EP uses finite state machines (FSM) to form the Markov Decision Process
(MDP). However, EP is likely to increase its size of structure for complex problems
since all combinations of state and input/output in FSM should be prepared.

There exist fundamental differences between GNP and these graph-based EAs.
Firstly, the program of GNP does not consist of the terminal node, and the node
transitions end when the task is solved. Secondly, different from PDGP and CGP,
where the nodes in the same row or column of the grid are not allowed to be connect-
ed to each other, the nodes of GNP’s directed graph can be connected arbitrarily,
while these node connections are subject to evolution. Thirdly, the nodes of GNP are
only connected by necessity, in other words, by evolution. Moreover, by separating
judgment and processing functions, GNP program can efficiently generate Partially
Observable MDP (POMDP) by selecting only the necessary judgment nodes for the
current state of the problems, rather than the MDP of EP [Eguchi 2006].
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2.2.2 Time delays

In addition to its distinguished directed graph structure, GNP has time delays in
each node and branch. The motivation that introduces time delays in GNP’s direct-
ed graph is to model the agents with human brain that needs the time for thinking
[Eguchi 2006]. Time delays in GNP are designed in three types: time delays spend-
ing on judgment nodes, processing nodes and node transitions. These time delays
are defined by designers in advance depending on the problems. For examples, for
the problems of controlling the agents’ behavior, the time delay of each judgment
node is set at one time unit, that of each processing node is five time units, and
that of each node transition is zero time unit. As a result, the one step of an agent’s
behavior is defined by the number of time units used in time delays. For example,
one step can end when five or more time units are used. That is, the agent can only
do fewer than five judgments and one processing, or five judgments in one step. By
introducing time delays, the directed graph of GNP can efficiently implement flex-
ible programs considering the real-world environments, where agents need to solve
problems in the constrained time. Another advantage of time delays and steps is
to avoid the GNP program to fall into infinite loops [Mabu 2007b]. For example,
if processing cannot be executed because of the judgment loops in one GNP indi-
vidual, the problem cannot be solved by this individual. Since one step ends after
five judgments, this individual causing infinite judgment loops will be automatically
removed from the population by evolution because of useless steps.

2.2.3 Gene structure and notations

As shown in Fig. 2.1, the nodes of GNP’s directed graph are encoded into bit-strings.
Each node has a unique identification number NID unchanged during evolution,
while the functions of the nodes with the same identification number in different
individuals are the same. Let i represent a node number of GNP. NTi defines the
node type, where NTi = 0, 1 or 2 for the start node, judgment node or processing
node, respectively. NFi represents the function, such as judgment and processing
functions. di is the time delay spent on the judgment or processing of node i. Cik

indicates the node connected from node i by its kth branch, and dik represents the
time delay spent on this node transition.

The notations of the directed graph of GNP used in the remaining part of this
chapter is as follows:
NJ : set of suffixes of judgment nodes in one individual.
NP : set of suffixes of processing nodes in one individual.
Nnode: set of suffixes of nodes in one individual
B(i): set of suffixes of branches in node i. |B(i)| = 1 in both start node and process-

ing nodes, while |B(i)| in judgment nodes is determined by judgment function
NFi of node i depending on the concrete problem.

B: set of suffix of branches in one individual.
A(b(i)): set of suffixes of nodes connected from branch b(i) of node i.
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Figure 2.2: Example of the probabilistic model in PMBGNP. "–" in (b) denotes
there does not exist connection probability, since the node cannot connect to itself
to avoid the infinite loop.

The start node in the directed graph is only used to determine the first node to
be executed, where it does not have function and its connected node is predefined
and fixed. Therefore, to simplify the explanation, the start node and its branch are
not considered in Nnode and B, since they are also not studied in the probabilistic
modeling of PMBGNP. As a result, we use G = (Nnode, B) to denote the directed
graph structure of GNP.

The total number of nodes can be calculated by

|Nnode| = |NJ |+ |NP |, (2.1)

and the total number of branches is

|B| =
∑
i∈NJ

|B(i)|+ |NP |. (2.2)

The values of these variables are predefined by designers and fixed during evolution
to generate compact programs.

2.3 Probabilistic modeling of PMBGNP

PMBGNP constructs a probabilistic model from a set of selected individuals, and us-
es the model to generate the new population. The method of probabilistic modeling
in PMBGNP is derived from the univariate EDAs.

In PMBGNP, the probabilistic model P is composed of a set of probabilities
P (b(i), j), which represents the connection probability from branch b(i) of node i to
node j, as shown as follows

P = {P (b(i), j)|i ∈ Nnode; b(i) ∈ B(i); j ∈ A(b(i))}.
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Fig. 2.2 shows an example of the probabilistic model in PMBGNP, where the size
of the model, i.e., the number of probabilities, is determined by the directed graph
of individuals, which can be computed by

|P | = |B|(|Nnode| − 1). (2.3)

Here, the term "−1" denotes that the node cannot connect to itself which will cause
the infinite loop of the program.

To calculate the connection probability P (b(i), j), two methods are proposed
based on the Maximum Likelihood Estimation (MLE).

2.3.1 Method 1: consider connection information between differ-
ent nodes

Method 1 considers the connection information between different nodes to calculate
the connection probability. This is a straightforward extension of univariate model-
based EDAs, such as PBIL and UMDA. The equation of Method 1 is shown as
follows:

P (b(i), j) =

N∑
n=1

δn(b(i), j)

∑
j′∈A(b(i))

N∑
n=1

δn(b(i), j′)

, (2.4)

where,
N : the number of best individuals.
δn(b(i), j): value defined by

δn(b(i), j) =


1 if branch b(i) of node i in indiv-

idual n is connected to node j,
0 otherwise.

Using Eq. 2.4, the frequencies of node connections in the promising individuals
are counted to constitute the probabilistic model of PMBGNP.

2.3.2 Method 2: consider both connection and transition informa-
tion between different nodes

In the directed graph structure, generally in one individual, not all the nodes will be
used to solve the problems. The node transition will be made by selecting necessary
nodes for problem solving. Fig. 2.3 shows an example of the node transitions in an
individual. In this instance, the nodes are transited like 1 → 2 → 5 → 6 → 9 to
solve the problem, which means the information on the connections between these
transited nodes is useful for solving the problems. This implies that in the graph
structure of PMBGNP, some node connections are frequently used to transit, which
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S

Figure 2.3: An example of node transitions in one individual.

deserves to be considered more, while some are seldom transited. Therefore, Method
2 is further proposed by considering both connection and transition information
between different nodes. In this method, the probabilistic model is constructed by:

P (b(i), j) =

N∑
n=1

(
δn(b(i), j) + ησn(b(i), j)

)
∑

j′∈A(b(i))

N∑
n=1

(
δn(b(i), j) + ησn(b(i), j)

) , (2.5)

where,
σn(b(i), j): value defined by

σn(b(i), j) = ℓ if the transition from branch b(i)

of node i to node j in individual
n occurs ℓ times.

η: coefficient.
The probabilities are calculated by considering the connection and transition

information between different nodes. The term σn(b(i), j) is used to consider the
reusability of node connections. Parameter η is used to balance the effects of the
two factors of connection and transition information. For each branch, we maintain:∑

j∈Nnode
P (b(i), j) = 1. As a result, any individual n can be generated with the

following probability

P (n) =
∏

i,j∈Nnode

∏
b(i)∈B(i)

P (b(i), j). (2.6)

After the construction of the probabilistic model in each generation, the following
exponential smoothing method is considered to update the current probabilistic
model consdering the previous ones:

P (b(i), j) = (1− α)P (b(i), j) + αP ′(b(i), j), (2.7)
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Algorithm 1 Algorithm for the generation of a new individual
1: set all branches of all nodes unconnected;
2: for all i ∈ Nnode do
3: for all b(i) ∈ B(i) do
4: connect branch b(i) to node j with the probability of P (b(i), j);

Algorithm 2 Algorithm of PMBGNP
1: |Pop| = M

t← 0

2: Pop(t) ← generate the initial population randomly;
Fit(t) ← evaluate the fitness of Pop(t);

3: Best(t)← execute truncation selection to select a set of best individuals, where
|Best(t)| = N , (N ≤M);

4: P ← construct a probabilistic model from Best(t) according to Eq. (2.4) or Eq.
(2.5);

5: Pop(t+ 1) ← generate the new population by Algorithm 1;
Fit(t+ 1) ← evaluate the fitness of Pop(t+ 1);

6: t← t+ 1

if the termination conditions are not met, go back to 3.

where,
α: smoothing rate, and α ∈ (0, 1).
P ′(b(i), j): the probabilistic model of the previous generation.

2.4 Generation of the new population and algorithm of
PMBGNP

In this section, the generation of the new population using the constructed proba-
bilistic model is described.

As discussed in section 2.2, the number of nodes and the number of branches
in each node are predefined and unchanged during evolution. Therefore, it is easy
to generate a new individual by sampling the probabilistic model. The detailed
description of the algorithm for generating a new individual is shown in Algorithm
1.

As a result, this process is repeatedly executed M times for generating total M
individuals. The time complexity of generating one individual is O(|B|).

The pseudocode of PMBGNP is shown in Algorithm 2, which is similar to con-
ventional EDAs.

It is clearly shown that PMBGNP is a variant of EDA which extends it to
the graph-based EAs. The proposed PMBGNP is an extension of conventional
univariate model-based EDAs in terms that the probabilistic model is generated by
selecting branches.
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2.5 PMBGNP for class association rule mining

Most of the current EDAs are mainly applied to solve the benchmark problems of
GA and GP, such as function optimization and symbolic regression, where an es-
sential challenge is to explore EDA to novel problems in this research field. On
the other hand, due to its distinguished directed graph structure, GNP has been
widely applied to various applications, such as data mining [Shimada 2006b], eleva-
tor system control [Hirasawa 2008], intelligent agents [Mabu 2007b], stock trading
[Mabu 2011b] and multi-agent system [Eguchi 2006], etc.

Particularly, GNP has been successfully applied to data mining field by propos-
ing an algorithm called GNP-based class association rule mining (GNP-CARM).
The objective of data mining is to find patterns (generally called rules) whose at-
tributes are strongly correlated with each other. CARM is one of the most important
branches in data mining, which concentrates on discovering class association rules
(CARs) from training data for the prediction of unseen testing data. In GNP-
CARM, GNP is to used as a tool to extract the CARs existed in the individuals.
The rule extraction is done generation by generation through the power of evolution.
Such kind of evolutionary computation based CARM has been applied to various
applications, such as UCI benchmark datasets [Shimada 2006b], traffic prediction
system [Zhou 2008] and intrusion detection [Mabu 2011a]. Since PMBGNP are the
extension of GNP, the aim of this section is to apply PMBGNP to the framework of
GNP-CARM to improve the efficiency of rule extraction. To verify the effectiveness
of PMBGNP, it is applied to solve a data mining problem using CARM for the
prediction of time series traffic dataset, and the experiments on UCI benchmark
datasets are also presented.

This section briefly introduces the features of time series traffic dataset, and the
way of using PMBGNP in GNP-CARM is introduced. Finally, PMBGNP based
CARM is applied to the time series traffic dataset and UCI benchmark datasets for
the comparison with the classical algorithms.

2.5.1 Time-related class association rules for traffic prediction

As an significant part of Intelligent Transportation System (ITS), traffic prediction
system is capable of helping cities maximize their existing infrastructure to avoid
the traffic congestion. Reliable analysis of the historical traffic data is an important
part for traffic prediction system. Therefore, data mining is capable of analyzing
the real-time traffic data to predict the traffic flow.

Table 2.1 shows an example of the traffic database. The traffic flow of each
road section of the traffic network is classified as three cases: Low, Middle or High.
At each time point, only one case of the traffic flow in the section could happen.
Therefore, the form of attributes saved in the traffic database can be denoted like
Ai(∗), where Ai represents a road section of the traffic database and ∗ represents
the case of traffic flow, i.e., Low, Middle or High. The structure of time-related
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Table 2.1: An Example of the Traffic Database

Ai Aj

Time Low Mid High Low Mid High

0001 0 1 0 1 0 0
0002 0 1 0 0 1 0
0003 0 0 1 0 0 1
0004 1 0 0 1 0 0
0005 0 1 0 0 0 1

CARs for traffic prediction is as follows:

(Ai(∗)(t = ta) = 1) ∧ ... ∧ (Aj(∗)(t = tb) = 1)⇒ (Ac(∗)(t = tc) = 1). (2.8)

Here, ta, tb and tc are the time points which satisfy the condition: ta ≤ ... ≤ tb ≤ tc.
Meanwhile, the first time ta always equals to 0, so, tb − ta represents the time
delay between Ai(∗) and Aj(∗). Such kind of time-related CARs can express the
relationships between different attributes with time points, which could be used to
predict the traffic flow. For example, (A1(Low)(t = 0) = 1) ∧ (A2(Mid)(t = 2) =

1) ⇒ (A3(High)(t = 8) = 1) means if A1 is Low at time 0 and A2 is Mid at time
2, then at time 8, A3 is High.

2.5.2 Rule extraction

The basic structure and concepts of PMBGNP for CARM are almost the same as the
conventional GNP-CARM (the details can be found in [Shimada 2006a]). In GNP-
CARM, the functions of judgment nodes and processing nodes are defined as follows.

Judgment Node
The judgment nodes represent the attributes of the traffic database. Therefore,

each judgment node function is regarded as one attribute of the database.
Processing node

The processing nodes are used to calculate the measures of CARs.

CARs are represented as the connections of judgment nodes. In this chapter,
support, confidence and χ2 measures are used to define the significance of CARs.
Candidate rules that satisfy a minimum support threshold, a minimum confidence
threshold and a minimum χ2 threshold can be extracted from each individual gen-
eration by generation.

Extraction Mechanism at Stages (EMS) [Zhou 2008] are used, in order to extract
the rules of all of the sections in the traffic database. For each consequent attribute
Ac(∗), a fixed number of CARs are extracted in order to obtain high classification
accuracy. Nf denotes the fixed number of rules. Furthermore, in order to deal with a
large number of attributes, Attribute Accumulation Mechanism (AAM) [Zhou 2008]
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are also used to choose a small attribute set which is used to do the rule extraction
and is accumulated round by round.

Meanwhile, since it might occur that there does not exist an enough number of
rules for all the consequent attributes at the fixed threshold setting, self-adaptive
criteria are also used to adjust the thresholds of the support, confidence and χ2

values, which works like the following: if any new rule cannot be extracted during
the recent generations, the significance level of important rules will decrease using
the following equation.

Measuremin ←Measuremin × s, (2.9)

here, Measure denotes the support, confidence and χ2 values which are used in this
chapter. Furthermore, s belonging to (0,1) represents the step size of the decrease
for the threshold of the support, confidence and χ2 values.

2.5.3 Fitness function

Depending on the importance, complexity, novelty and diversity of CARs which are
implicitly saved in the individuals, the fitness function is defined as follows.

F =
∑
r∈R

{χ2(r) + 10(na(r)− 1) + αnew(r) + αmulti(r)}, (2.10)

where,
R: set of suffixes of extracted important CARs in the individuals of PMBGNP.
χ2(r): χ2 value of rule r.
na(r): the number of attributes in the antecedent part of rule r.
αnew(r): additional constant defined by

αnew(r) =

{
αnew if r is a new rule,
0 otherwise.

αmulti(r): additional constant defined by

αmulti(r) =


αmulti if rule r has more than

ω kinds of attributes,
0 otherwise.

here, constant ω is the threshold to define the number of kinds of attributes of
multiple rules.

2.5.4 Construction of probabilistic model

In CARM, the connections of judgment nodes are represented as CARs
[Shimada 2006a, Zhou 2008]. Therefore, the probabilistic model is constructed
based on the learning of the connection information between the judgment nodes.
The connection information of processing nodes does not have to be considered.
The connection probabilities between different judgment nodes are calculated to
construct the probabilistic model. Method 1 and Method 2 can be directly used for
the construction of the probabilistic model.
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2.5.5 Evolution of PMBGNP in class association rule mining

The evolutionary algorithm of PMBGNP in CARM is the same as shown in Al-
gorithm 2, where CARs are extracted from the population of PMBGNP in each
generation.

1. First, randomly generate the initial population with M individuals.

2. Extract CARs in the current population.

3. Evaluate the fitness values of each individual.

4. Select N individuals with the higher fitness values (N ≤M).

5. Construct the probabilistic model from the selected N individuals.

6. Generate M new individuals by sampling the probabilistic model.

The evolution will be executed generation by generation until enough number of
CARs are discovered.

2.5.6 Classification

After the rule extraction, the obtained time-related CARs are used to build a clas-
sifier which classifies the testing traffic data to predict the traffic flow.

The time difference between the last attribute of the antecedent part and the
consequent attribute is called Prediction Span (PS ). In order to predict the traffic
flow of road section Ac of L time points later, which is called L-step prediction,
the rules whose PS is equal or larger than L (PS ≥ L) are selected to do the
classification.

Let k denote a class of the consequent attribute, i.e., k ∈ {Low,Mid,High}. Rk

is the set of suffixes of the rules in class k which satisfy PS ≥ L and whose antecedent
attributes match with the testing traffic data. Numk denotes the number of rules
in class k, which satisfy PS ≥ L. The average matching degree of data d with the
rules in class k, i.e., Matchk(d) is calculated as follows.

Matchk(d) =

∑
r∈Rk

Confidence(r)

Numk
, (2.11)

The values of Matchk(d) of three classes are compared, where the class with the
highest value of Matchk(d) is the classification result.

2.5.7 Simulations

A comparative study of the proposed algorithm and the conventional GNP is made
to solve the traffic prediction problems using CARM in this section. The efficiency
of rule extraction and the accuracy of traffic prediction are also shown.
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#W1
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#W3
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#W5
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#W7

#E1
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#E5

#E6

#E7

#N1 #N2 #N3 #N4 #N5 #N6 #N7

#S1 #S2 #S3 #S4 #S5 #S6 #S7

This model is 7*7 grid network;

: represent section: represent intersection

Figure 2.4: A simple road map model

Table 2.2: The traffic database generated by the simulator

Time W1N1,W2N1 W1N1,W2N1 W1N1,W2N1

Low Mid High

0001 0 1 0
0002 0 1 0
0003 0 0 1
0004 1 0 0

A) Traffic Simulator
A traffic simulator [Zhou 2008] is used to simulate the traffic road in the

simulations. The model simulates a 7×7 grid rectangular traffic network as shown
in Fig. 2.4, which consists of the edge intersections in the North, South, East and
West. The real-world traffic situations, such as traffic lights, traffic jams, speed
of cars etc., are all considered in the traffic simulator. Using the simulator, the
traffic databases are generated for the simulations. Table 2.2 shows an example.
W1N1,W2N1 represents a section of the road network, and the average traffic flow
of each section is discretized to Low, Mid or High. In the road map, there are 112
sections. Furthermore, considering the two directions of each section and 3 kinds
of traffic flow of each section, there are total 112× 2× 3 = 672 attributes including
classes in the traffic database.

B) Parameter Setting



2.5. PMBGNP for class association rule mining 29

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0  500  1000  1500  2000  2500  3000

N
u
m

b
e
r 

o
f 

e
x
tr

a
c
te

d
 c

la
s
s
 a

s
s
o
c
ia

ti
o
n
 r

u
le

s

Round

GNP

PMBGNP Method 1

PMBGNP Method 2 η=1/50

PMBGNP Method 2 η=1/200

PMBGNP Method 2 η=1/300

(a) simulation 1: s=0.9
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(b) simulation 2: s=0.85

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0  500  1000  1500  2000  2500  3000

N
u
m

b
e
r 

o
f 

e
x
tr

a
c
te

d
 c

la
s
s
 a

s
s
o
c
ia

ti
o
n
 r

u
le

s

Round

GNP

PMBGNP Method 1

PMBGNP Method 2 η=1/50

PMBGNP Method 2 η=1/200

PMBGNP Method 2 η=1/300

(c) simulation 3: s=0.8

Figure 2.5: Comparison of the efficiency of rule extraction between PMBGNP and
GNP

The parameters of the simulations are set as shown in Table 2.3. In the
simulations, the conventional GNP uses four kinds of genetic operators to evolve
the individuals: uniform crossover, mutation for functions, mutation for connections
and mutation for time delays of judgment nodes [Zhou 2008], while a probabilistic
model is adopted to evolve the individuals in the proposed algorithm. In the
conventional GNP, the probabilities of crossover and mutation are set to achieve
the best results. In the proposed paradigm, Method 1 construct the probabilistic
model using the connection information, while coefficient η should be used in
Method 2 for considering the transition information. In the databases used in the
simulations, we studied that there occur around 200 transitions for the connection
between two judgment nodes. Therefore, we set the coefficient η at 1/50, 1/200
and 1/300 to study Method 2. And the smoothing coefficient α in Equation (2.7)
is set at 0.1 in order to update the current connection probability by considering
the previous connection probabilities. Furthermore, the thresholds of the support,
confidence and χ2 values are set at 0.03, 0.9 and 6.63, respectively, based on many
trials.

C) Simulation results and analysis
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Table 2.3: Simulation setting for the evolution

Items Values
Population Size 100
Elite Individuals Size 25
Processing Nodes Size 10
Judgment Nodes Size 100
Time Units Size 800
Attribute Size including classes 672
Generation Size per Round 100
Fixed Number of Rules per Class (Nf ) 100

Rule Extraction
In order to study the efficiency of the proposed method, 4 traffic databases

generated by the simulator are used to extract the class association rules.
As mentioned earlier, self-adaptive criteria are adopted in order to extract e-

nough rules for all sections of the traffic network. Three simulations are carried out,
where the coefficient s of self-adaptive criteria is set at 0.9, 0.85 and 0.8, respectively.

The average number of CARs extracted over 20 independent runs are shown in
Fig. 2.5 for the 4 databases using the proposed method and conventional method.
The results shows that when s is set at 0.9, Method 2 with η=1/50 can get almost
the same efficiency as the conventional method, but Method 1 and the others of
Method 2 are a little worse. When s is set at a smaller value (i.e., 0.85 or 0.8), both
Method 1 and Method 2 are much better than the conventional method.

Furthermore, it is shown that the efficiency of Method 2 is better than Method
1, which means considering both the connections and transitions between nodes
can generate a more effective probabilistic model than just considering the nodes
connections.

Classification for Traffic Prediction
After the rule extraction stage, the proposed classification mechanism is used to

build a classifier for predicting the traffic flow of the simple traffic network. In order
to estimate the performance of the proposed method in traffic prediction problems,
4-fold cross-validation is applied. The proposed method and conventional GNP are
compared in the L-step traffic prediction. The average classification accuracies for
1-step, 2-step and 3-step traffic prediction are shown in Table 2.4. The simulation
results show that the accuracy of GNP-EDAs is almost the same as that of GNP in
testing, and in most of the cases even a little better.

Analysis
It is easily understood that the more the value of s decreases, the easier the rules

could be extracted, since the threshold of the support, confidence and χ2 values will
decrease more. As a result, the rules with lower significance level will be extracted,
leading to the decrease of traffic prediction accuracy. We design the simulations
following different settings of s. When s is set at a high value, like 0.9, it might
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Table 2.4: Classification accuracy of 4-fold cross-validation. (unit: %)

1-step prediction 2-step prediction 3-step prediction
s=0.9 s=0.85 s=0.8 s=0.9 s=0.85 s=0.8 s=0.9 s=0.85 s=0.8

D 1
GNP 87.8 87.6 86.9 86.9 86.7 86.4 87.1 86.8 86.3

Method 1 87.9 87.3 87.1 87.2 86.5 86.4 87.3 86.4 86.0

Method 2
η = 1/50 87.8 86.7 86.5 87.1 86.1 85.8 87.2 86.0 85.5
η = 1/200 87.9 86.8 86.6 87.1 86.3 85.7 87.0 86.1 85.4
η = 1/300 88.1 86.8 86.4 87.5 86.3 85.5 87.9 86.2 85.4

D 2
GNP 85.8 85.0 84.7 84.8 84.7 84.3 84.7 84.4 83.6

Method 1 85.7 85.0 84.9 85.0 84.2 84.1 85.2 84.0 83.8

Method 2
η = 1/50 85.7 84.6 84.5 84.9 84.0 83.7 85.0 83.5 83.3
η = 1/200 85.9 84.8 84.5 84.9 84.1 83.5 85.0 83.7 83.2
η = 1/300 85.8 84.8 84.4 85.1 84.2 83.4 85.6 83.7 83.0

D 3
GNP 85.6 85.5 84.5 85.0 84.9 84.5 85.5 84.7 84.3

Method 1 85.8 86.3 84.8 85.1 84.5 84.3 85.5 84.6 84.1

Method 2
η = 1/50 85.8 84.8 84.6 85.1 84.1 84.0 85.1 84.2 83.6
η = 1/200 85.9 84.8 84.5 85.1 84.1 83.6 85.2 84.5 83.4
η = 1/300 85.7 84.9 84.5 85.3 84.4 83.7 86.2 84.4 83.5

D 4
GNP 85.8 85.6 84.9 84.6 84.5 84.2 84.3 84.0 83.5

Method 1 85.5 85.2 85.1 84.7 84.4 84.3 84.5 83.6 83.2

Method 2
η = 1/50 85.6 84.4 84.4 84.7 83.6 83.6 84.2 83.3 83.0
η = 1/200 85.6 84.6 84.3 84.6 83.8 83.3 84.1 83.5 82.9
η = 1/300 86.1 84.7 84.2 85.0 83.9 83.3 85.1 83.3 82.9

occur that there are just a small number of candidate rules in the searching space for
some consequents. Therefore, PMBGNP cannot extract enough mutual interaction
information to produce an effective probabilistic model. However, Method 2 can still
achieve the same efficiency of the conventional GNP. When the value of s decreases,
the number of potential candidate rules increases. As a result, the efficiency of
PMBGNP will be significantly improved in terms of extracting many rules by the
effective probabilistic model, which leads to the better rule extraction efficiency of
the proposed method than the conventional GNP.

In evolutionary algorithm based CARM, the strongly related attributes (corre-
sponding to judgment nodes in GNP and PMBGNP) could be viewed as building
blocks, that could be recombined in the next generation. The principle why GNP
and PMBGNP could work for finding CARs is decomposing the problems to find
strongly associated judgment nodes (building blocks) and recombine them by evo-
lution. Therefore, the simulation results of rule extraction shows that PMBGNP
could outperform the conventional GNP when dealing with the problems with a
large number of BBs scattered in the search space, such as decomposable problems.

On the other hand, the prediction accuracy is in an acceptable range, even
if the value of s decreases (i.e., the accuracy will decrease by less than 1% when
s decreases from 0.9 to 0.8), but, the rule extraction efficiency of the proposed
method will greatly increase comparing with the conventional GNP by reducing
s. Concludingly, when s is set at a relatively small value (i.e., 0.85 or 0.8), the
rule extraction efficiency of the proposed method is much better than that of the
conventional GNP. Meanwhile, the accuracy of L-step traffic prediction can keep



2.6. Summary 32

Table 2.5: Comparison of the experimental results among several methods.(Unit:
%)

Method Cleveland Breast
C4.5 78.2 95.0

C4.5 boost 78.3 96.7
CBA 82.8 96.3

CMAR 82.2 96.4
CPAR 81.5 96.0
GNP 83.7 96.9
PMBGNP 84.3 97.6

the same level as the conventional GNP. Therefore, considering the rule extraction
efficiency and prediction accuracy as a whole, the proposed algorithm can provide
a better trade-off between the efficiency and accuracy to solve traffic prediction
problems comparing with the conventional GNP.

D) Complementary simulations on the UCI benchmark datasets
To evaluate the performance of the proposed algorithm, we further compare with

the classical CARM methods on the UCI benchmark datasets, where Cleveland and
Breast datasets are used. Several classical methods, i.e., C4.5 [Quinlan 1993], C4.5
boost [Freund 1996], CBA [Liu 1998], CMAR [Li 2001] and CPAR [Yin 2003], are
selected for comparison.

For the comparison, it is found from Table 2.5 that PMBGNP can achieve better
performance than the classical methods in both Cleveland and Breast benchmark
datasets. On the other hand, the results show that PMBGNP can slightly find
better performance than GNP.

2.6 Summary

In this chapter, PMBGNP that extends EDA from bit-string and tree structures to
graph structures is proposed. The proposed algorithm collects the mutual interac-
tion information between nodes of individuals to construct the probabilistic model
replacing the conventional crossover and mutation for the guidance of evolution. T-
wo MLE-based methods are proposed to build the probabilistic model of PMBGNP,
which study the connection and transition information between different nodes. A
comparative study of PMBGNP and the conventional GNP is made to solve the
CARM problems for the prediction of time series traffic dataset. The advantages of
using PMBGNP have been demonstrated through the simulations in terms of the
efficiency of rule extraction and accuracy of prediction. On the other hand, apply-
ing PMBGNP to the UCI benchmark datasets shows its superiority over classical
CARM algorithms.

Basically, in this chapter, the high-level framework of PMBGNP is proposed
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and studied through the data mining problems. In the next chapter, an important
issue of EDAs including PMBGNP, i.e., population diversity loss, will be studied.
A hybrid PMBGNP is therefore proposed to overcome the diversity loss. More-
over, PMBGNP is applied to solve a novel problem of EDA, controlling the agents’
behavior, where a real Khepera robot control is selected.

Note that since this chapter confirms that considering the connection and tran-
sition information of different nodes together would achieve better performance,
Method 2 of this chapter is used in the remaining chapters of the thesis for the
probabilistic modeling of PMBGNP.
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3.1 Introduction

Most of the current EDAs suffer from the problem that the population diversity of
the genetic information will be significantly decreased in the generated population
when the population size is not large enough. Many researchers have investigated
the diversity loss in PMBGA [Shapiro 2006], especially under the large search space,
leading to the premature convergence and local optimum. Therefore, when PMBGA
is used to solve problems, its population size is needed to be set at an enough size
in order to ensure enough population diversity for global optimum [Pelikan 2002a].
Some studies also investigated that applying mutation operator [Handa 2007] or
niching operator [Sastry 2005] to PMBGA could maintain the population diversity.

However, few work has been done on the diversity maintenance in the EDAs
with more complex individual structures, such as PMBGP and PMBGNP. For the
EDAs with more complex structures, the search space is generally much larger than
that of PMBGA’s bit-string structure. Consequently, the problem of diversity loss
is much more essential than that of PMBGA, since the required sample size in such
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EDAs is usually much larger than that of PMBGA. Nevertheless, when solving the
real-world optimization problems, the required search space is usually large. As a
result, the required population size should be set at a huge number to ensure the
enough diversity, which is not the realistic way for problem solving. Therefore, the
study on the diversity maintenance becomes much essential in the EDAs with more
complex individual structures.

In the tree structure-based PMBGP research, PIPE uses a mutation operator
to explore the search space [Salustowicz 1997], while EDP adjusts the calculat-
ed probabilistic model by Laplace Correction to avoid the premature convergence
[Yanai 2003]. However, most of these algorithms are testified in GP’s benchmark
problems with not so large search space, such as symbolic regression and boolean
function, and the importance of the diversity maintenance is not clarified clearly
in PMBGP. As a EDA with graph structures, PMBGNP holds the same problem
of the diversity loss as PMBGP, and even more serious. The reason is that, the
graph structure and population size of GNP are usually set at a small value to solve
problems, which is one of the advantages of GNP [Mabu 2007b], therefore, the sam-
ple space becomes much smaller than that of PMBGP, which probably causes the
diversity loss.

This chapter focuses on studying the diversity maintenance of PMBGNP to make
it work in the problems with large search space than that of classical benchmark
problems, such as robot control problems [Li 2010b]. The next section theoretically
analyzes the diversity loss of different types of EDAs. Section 3.3, therefore, pro-
poses two techniques to maintain the population diversity of PMBGNP in terms of
improving the exploration ability, which are multiple probability vectors and genetic
operators. The proposed algorithm is denoted as hybrid PMBGNP (hPMBGNP)
and is evaluated theoretically and empirically. Section 3.4 applies the proposed al-
gorithm to a real problem, controlling a kind of autonumous robot, Khepera robot
[Cyberbotics , K-Team Corp. ]. The empirical study shows the proposed algorithm
could significantly maintain the diversity of PMBGNP to solve the problems.

3.2 Diversity loss

The diversity loss of PMBGA has been clarified by Shapiro in [Shapiro 2006] using
the trace of the empirical co-variance matrix. However, there is few work on an-
alyzing this issue in PMBGP. This section discuss the significance of the diversity
loss in PMBGP and PMBGNP, and we argue that the diversity loss in PMBGP and
PMBGNP is more essential than that of PMBGA with binary structures, since the
search space in each individual of GP or GNP is larger than that of GA.

Suppose that the set of suffixes of genes in each PMBGA individual is NGA,
while the set of suffixes of nodes in each PMBGP individual is also NGP

1. In GNP,
1Generally, in order to avoid the bloating of GP, the structure of GP is designed with some con-

straints, such as the maximum number of nodes or the maximum tree depth. Here, the maximum
number of nodes is selected as the constraint.
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the number of nodes and the number of branches are generally predefined and fixed.
To simplify the notations, it is supposed that the set of suffixes of nodes in each
PMBGNP individual is NGNP (equivalent to Nnode of Chapter 2) and the set of
suffixes of branches in each PMBGNP individual is Nbra (equivalent to B(i) of
Chapter 2). The size of the search space of these three algorithms can be calculated
by

Ψ(GA) = 2|NGA|, (3.1)

Ψ(GP ) = ϕ|NGP |, (3.2)

Ψ(GNP ) = (|NGNP | − 1)|Nbra|. (3.3)

Here, ϕ represents the number of functions in each node of GP2. There is no
self-loop in GNP network structure, since it will cause the infinite loops of GNP
programs. Therefore, for each branch of the node in GNP, the candidate nodes to
be connected are all the nodes except itself, where |NGNP |−1 in Eq. (3.3) represents
the number of candidate nodes to be connected. If variables in the search space are
treated equally, the probability for each individual to be sampled can be calculated
by

PGA(ind) =
1

2|NGA| , (3.4)

PGP (ind) =
1

ϕ|NGP | , (3.5)

PGNP (ind) =
1

(|NGNP | − 1)|Nbra|
. (3.6)

The diversity loss DGA, DGP and DGNP of PMBGA, PMBGP and PMBGNP
could be calculated, respectively as follows.

Theorem 1 If the number of individuals in a population is M , the diversity loss
DGA of PMBGA could be represented by the probability that an individual is not
sampled in the search space, which is

DGA = [1− PGA(ind)]
M . (3.7)

Proof 1 When generating one individual, the probability that individual ind is not
sampled to the population equals to 1 − PGA(ind). Therefore, when generating M

individuals, the probability that individual ind is not sampled to the population equals
to [1−PGA(ind)]

M . Then, the diversity loss of an individual in GA can be obtained
by Eq. (3.7). �

2Although GP consists of function nodes and terminal nodes, this chapter treats them equally.
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Theorem 2 If the number of individuals in a population is M , the diversity loss
DGP of PMBGP could be represented by the probability that an individual is not
sampled in the search space, which is

DGP = [1− PGP (ind)]
M . (3.8)

Proof 2 Omitted. �

Theorem 3 If the number of individuals in a population is M , the diversity loss
DGNP of PMBGNP could be represented by the probability that an individual is not
sampled in the search space, which is

DGNP = [1− PGNP (ind)]
M . (3.9)

Proof 3 Omitted. �

The proof of Theorem 2 and Theorem 3 is similar to Theorem 1, therefore
it would not be shown in this chapter.

From Theorem 1, Theorem 2 and Theorem 3, it is found that, the smaller
P (ind) ∈ {PGA(ind), PGP (ind), PGNP (ind)} is, the more serious the diversity loss
is. Moreover, there is an inverse relationship between P (ind) and the size of the
search space Ψ ∈ {Ψ(GA), Ψ(GP ), Ψ(GNP )}. Therefore, when the search space
becomes larger, the diversity loss is more serious. From Eq. (3.1)-(3.3), it could be
found that generally the search space of GP and GNP is much larger than that of
GA, since ϕ and |NGNP | is much larger than 2.

On the other hand, when the population size M is small and the probability of
each individual to be sampled is small, the diversity loss D ∈ {DGA, DGP , DGNP }
will approach near to 1, which means the diversity loss is very serious. Therefore, in
the previous research of EDA, the population size M is generally set at large values
to obtain the enough population diversity. However, when solving the problems
consisting of very large search space, the required population size should be set at
huge values, which is almost impossible. GNP is generally designed to solve the
complex problems in dynamic environments. Therefore, maintaining the population
diversity is much essential in PMBGNP.

3.3 Hybrid PMBGNP

This section focuses on proposing an extension of PMBGNP to maintain its popu-
lation diversity and to escape from the local optimum of final solutions. Two novel
techniques, which are multiple probability vectors and genetic operators, have been
proposed to maintain the population diversity of PMBGNP in terms of improving
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the exploration ability. Since the proposed algorithm is inspired by genetic opera-
tors of the conventional evolutionary algorithms, the proposed algorithm is named
hybrid PMBGNP (hPMBGNP).

The motivation that makes hPMBGNP innovative is that: firstly, it evolves
multiple populations by constructing multiple probability vectors. Secondly, it also
applies genetic operators like crossover and mutation to the multiple probability
vectors, where the exploration of the search space and population diversity could be
improved. One should note that the proposed crossover and mutation are applied
to change the probability vectors, not the individual structure which is used in
conventional evolutionary algorithms.

In hPMBGNP, there are several populations, i.e., |R|. Each population consists
of a number of individuals, i.e., M . All the individuals will be initialized by ran-
dom and evaluated by a predefined fitness function. With their fitness values, the
set of promising individuals would be selected. For each population, hPMBGNP
constructs a probabilistic model as described in section 2. The probabilistic models
are represented by connection probability vectors, therefore, hPMBGNP consists of
|R| probability vectors, whose rth one is denoted as Pr (r ∈ R). Genetic operators
such as crossover and mutation are applied to probability vectors Pr to produce new
probability vectors P

′
r.

The new |R| populations will be generated by sampling the probability vectors
P

′
r. In conventional GNP, crossover and mutation are directly used to generate the

new population, as a result, the strongly related sub-structures of GNP sometimes
will be broken down to produce uninteresting individuals, while the probability
model is carried out by learning the structure of promising individuals to guide the
evolution of hPMBGNP. Therefore, hPMBGNP inherits the characteristics of EDA
that the BBs could be recognized and represented implicitly in the probabilistic
model, then the generated population becomes capable of avoiding the breakage of
the BBs. On the other hand, crossover and mutation are applied to the constructed
model, which means that maintaining the population diversity leads to that PM-
BGNP can handle the problems consisting of the large search space. The details
of the probabilistic model construction and genetic operators in hPMBGNP will be
introduced next.

3.3.1 Probabilistic model construction

The probabilistic model of population r ∈ R is represented as probability vector Pr.
P t
r denotes the probability vector Pr in the tth generation, and P t

r(b(i), j) represents
the connection probability from branch b(i) of node i to node j. The mathematical
formulas to calculate the probability vectors in hPMBGNP are the same as the
ones used in PMBGNP in section 2. The different point is that in hPMBGNP, the
probabilistic model consists of multiple probability vectors, while PMBGNP consists
of a single probability vector. Therefore, the probabilistic model could be denoted
as follows.
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P = {Pr|r ∈ R}. (3.10)

Pr = {Pr(b(i), j)|i ∈ NGNP ; b(i) ∈ B(i); j ∈ A(b(i))}. (3.11)

3.3.2 Genetic operators

Crossover and mutation are designed to produce the new probabilistic model P ′ .
The role of genetic operators of the probabilistic model is to explore the probabil-
ity vectors. In each generation, the constructed multiple probability vector Pr is
replaced with the new one generated by crossover and mutation. Tournament selec-
tion is used in hPMBGNP to select probability vectors for crossover and mutation.
Crossover and mutation operators are carried out subject to the following condition.∑

j∈A(b(i))

Pr(b(i), j) = 1, (3.12)

for all i ∈ NGNP and all b(i) ∈ B(i).

A) Crossover
Crossover is executed between two probability vectors and produces two new

probability vectors. Crossover operator exchanges all the probabilities of the
selected branches as shown in Algorithm 3. Fig. 3.1 shows an example on how
crossover works in hPMBGNP.

Algorithm 3 Crossover of hPMBGNP
1: m,n ∈ R

Select two probability vectors Pm and Pn from P by tournament selection.
2: Each branch b(i) is selected as a crossover branch with the probability of pc.
3: Two probability vectors exchange the probabilities of the corresponding

crossover branches, i.e., Pm(b(i), j) and Pn(b(i), j) are exchanged.

B) Mutation
Mutation is executed in one probability vector to produce a new one. The

probabilities of the selected mutation branches are changed randomly by mutation
operator, where it should satisfy the condition in Eq. (3.12). The mutation in
hPMBGNP is designed as shown in Algorithm 4.

3.3.3 Diversity maintenance of hPMBGNP

In conventional PMBEAs, once the probability3 in the probabilistic model is equal
to zero, the corresponding variable will never be sampled in the future generations.

3In PMBGA with no interactions, the probability is represented by Pgene(0) or Pgene(1), and
that of PMBGP is represented by Pnode(function). In PMBGNP, P (b(i), j) represents the proba-
bility.
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The probabilities of Pm and Pn are exchanged with each other.Pm Pn

Figure 3.1: Two probability vectors Pm and Pn are selected by tournament selection.
In this example, branch b(i) is selected as a crossover branch and their probabilities
of Pm and Pn are exchanged with each other to generate the new probability vectors
P ′
m and P ′

n.

Algorithm 4 Mutation of hPMBGNP
1: Select one probability vector Pr from P .
2: Each branch b(i) is selected as a mutation branch with the probability of pm.
3: For each node j ∈ A(b(i)), randomly generate a positive value m(j).
4: Generate new probability vector P

′
r using the following Equation.

P
′
r(b(i), j) =

m(j)∑
ĵ∈A(b(i))

m(ĵ)

This subsection discusses the diversity maintenance of the proposed algorithm com-
paring with the standard PMBGNP.

Although crossover cannot preserve the population diversity, but it could ex-
plore the search space in another way. For example, even though a probability in
probability vector Pr is equal to zero, it could be changed to a positive value by
exchanging with another probability vector by crossover, which could explore the
search space to avoid the local optimum.

Here, the diversity maintenance by the mutation is discussed in the proposed
algorithm.

Definition 4 o(z) represents the number of probabilities equal to zero in branch z.

Definition 5 S is the set of suffixes of branches that are not selected as mutation
branch. It is very easy to know that |S| = |Nbra|(1− pm).



3.3. Hybrid PMBGNP 41

Theorem 4 For the rth population, the diversity maintenance rate M(r) is defined
by Eq. (3.13).

M(r) =
DM(r)

(|NGNP | − 1)|Nbra|
, (3.13)

where,
DM(r): the increased size of search space after mutation, and

DM(r) = (|NGNP | − 1)|Nbra|pm
∏
z∈S

[|NGNP | − 1− o(z)]

−
∏

z∈Nbra

[|NGNP | − 1− o(z)]. (3.14)

Proof 4 As described previously, when the probabilities in the probabilistic model
are equal to zero, the corresponding variables will never be sampled in the future
generations. For branch z, the number of probabilities that is not equal to zero is
[|NGNP |−1−o(z)]. Therefore, the size of the search space of the standard PMBGNP
is ∏

z∈Nbra

[|NGNP | − 1− o(z)]. (3.15)

When mutation is applied to the proposed algorithm, |Nbra|pm branches will be
selected as mutation branches. For all mutation branches, their probabilities are
always positive values by Algorithm 4. On the other hand, for the branches in set
S, their probabilities are still possible to be zero like standard PMBGNP. Therefore,
the search space could be calculated by

(|NGNP | − 1)|Nbra|pm

∏
z∈S

[|NGNP | − 1− o(z)]. (3.16)

It is easy to know the size of the search space is increased when mutation is done
by comparing Eq. (3.15) and Eq. (3.16), and DM(r) denotes the increased size of
the search space as shown in Eq. (3.14). The total search space of PMBGNP can
expressed by Eq. (3.3), therefore the diversity maintenance rate can be calculated by
Eq. (3.13).

�
It is easy to analyze that DM(r) of Eq. (3.14) is larger than zero, which means

the mutation could maintain the population diversity of PMBGNP. Moreover, when
the value of o(z) becomes large, DM(r) will also become large when mutation rate
is high, therefore the mutation could ensure better diversity maintenance when the
population diversity is significantly lost.
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3.4 Simulations

The proposed algorithm is evaluated by controlling the movement of Khepera robot
and a comparative study among standard GNP, PMBGNP and hPMBGNP is car-
ried out in this section.

3.4.1 Settings of the simulations

A) Settings of the robot
Khepera robot [Cyberbotics , K-Team Corp. ] is a small (5.5cm) differential

wheeled mobile robot, which includes 8 infrared sensors allowing them to detect
the proximity of objects in front of it, behind it, and to the right and left sides of
it by reflexion. Each sensor returns a value ranging from 0 to 10234. Two motors
corresponding to the left wheel and right wheel can take speed values ranging from
-10 to +10. The robot movements are controlled by the speed of the two wheels.

3.4.2 Wall-Following problem and fitness function

Wall-Following problem is used to evaluate the performance of this study. During
this task, the robot should avoid the obstacles and find the path to move along the
wall quickly. The task ends when a maximum steps ST are reached. The reward and
fitness functions are designed based on [Nordin 1998], aiming to obtain the optimal
strategy that can control the robot to move along the wall as fast as and as straight
as possible.

Reward =
vR + vL

20︸ ︷︷ ︸
1)

× (1−
√
|vR − vL|

20
)︸ ︷︷ ︸

2)

× C︸︷︷︸
3)

, (3.17)

Fitness =

ST∑
step=1

Reward

ST
, (3.18)

where,
vR, vL: the speed of right and left wheels,
ST : user-defined constraint step.
C: value defined by

C =


1, all the sensor values are less than 1000,

and at least one of them is more than 100,
0, otherwise.

The three marked terms of Eq. (3.17) corresponds to the three factors that
should be considered in Wall-Following problem: the robot should be controlled to
move 1) as fast as possible, 2) as straight as possible, and 3) along the wall. In every
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Figure 3.2: Simulation environment.

Table 3.1: Judgment functions for Khepera robot.

Function Symbol Description #Args. Content of Args.
J1 JF1 Judge Front sensor 1

2

1: [0, 1000)
J2 JF2 Judge Front sensor 2
J3 JFR Judge Front Right sensor
J4 JR Judge Right sensor
J5 JB1 Judge Back sensor 1

2: [1000, 1023]
J6 JB2 Judge Back sensor 2
J7 JL Judge Left sensor
J8 JFL Judge Front Left sensor

step, the reward can be calculated by Eq. (3.17), where the final fitness value is the
average reward over all ST steps.

In certain respects, the parameter ST can be viewed as a problem size, which
can determine the robot’s running time. In this chapter, ST = 500.

B) Settings of network structures
The node functions used for the Khepera robot are shown in Table 3.1 and 3.2.

Each judgment node simulates the corresponding infrared sensor of the Khepera
robot, and returns a value probing the position of the robot. The judgment func-
tions of the Khepera robot is designed by its 8 real sensors, as shown in Table 3.1.
Discretization process is done in advance to handle the continuous sensor variables.
In this chapter, the continuous range [0, 1023] is divided into two intervals, i.e.,
[0, 1000) and [1000, 1023], to efficiently implement the IFLTE(a, b, c, d) function5.
Based on the returned sensor information, the robot can consequently determine its

40 means that no object is perceived, while 1023 means that an object is very close to the sensor,
almost touching the sensor.

5IFLTE(a, b, c, d) function means that if (a < b) then c else d, which is widely used for a range
of problems, i.e., robot control.
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Table 3.2: Processing functions for Khepera robot.

Function Symbol Description #Args.
P1, P2, P3, L(-10), L(-5), L(0), set Left motor speed at −10, −5, 0,

0
P4, P5 L(5), L(10) 5 and 10

P6, P7, P8, R(-10), R(-5), R(0), set Right motor speed at −10, −5, 0,
0

P9, P10 R(5), R(10) 5 and 10

processing actions by setting the speeds of its two motors. For each motor, the robot
can take speeds ranging from the continuous space [−10,+10]. In this chapter, the
speed that the robot can take is discretized into the set of −10,−5, 0, 5, 10. Of
course, more potential speeds with many values could be defined, which increases
the precision. However, this will cause the exponential increase of the search space.
As shown in Table 3.2, the speed of each motor is discretized into 5 candidate
values, which has shown to be sufficient in the experiments. The time delay of
judgment nodes is set at 1 time unit, that of node transition is set at 0 time unit
and that of processing node is set at 5 time units. The robot will take one step
of actions when 5 or more time units are used. For example, after executing four
judgments, if another one processing is executed, the total time units become 9,
which leads to the end of one time step. On the other hand, the simulation ends
when the end condition is satisfied, that is, the time step exceeds ST , i.e., 500
in this chapter, which means the task will end when the robot moves 500 time steps.

C) Parameter settings
The parameter settings are shown in Table 3.3. In order to study the proposed

algorithm, the number of populations |R| is set at six, not single one as the standard
PMBGNP, and the total number of individuals is set at a small value to evaluate
the motivation of this work. The crossover and mutation probabilities in GNP
and hPMBGNP are set appropriately through the simulations, i.e., pc = 0.1 and
pm = 0.01 are used for both GNP and hPMBGNP in this chapter. Each probability
vector is constructed for its corresponding population, therefore total six probability
vectors exist in hPMBGNP. Two of them are evolved by crossover and the rest four
are evolved by mutation.

The number of judgment nodes is set at 40, which means each kind of judgmen-
t function has 5 corresponding judgment nodes. Meanwhile, 20 processing nodes
exist in an individual, which means each kind of processing function has 2 corre-
sponding processing nodes. The total number of branches |Nbra| in an individual is
|Nbra| = 40 × 2 + 20 = 100, therefore the size of the search space of PMBGNP in
the simulations is calculated by

Ψ(GNP ) = (|NGNP | − 1)|Nbra| = 59100. (3.19)

The population size is set at relatively small, i.e., 300, in order to evaluate the
performance of this study under a small sample size. In each generation, GNP
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Table 3.3: Parameter settings.

Parameter GNP PMBGNP hPMBGNP
Number of populations |R| 1 1 6

Number of individuals per population M – – 50
Total number of individuals N 300 300 300

– Crossover 120 – –
– Mutation 179 – –

– Elite 1 1 6
Number of probability vectors – 1 6

– Crossover – – 2
– Mutation – – 4

Number of promising individuals – 150 25
Crossover probability pc 0.1 – 0.1
Mutation probability pm 0.01 – 0.01

Number of judgment nodes 40 (5 for each kind of judgment function)
Number of processing nodes 20 (2 for each kind of processing function)

η, α – 0.04, 0.1

directly preserves the best individual to the next generation, and the remaining
individuals are generated by crossover and mutation (120 by crossover and 179 by
mutation). For PMBGNP, 299 individuals are generated by sampling the probabilis-
tic model, and combined with the elite individual to form the next new population.
In the proposed algorithm, the process of evolving each population is the same as
PMBGNP and finally 294 new individuals and 6 elite individuals corresponding to
6 populations are combined to form the new population.

3.4.3 Simulation results

The simulation environment is shown in Fig. 3.2. Fig. 3.3 shows the average fitness
curves of the best individuals in each generation over 30 independent simulations.

In the early generations, PMBGNP and hPMBGNP show better fitness than
GNP because the probabilistic models have higher evolution ability to find better
solutions. However, when the generation goes on, PMBGNP suffers serious diversity
loss due to that the sample size (i.e., 300) is much smaller than the required one.
Moreover, since PMBGNP does not have any mechanism to preserve the diversity,
it quickly converges to a local optimum.

GNP shows better fitness values than PMBGNP, because even if poor individuals
are generated in an initial generation, crossover and mutation can explore the search
space in each generation, which avoids the premature convergence.

The proposed hPMBGNP shows the best fitness among the three algorithms.
Comparing with PMBGNP, the simulation result confirms that the proposed al-
gorithm can maintain the population diversity that avoids the local convergence.
On the other hand, the result shows that hPMBGNP has faster convergence than
GNP in an early generations, and achieves better fitness value than GNP in the last
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Figure 3.3: Simulation results of GNP, PMBGNP and hPMBGNP in Simulation 1.

Table 3.4: Result of t-test between GNP and hPMBGNP in Simulation 1.

GNP hPMBGNP
Mean 0.66 0.68

Standard deviation 0.15 0.06
T-test (p value) 4.72e-01 –

generation.
Table 3.4 shows the results of t-test of the mean fitness values between

GNP and hPMBGNP. The p value although shows that although there is not
significant difference, hPMBGNP shows competitive results comparing with GNP.

C) Generalization ability
To testify the generalization ability of the proposed algorithm, the robot is e-

valuated in an testing environment as shown in Fig. 3.4. The best solutions6 of
GNP and hPMBGNP are used to control the robot. The average fitness values of
each algorithm are calculated based on 1000 independent trials. Table 3.5 shows
the performance of GNP and hPMBGNP in the testing environment. The average
fitness value and standard deviation7 in Table 3.5 show that the proposed algorithm
achieves the best average fitness value, and the t-test result shows that there are
significant differences between GNP and hPMBGNP.

630 independent runs can obtain 30 best solutions.
7For each best solution, the average fitness value and standard deviation can be calculated from

1000 independent trials. The final average fitness value and standard deviation can be obtained
from the 30 average fitness values and standard deviations.
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Figure 3.4: Testing environment.

Table 3.5: Result of t-test between GNP and hPMBGNP in the testing environment.

GNP hPMBGNP
Mean 0.33 0.37

Standard deviation 0.10 0.07
T-test (p value) 4.39e-02 –

3.4.4 Effect of multiple probability vectors

In this subsection, the number of populations |R| and the number of individuals in
each population M are set at various values to study the effects of multiple prob-
ability vectors. Most simulation settings are the same as Table 3.3, while different
settings of |R| and M are used.

The total number of individuals N equals to 300. Since there are so many
combinations of |R| and M , we simply define that each population has the same
number of individuals, which means M = N/|R|. Therefore, four simulations are
tested, where the settings of |R| are like |R| = 4, |R| = 5, |R| = 6 and |R| = 78.
Table 3.6 shows the detailed parameter settings of the 4 simulations. Fig. 3.5 shows
the effects of different |R| on the best fitness curves.

For each simulation, at least 2 populations are needed for crossover, and mutation
is applied to the remaining populations. Since crossover has little exploration ability,
a small number of populations |R| will cause small mutation effects, which can not
guarantee enough exploration ability to obtain the best performance. Therefore, in

8In the simulation of |R| = 7, 6 populations consist of 43 individuals and 1 population consists
of 42 individuals.
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Table 3.6: Parameter settings of 4 simulations.

Simulation |R| = 4 |R| = 5 |R| = 6 |R| = 7

Number of individuals per population M 75 60 50 42, 43
Total number of individuals N 300
Number of probability vectors 4 5 6 7

– Crossover 2 2 2 2
– Mutation 2 3 4 5

Number of promising individuals 35 30 25 20
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Figure 3.5: Effects of different values of |R|.

the case of |R| = 4, the simulation achieves the worst performance. On the other
hand, too large |R| will make too small population size M , which cannot guarantee
enough sample size to estimate an accurate probabilistic model. It is found from
Fig. 3.5 that |R| = 6 is an appropriate value among the four simulations.

3.4.5 Diversity maintenance comparison between PMBGNP and
hPMBGNP

To evaluate the diversity maintenance, we compare the change of o(z) in PMBGNP
and hPMBGNP, where o(z) represents the number of probabilities equal to zero in
branch z as defined in Definition 4.

In PMBGNP, once the probability in the probabilistic model is equal to zero,
the corresponding variable will never be sampled in the future generations, while
hPMBGNP can explore its search space by mutation to overcome this problem.
All the probabilities are considered in the probabilistic models, where the following
values are used.

Definition 6 SUM(o) represents the total number of probabilities equal to zero in
the probabilistic model, and we can easily know
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SUM(o) =
∑

z∈Nbra

o(z). (3.20)

The value SUM(o) can also represent the convergence of the probabilistic model.
However, one should note that exponential smoothing method of Eq. (2.7)

causes the probabilities never equal to zero theoretically, once they are not equal
to zero in the first generation. The probabilities tend to decrease with respect
to the smoothing rate α, if they are smaller than the other probabilities of the
same branch. Therefore, in order to calculate the value of SUM(o) to compare the
diversity maintenance between PMBGNP and hPMBGNP, the following assumption
is used.

Assumption 1 In the probabilistic model, a probability P (b(i), j) is regarded as
zero, if it satisfies

P (b(i), j) < 1.0× 10−6. (3.21)

Although the probabilities smaller than 1.0×10−6 are not actually equal to zero,
these probabilities are too small to be sampled. Therefore, Assumption 1 is not
contrary to the probabilistic model, but makes it possible for SUM(o) to converge.

Simulation 1 is used to compare the diversity maintenance between PMBGN-
P and hPMBGNP. It can be found from Table 3.3 there are |NGNP | − 1 = 59

probabilities in each branch, and each individual consists of |Nbra| = 100 branches.
Therefore, the total number of probabilities in the probabilistic model Nprob can be
calculated by

Nprob = |Nbra| × (|NGNP | − 1)

= 100× 59 = 5900. (3.22)

Therefore, the probabilistic model of PMBGNP consists of Nprob = 5900 prob-
abilities. On the other hand, since hPMBGNP consists of |R| = 6 probabilistic
models, total 6 × Nprob probabilities are obtained. In order to make a fair com-
parison, after counting the number of probabilities equal to zero SUM(o) for each
algorithm, SUMPMBGNP(o) is compared with SUMhPMBGNP(o)/6 in the simula-
tions.

Fig. 3.6 shows the comparison of the diversity between PMBGNP and hPM-
BGNP. In the figure, the y-axis of PMBGNP is calculated by SUMPMBGNP(o),
while that of hPMBGNP is by SUMhPMBGNP(o)/6. From this simulation, it is
shown that the probabilistic model of PMBGNP converges during the evolution
process.
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Figure 3.6: Comparison of the diversity between PMBGNP and hPMBGNP.

Theorem 5 A probabilistic model of PMBGNP converges, if it satisfies

SUM(o) = Nprob − |Nbra|. (3.23)

Proof 5 If the probabilistic model of PMBGNP converges, the probabilistic model
will always produce the same individual, which means every branch is sampled to
connect to a specific node with probability 1. In this case, if branch z is sampled to
connect to a specific node with probability 1, it means that the number of probabilities
equal to zero in branch z is

o(z) = (|NGNP | − 1)− 1 = |NGNP | − 2. (3.24)

Then, the total number of probabilities equal to zero in the probabilistic model is

SUM(o) = |Nbra| × o(z) = |Nbra| × (|NGNP | − 2)

= |Nbra| × (|NGNP | − 1)− |Nbra|. (3.25)

By applying Eq. (3.22) to Eq. (3.25), Theorem 5 is proven.

�
Based on Theorem 5, it can be easily found that the probabilistic model of

PMBGNP has converged in this simulation, since

SUMPMBGNP(o) = Nprob − |Nbra|

= 5900− 100 = 5800. (3.26)

On the other, mutation can avoid the convergence of the probabilistic model
of hPMBGNP. From Fig. 3.6, it is found that SUMhPMBGNP(o)/6 is fluctuated
around 5300, and never converge. Therefore, hPMBGNP can maintain the diversity
to find the optimal solution gradually.
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3.5 Summary

In this chapter, the issue of the population diversity loss in PMBGNP has been
studied by the theoretical comparison with conventional EDAs. The analysis shows
that the diversity loss is especially serious in EDAs with more complex structures,
such as PMBGP and PMBGNP. Based on the analysis, a hybrid PMBGNP is pro-
posed to maintain the population diversity through multiple probability vectors and
genetic operator. This chapter theoretically analyze the diversity maintenance of the
proposed algorithm. It is further applied to control the movement of Khepera robot,
where the experimental results show the superiority of the proposed algorithm.

Until now, the basic framework of PMBGNP and its diversity maintenance have
been studied. The performance of PMBGNP has been verified in both data mining
and the problems of controlling the agents’ behavior, such as robot control. The next
chapter will focus on studying the improvement of PMBGNP by combining it with
Reinforcement Learning (RL) techniques. From the perspective of applications, the
problems of controlling the agents’ behavior will be emphasized in the remaining
chapters.
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4.1 Introduction

Although any selection strategy [Zhang 2004] can be used, most of the curren-
t classical EDAs including PMBGNP generally uses truncation selection to se-
lect the promising individuals for the probabilistic modeling [Mühlenbein 1996,
Pelikan 2002a, Yanai 2003, Li 2010c], while the bad ones are ignored. In trunca-
tion selection, the individuals with the highest fitness values (good individuals) are
selected, while the ones with the lowest fitness values (bad individuals) are omit-
ted. However, many studies have reported that utilizing the bad individuals would
benefit the evolution process [Yu 2008, Brownlee 2008], which leads to an impor-
tant research topic in EDAs. This is because they generally contain some useful
information that may benefit the further search of EDAs.

In general, there are two ideas to utilize the bad individuals in EDAs. The
first idea is directly taking into account the bad individuals to the construction
of probabilistic models. In certain aspects, this work is related to the selection of
EDAs, since it can be transformed to the problems of how to select the individ-
uals to be estimated with respect to the true distribution of the search space. In
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[Brownlee 2008], the authors selected a part of the worst individuals for the model
construction and obtained better performance in some problems, where the proba-
bilistic model is unlikely to perfectly match with the fitness function. However, for
many other problems, the bad individuals will break the useful information of good
ones to construct an inaccurate model. Another attempt called EDAs without ex-
plicit selection [Yanai 2003, Munetomo 2008] uses the entire population to estimate
the probabilistic model, where each individual is given a weight w.r.t. its fitness
value. However, one important drawback of these methods is that they sometimes
do not achieve good performances since it is hard to control the weights of different
individuals.

The second idea is to use the bad individuals to filter sample errors
[Miquélez 2004, Hong 2009]. [Miquélez 2004] divides the entire population to sev-
eral groups and Bayesian classifiers are built to create new individuals taking into
account the characteristics of the best classes and avoiding those of the worst classes.
Similarly, [Hong 2009] proposed a method that estimates two probabilistic models
corresponding to the good and bad individuals, where the model of the good individ-
uals is used to sample new individuals and the one of the bad individuals is applied
to filter sample errors. These research showed some advantages of convergence speed
over standard EDAs.

This chapter proposes a novel method to use the bad individuals [Li 2012]. The
point is to extract the useful information of bad individuals and utilize them to
the probabilistic modeling, where the useful information can be represented as sub-
structures of individuals. We can easily observe that if the useful sub-structures are
extracted, they can be directly taken into account for the probabilistic modeling,
which benefits the problem solving. Therefore, in certain aspects, if adopting this
idea to EDAs, the selection step of EDAs can be transformed to the problem of how
to identify and extract the useful sub-structures of individuals. One way to achieve
this task is to design the fitness functions which can explicitly identify the useful sub-
structures, such as [Chen 2010]. However, for most problems whose fitness functions
are designed to evaluate the quality of the entire individuals, this task becomes hard
to achieve.

To extract the useful sub-structures from the bad individuals, a RL technique
named Sarsa learning [Sutton 1998] is used to combine with PMBGNP. In the pro-
posed method, the useful sub-structures are represented as the state-action pairs
with higher Q values than the others, where the Q values are calculated by Sarsa
Learning. The proposed method are evaluated by applying to Khepera robot control,
and compared with some other methods of utilizing the bad individuals proposed in
EDA community. It is expected that a novel viewpoint would be provided to EDA
from this method.

The next section describes the proposed method in details. Section 4.3 introduces
the related methods of using the bad individuals in PMBGNP for comparison, which
are inspired by the other work of this topic in EDA. The experimental study is carried
out in Section 4.4. Finally a summary of this chapter is presented.
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4.2 The proposed method

As most of the other EDAs, PMBGNP applies truncation selection to bias the
population towards the good individuals, while the bad individuals are ignored. In
this section, a new method is proposed to take into account the bad individuals for
the probabilistic modeling, where the useful sub-structures of the bad individuals
are extracted.

4.2.1 Preliminaries

In the problems of controlling the agents’ behavior, each PMBGNP individual n ∈ G

can be viewed as a policy of the agents [Sutton 1998], where the transitions among
the nodes of the individual are used to control the agents.

Definition 7 (Episode) Given a PMBGNP individual n ∈ G, an episode is de-
fined by the sequence of node transitions obtained during the execution of individual
n.

Definition 8 (State) State s is defined as a branch of a node in G. Therefore, the
set of states S refers to the set of branches in G, represented by B (S = B).

Definition 9 (Action) Action a is defined as a node in G. Therefore, the set of
actions A corresponds to the set of nodes Nnode in G (A = Nnode).

With such definitions, the PMBGNP population with total M individuals can
generate M episodes, which can be further factorized to M sequences of state-action
pairs. For each episode, the state-action pairs can be represented as follows

(S,A)n = {(s1, a1)n, (s2, a2)n, ..., (sL, aL)n}, (4.1)

where,
L: length (final time step) of episode n.

Fig. 4.1 depicts an example of the procedures to obtain a sequence of state-
action pairs. Concretely speaking, an activated branch corresponds to the current
state, while the selection of the next node represents an action. Taking Fig. 4.1 as
an instance, when the agent stands in the current state at time step t3, i.e., branch
1 of node 4, it decides an action to select node 6 to transit. Therefore, the states
and actions can be substituted by branches and nodes of G, respectively, which says
that a node connection is equivalent to a state-action pair.

Definition 10 (State-action pair) A state-action pair (s, a) corresponds to a n-
ode connection from branch s to node a.
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Figure 4.1: An example of the procedures to factorize a PMBGNP individual to the
sequence of state-action pairs.

4.2.2 Reinforcement Learning

Reinforcement Learning (RL) is a powerful technique to study the interactions be-
tween agents and environments. The aim of RL is to find a policy π(s, a) which
maximizes the expected future discount sum of rewards received, where the poli-
cy π(s, a) can be generally represented by the sequences of state-action pairs. In
the case of Temporal-Difference (TD) Learning [Sutton 1998], the optimal policy is
generally approximated by updating the value functions, i.e., state-action values (Q
values) Q(s, a). Among various classical methods, Sarsa Learning [Sutton 1998] is
an on-policy method, where the Q values are updated based strictly on the true
actions the agent takes, which is different from the off-policy based Q Learning up-
dating the Q values by hypothetical actions (the maximum available action). In
other words, Q Learning commits to learn the deterministic optimal policy and the
exploration is separated by using the action selection policies, i.e., ε-greedy poli-
cy, while Sarsa Learning follows the true experience of the agents to update the Q

values. Since the aim of applying RL to this work is to collect the experience of
individuals, Sarsa Learning is therefore selected as the fundamental basis for the
updating of Q values in this chapter.

At time step t, the main function of Sarsa Learning for updating the Q values
depends on the current state-action pair (st, at) of the agent, the reward rt the
agent observes, and the new state-action pairs (st+1, at+1) in the next time step, as
shown in the following:

Q(st, at)← Q(st, at) + α
[
rt + γQ(st+1, at+1)−Q(st, at)

]
, (4.2)

where α (0 < α ≤ 1) is the learning rate, and γ (0 ≤ γ < 1) is the discount factor.
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4.2.3 Identification of useful sub-structures

The factorization of individuals to (S,A) makes it possible to identify and
extract useful sub-structures in the bad individuals, since the state-action
pairs are actually the sub-structures of GNP individuals. The task is achieved by
calculating the Q values of the state-action pairs, i.e., Q(S,A), using RL techniques.

A) Calculation of Q values
In the first generation, a Q table which consists of a set of Q(S,A) for all possible

combinations of state-action pairs is generated and the Q values are initialized to
0. During the task executions, Sarsa Learning is applied to update the Q values.
Suppose the population consists of M individuals, the procedure to update Q values
in each generation is as follows:
1: n = 1

2: while n ≤M do
3: execute individual n, obtain the sequence of state-action pairs (S,A)n
4: update Q(S,A) based on (S,A)n using Sarsa Learning
5: n++

In one generation, Sarsa Learning is applied to update the Q table M times.
With Definition 8 and 9, each Q(s, a) implies the quality of transitions between
two nodes in the GNP structure. Suppose the state of individual n at time t is
branch b(i) and its corresponding action is node j, which means the state-action
pair can be formed by (st, at)n = (b(i), j). Meanwhile, the state-action at time t+1

is (st+1, at+1)n = (b(j), k). Then, during the execution of individual n, the Q value
of (b(i), j) can be updated as follows:

Q(b(i), j)← Q(b(i), j) + α
(
rj + γQ(b(j), k)−Q(b(i), j)

)
, (4.3)

The immediate reward rj can be defined flexibly depending on different problems.
In this chapter, we use the following rule to define rj :

1. If node j is a processing node, then rj is given after processing node j, which
is defined depending on the concrete problem.

2. If node j is a judgment node, then rj = 0.

Eq. 4.3 inspires that good state-action pairs are given higher Q values since
they can obtain higher immediate reward and expected future reward, while bad
state-action pairs tend to obtain lower Q values. Therefore, Q(b(i), j) can explicitly
judges whether state-action pair (b(i), j) is good or not.

B) Extraction of useful sub-structures
Given state b(i), the set of Q values Q(b(i),A) and the number of good actions

NG, the procedure to extract the set of good actions A(bGi ) is as follows:

1: count = 0

A(bGi ) = NULL
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2: while count < NG do
3: ĵ = argmax

j∈A
Q(b(i), j)

4: save ĵ into A(bGi )

remove Q(b(i), j′) from Q(b(i),A)
5: count++

The procedure is repeated for all states S, and finally all good state-action pairs
(S,AG) can be extracted. It means that the good actions for each state can be
extracted from the action space based on the Q values of state-action pairs, while
NG can be defined to control the number of good actions.

As discussed in the previous section, the bad individuals may include some useful
sub-structures to control the agent successfully. The extracted good state-action
pairs (S,AG) can be directly denoted as useful sub-structures. Therefore, such kind
of (S,AG) existed in the bad individuals can be extracted and viewed as useful
sub-structures, which are further incorporated into the probabilistic model.

4.2.4 Proposed probabilistic model

The population consisting of M individuals are separated to two classes, which
consists of N good individuals and M − N bad individuals. By utilizing useful
sub-structures of M − N bad individuals to the probabilistic model, the original
probabilistic modeling of PMBGNP Eq. (2.5) can be rewritten as follows:

P (b(i), j) =


1

Z(b(i))

(
M∑
n=1

(
δn(b(i), j) + ησn(b(i), j)

))
if j ∈ A(bGi ),

1
Z(b(i))

(
N∑

n=1

(
δn(b(i), j) + ησn(b(i), j)

))
otherwise,

(4.4)

where Z(b(i)) is the normalization function calculated as follows:

Z(b(i)) =
∑

j′∈A(b(i))

N∑
n=1

(
δn(b(i), j

′) + ησn(b(i), j
′)
)
+

∑
j′∈A(bGi )

M∑
n=N+1

(
δn(b(i), j

′) + ησn(b(i), j
′)
)
.

It implies that the good sub-structures of the bad individuals are taken into account
for the probabilistic model construction. For example, if action j at state b(i) is
identified as an good action (which means j ∈ A(bGi )), (b(i), j) will be denoted as a
good sub-structure and all (b(i), j) in the bad individuals will be directly taken into
account for the probabilistic model construction.

4.3 The compared methods

The following are the methods to compare with the proposed method:
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• GNP: the standard GNP which uses crossover and mutation to evolve the
population.

• PMBGNP: the standard PMBGNP which only uses truncation selection to
select the good individuals for the model construction.

Meanwhile, in order to testify the proposed method, the other methods to uti-
lize the bad individuals in EDAs community are also designed into the PMBGNP
framework for comparison. The following three methods are adopted into PMBGNP.

• Method 1: some of the worst individuals are selected for the probabilistic
model construction [Brownlee 2008].

• Method 2: all individuals are taken into account for the probabilistic mod-
eling, but each individual is given a weight of its fitness value for P (b(i), j)

calculation:

P (b(i), j) =

M∑
n=1

((
δn(b(i), j) + ησn(b(i), j)

)
fit(n)

)
∑

j′∈A(b(i))

M∑
n=1

((
δn(b(i), j′) + ησn(b(i), j′)

)
fit(n)

) ,

where fit(n) is the fitness value of individual n.

• Method 3: the method is designed based on [Hong 2009]. In this method,
two probabilistic models are constructed by standard PMBGNP which are
called good model PG and bad model PB. Good model is constructed by
estimating the probabilities from the good individuals, while bad model by
bad individuals. PG is used to sample new individuals, which is the same
as standard PMBGNP. However, PB also plays an important role to filter
the sample errors. For example, given individual n generated by PG, two
probabilities that individual n can be sampled from PG and PB, respectively,
denoted as PG(n) and PB(n), are calculated. These two probabilities are
compared. If PG(n) ≥ PB(n), individual n is generated successfully, otherwise
it is denoted as a sample error.

4.4 Simulations

A comparative study is carried out to solve the Wall-Following problems of Khepera
robot control, as shown in Chapter 3. The reward and fitness functions of Wall-
Following problems are the same as that of Eq. (3.17) and (3.18). The predefined
steps ST is set at {100, 300, 500} to study the performance of the proposed method
in the problems with different problem sizes.

In the context of the Wall-Following problem, given a population consisting of a
set of candidate individuals, although some of them are denoted as bad individuals
due to their low fitness values, it is easily observed that some good state-action
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Figure 4.2: Fitness curves in three Wall-Following problems.

pairs still exist in these bad individuals for providing high reward values to move
the robot successfully. If these good state-action pairs can be extracted correctly,
the problem solving process will speed up. Accordingly, the objective of this chapter
and the effectiveness of the proposed method can be verified by the simulations.

4.4.1 Experimental settings

The settings of the directed graph of PMBGNP are the same as that of Chapter 3.
The population size of GNP is set at 300, which consists of 1 elite individual, 120
crossover individuals and 179 mutation individuals. The crossover and mutation
rates are set at 0.1 and 0.01, respectively, which is the best settings defined by
hand-tuning.

As discussed in Chapter 3, PMBGNP suffers from the problem of the diversity
loss when the population size is not large enough. As a result, to ensure enough
population diversity for avoiding premature convergence, the population size of PM-
BGNP is set at 2000. In PMBGNP and its variants, such as Method 1, 2, 3 and
the proposed method, the top 50% individuals are denoted as good individuals,
and η is set at 0.04. PMBGNP directly uses the good individuals to construct the
probabilistic model. On the other hand, Method 1 further selects the worst 20%
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Table 4.1: The fitness (std. dev.) results.

ST = 100 ST = 300 ST = 500

GNP
0.88 0.82 0.66
(0.02) (0.09) (0.15)

PMBGNP
0.88 0.86 0.68

(0.02) (0.05) (0.09)

Sarsa
0.87 0.52 0.49

(0.04) (0.21) (0.22)

Method 1
0.88 0.87 0.64

(0.01) (0.02) (0.07)

Method 2
0.82 0.72 0.60

(0.08) (0.12) (0.10)

Method 3
0.87 0.87 0.68

(0.01) (0.02) (0.07)

Proposed
0.89 0.87 0.68
(0.01) (0.02) (0.09)

individuals to combine with the good individuals for the model construction. In
Method 3, the remaining 50% individuals are denoted as bad individuals for the
bad model construction. In the proposed method, the learning rate α and discount
factor γ are set at 0.1 and 0.9, respectively, which are determined by experiments,
while the number of good actions NG is set at 15.

In Sarsa Learning, the state space is defined by the combinations of returned
sensor values and the action space is defined by different settings of robot’s speed.
Therefore, the number of states is 28 = 256, since the domain of each sensor value
is divided into 2 intervals ([0,1000) and [1000,1023]). The number of actions is
5 × 5 = 25. The learning rate and discount factor of Sarsa are set at 0.1 and 0.9,
respectively.

The terminal condition is defined by the maximal number of fitness evaluations,
i.e., 300,000 in this chapter.

4.4.2 Simulation results

A) Fitness results
Table 4.1 shows the average fitness and standard deviation over 30 independent

runs, and the fitness curves are shown in Fig. 4.2.
The results show that among three problems, PMBGNP achieves better perfor-

mances than conventional GNP and Sarsa due to its probabilistic modeling. Sarsa
shows the worst results among all cases. This is because it has to update a huge size
of Q table (256 × 25 Q values in each step), which causes the slow learning speed
to find the optimal solution.

On the other hand, the methods that utilize the bad individuals for the proba-
bilistic modeling are summarized as follows:

(1) Method 1: In simple problems, i.e., ST = 100 or 300, Method 1 can achieve
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Figure 4.3: Average number of sample errors generated during the evolution process
by Method 3.

similar performance with PMBGNP. However, in the case of ST = 500, Method 1
cannot obtain good result. This is because the worst individuals are treated equally
with the good individuals for the probabilistic modeling, which sometimes provides
wrong information and destroy the probabilistic model. It is also mentioned in
[Brownlee 2008] that Method 1 can only work well in some problems.

(2) Method 2: In Method 2, one important drawback is that it is hard to
control the weights of different individuals, which will highly affect the performances.
Among three problems, Method 2 used in this chapter achieves the worst results.
The results show that although Method 2 allows fast convergence speeds, it quickly
falls into local optima.

(3) Method 3: In Method 3, the good model PG is constructed to generate
new individuals, while bad model PB is used to filter the sample errors. The fitness
results show it achieves similar performances to PMBGNP. However, one important
drawback of Method 3 is that it becomes more and more hard to generate valid
individuals during the evolution, since PB becomes more and more similar to PG.
Fig. 4.3 shows the average number of sample errors generated during the evolution
process by Method 3. It shows that in the later generations, almost 10 sample errors
are generated for sampling one valid individual, which takes a long time.

(4) Proposed: Among three problems, the proposed method obtains similar
fitness results to that of PMBGNP. However, it can be seen that the convergence
speed of the proposed method is much faster than PMBGNP especially in the
complicated problems like ST = 300 and ST = 500 as shown in Fig. 4.2. On the
other hand, comparing with the other methods that utilize the bad individuals, the
proposed method can obtain the best fitness results.

B) Required fitness evaluations (RFEs)
In order to compare the effectiveness of this work, the average number of required
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Table 4.2: The average number of required fitness evaluations (std. dev.) and t-test
results.

GNP PMBGNP Sarsa Method 1 Method 2 Method 3 Proposed

ST = 100

mean 52300 21467 52800 25347 59867 30905 16567
(std. dev.) (47379) (13373) (51392) (27585) (72637) (26115) (14916)
t-test (p value) 6.1e-04 7.4e-02 1.6e-03 2.8e-02 6.0e-04 1.9e-03 —

ST = 300

mean 132000 80500 194707 101400 213633 190850 58900
(std. dev.) (101807) (63884) (99035) (63904) (111499) (92185) (29222)
t-test (p value) 1.0e-03 2.4e-02 5.5e-08 2.8e-03 5.9e-08 3.6e-08 —

ST = 500

mean 211833 158800 232970 223667 272347 300000 117907
(std. dev.) (111542) (88578) (100870) (75976) (62144) (0) (58466)
t-test (p value) 1.9e-04 3.1e-02 7.6e-07 8.9e-07 1.2e-11 5.8e-17 —

fitness evaluations of different methods is compared to control the robot moving
around the wall successfully. The average number of required fitness evaluations
is calculated as follows: For each successful simulation run, the exact number of
fitness evaluations is counted, while the maximum number of fitness evaluations,
i.e., 300,000, is used for each failed run. Then, these numbers of 30 independent
runs are averaged. Particularly, the number of sample errors are also counted in
Method 3, since they also cost much time.

The average numbers of required fitness evaluations for the three Wall-Following
problems are shown in Fig. 4.4, and the results of the t-test are shown in Table
4.2. The simulation results indicate that the proposed method shows the fastest
convergence among the methods to solve the task successfully for the three Wall-
Following problems with different complexities. In addition, the results of the t-test
show that there are statistically significant differences between the proposed method
and the other ones.

Conclusively, the experiments show that with the correct extraction of useful
sub-structures of the bad individuals, the proposed method can speed up the
evolution process of PMBGNP, while some other methods proposed in EDAs
community show some limitations to achieve good performances.
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(c) ST = 500

Figure 4.5: Effect of parameter NG in the three Wall-Following problems.

C) Effect of parameter NG

In the proposed method, one important parameter NG should be set appropri-
ately to control the number of good actions, as discussed in section 4.3.

Fig. 4.5 shows the fitness curves of the proposed method with different settings
of NG in the three Wall-Following problems. When the value of NG is small, the
actions with higher Q values are highlighted in the probabilistic model. In that
case, the proposed method works as a greedy policy which has high possibility to
cause the premature convergence. On the other hand, if the value of NG is set at
a large value, many actions with low Q values are also counted in the probabilistic
modeling, which will decrease the convergence speed. Among the three problems in
this chapter, the appropriate setting of NG is 15.

4.5 Summary

In this chapter, a novel method has been proposed in PMBGNP to utilize the bad
individuals. The conventional methods showed some disadvantages, such as pre-
mature convergence and difficulty of parameter control, while the proposed method
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provides another viewpoint to utilize the bad individuals. That is, the proposed
method applies RL to identify and extract useful sub-structures of the bad individ-
uals, while the sub-structures are used in the probabilistic modeling of PMBGNP.
The results on Wall-Following problems show that the proposed method can ac-
celerate the evolution of PMBGNP in terms of requiring smaller number of fitness
evaluations.

On the other hand, this chapter provides a novel viewpoint to utilize the inte-
gration of EDA and RL. The idea of integrating RL can be used from the other
sights of EDA. In most of the advanced EDAs, the complex machine learning tech-
niques, such as Bayesian network and Markov/Conditional random fields, they are
very time consuming for constructing the probabilistic model. The construction of
the probabilistic model itself is an optimization problem. Consequently, there is a
trade-off between the probabilistic modeling and time cost in most of the current
research on EDA. There is limited work on studying the other machine learning
techniques to boost the performance of EDA, such as RL. The next chapter will
focus on proposing an algorithm named Reinforced PMBGNP to incorporate the
learning knowledge, i.e., Q values, into the probabilistic modeling of PMBGNP to
construct a more accurate model.
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5.1 Introduction

Standard PMBGNP is mainly based on the frequencies of node connections by
simple MLE which is inspired by the classical univariate EDAs, such as PBIL and
UMDA. In these algorithms, when an element is observed, i.e., variable/function,
a weight of 1 is just simply given to it, which may not measure its importance
precisely, however. In other words, all the observed elements are treated equally
in the probabilistic modeling, regardless of the significance of them which means
different individuals have different fitness values. Therefore, to estimate a more
precise model, one may consider this matter into the probabilistic modeling. That
is, the observed elements are used in the probabilistic modeling w.r.t. the fitness
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of their individuals [Yanai 2003, Munetomo 2008]. However, as studied in Chapter
4, this may not guarantee the performance of PMBGNP due to the hard control of
the weights [Li 2011].

On the other hand, in most of the advanced EDAs, the complex machine learn-
ing techniques, such as Bayesian network and Markov/Conditional random fields,
are incorporated, which are very time consuming for constructing the probabilistic
model. For example, most of the current advanced EDAs apply Bayesian network
to capture the probability distribution of promising individuals. These include the
famous BOA, EBNA, LFDA, POLE, etc. In these EDAs, Bayesian network is used
to represent the probabilistic model, in which the connections between the variables
denoted by the nodes of the Bayesian network actually represent the corresponding
interactions. As a result, the construction of the probabilistic model in EDA is trans-
ferred to the construction of the Bayesian network through learning the promising
individuals obtained by truncation selection. However, learning the Bayesian net-
work itself in every generation is actually an optimization problem. Even the greedy
algorithms are generally employed to construct the Bayesian network, this process
is still quite time consuming. Improving the efficiency of the probabilistic modeling
becomes one of the essential challenges in EDA.

Following this viewpoint, Reinforced PMBGNP (RPMBGNP) [Li 2013] is pro-
posed in this chapter, where RL is combined with evolution to overcome the above
problem. Inspired by behaviorist psychology, RL concerns with reinforcing the
growth of the individuals by learning their experiences to approximate the Q values
of state-action pairs. RPMBGNP first factorizes the entire solution to a sequence of
state-action pairs, and calculates the Q values of state-action pairs which are further
incorporated in the probabilistic modeling. By defining the state-action space using
PMBGNP’s graph structure, RL is capable of studying the sub-structure (node con-
nections) of PMBGNP individuals during their executions. The learning knowledge,
i.e., Q values, are used to build the probabilistic model of PMBGNP, which directly
benefit the problem solving of controlling the agents’ behavior. More importantly,
the learning of Q values through RL only requires linear time cost with respect to
the problem size. As a result, the construction of the probabilistic model through
RL actually requires similar time cost to the original univariate model-based EDAs,
which is time saving comparing with the current Bayesian network-based EDAs.

The rest of this chapter is organized as follows: the next section briefly introduces
the previous work related to this chapter, and highlights the contribution of this work
by comparing with the others. Section 5.3 describes RPMBGNP in details. The
experimental study is carried out in section 5.4 and 5.5. Section 5.6 summarize this
chapter.

5.2 Related work and comparison

Many previous studies have successfully applied RL to EC for the problems of con-
trolling the agents’ behavior [Downing 2001, Kamio 2005, Mabu 2007b].
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In certain respects, this topic can be explained as the combination of global
search (population evolution) and local search (individual learning), which has been
widely discussed by the Baldwin effect [Downing 2001]. It relies on the fact of phe-
notypic plasticity that an individual has ability to adapt to its environment during
its lifetime, where the successful adaptation which increases the fitness results will
tend to proliferate in the population [Baldwin 1896]. In order to achieve the adapt-
ability, Downing [Downing 2001] proposed Reinforced GP (RGP) method by adding
a special form of leaf nodes called choice nodes to GP’s tree structure, where the
actions/functions of the choice nodes are determined during the individual learning
by Q Learning. Therefore, Q Learning is the computational analog of phenotypic
plasticity in biological evolution, where the learning knowledge are represented by
Q values of the state-action pairs. Kamio and Iba [Kamio 2005] proposed anoth-
er method named GP+RL to integrate GP and Q Learning, where evolution and
learning are executed step by step. That is, the evolution is first done to find the
roughly optimal tree structures of GP, then Q Learning is carried out to adapt the
functions of action nodes in GP. Mabu et al. [Mabu 2007b] proposed GNP-RL to
integrate GNP and Sarsa Learning, where the most important difference comparing
with the previous methods is how to create state-action spaces (Q tables). RGP
uses the GP structures, i.e., statements from root to leaf nodes, to define its state
space. GP+RL uses the real states to define its state space, which is similar to the
standard RL. Both of them face a problem that the state space may become ex-
tremely large causing the difficulty of the learning process, especially when solving
the complex problems. On the other hand, GNP-RL provides an alternative way to
overcome this problem. That is, it creates the Q tables using its graph structure,
where the nodes of GNP’s graph structure represent the states and the selection of
a function/sub-node in each node corresponds to the actions. In the other words,
the size of its state space is only based on the number of nodes in GNP’s graph
structure, which is generally relatively small.

The key point of these remarkable methods integrating EC and RL is to create
the adaptation of individuals to find the global optimum. Therefore, they need to
change the original tree and graph structures of GP and GNP to create the adap-
tation ability. In this chapter, we propose a very different algorithm to integrate
EC and RL, named Reinforced PMBGNP (RPMBGNP). The basic idea of RPM-
BGNP is to create the state-action space using GNP’s graph structure, and apply
Sarsa Learning to update the Q table of state-action pairs based on the individual
executions. At the end of each generation, the learning knowledge, i.e., Q values of
all state-action pairs, are incorporated in the probabilistic modeling of PMBGNP.
Therefore, the primary objective of RPMBGNP is to improve the evolution effi-
ciency in terms of constructing more accurate probabilistic model by RL, rather
than to achieve the adaptation ability. The features of RPMBGNP comparing with
conventional methods are:

• Conventional methods change the structures of GP/GNP by introducing sub-
nodes, while RPMBGNP does not.
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• Conventional methods defines its state-action spaces by either the real states
or the introduced sub-nodes, while RPMBGNP defines its state and actions
by the graph structure of GNP.

• Conventional methods create multiple Q tables corresponding to each individ-
ual, while RPMBGNP only create and maintain one Q table which leads to
the faster convergence of the Q table.

• Conventional methods require the action selection policies, i.e., ε-greedy poli-
cy, to use the Q values, while RPMBGNP only uses them for the probabilistic
modeling.

In EDA field, a univariate PMBGA named Reinforcement Learning EDA
(RELEDA) [Paul 2003] is the only limited study on integrating EDA and RL tech-
niques. It introduces a number of parameters denoted by θ = {θ1, θ2, ..., θn}, where
θi is a parameter corresponding to the allele/variable Xi, and the estimation of the
probability distribution is based on the update of θ designed by the analog of RL
in iterative process.

On the other hand, RPMBGNP holds the assumption of RL called Markov
property. That is, the conditional probability distribution P(·) of state st at time t

depends only upon its previous state st−1, formulated as follows:

P(st|st−1, st−2, ..., s0) = P(st|st−1). (5.1)

Although some tasks are non-Markov, the assumption of Markovian provides a the-
oretical basis of RL for predicting future rewards and for selecting actions to obtain
good performance in RL problems [Sutton 1998]. From this point of view, there
is a class of EDAs, especially PMBGAs, based on Markov Random Fields/Markov
Network [Santana 2005, Shakya 2006, Brownlee 2009]. However, these methods and
RELEDA are used to solve function optimization problems rather than to solve the
problems of controlling the agents’ behavior as RPMBGNP.

There is another recent work called EDA-RL [Handa 2009], which applies con-
ditional random fields (CRFs) to construct its probabilistic model. It has has been
reported to successfully solve simple problems of controlling the agents’ behavior,
but fail on some complex partially observable problems. On the other hand, RL
techniques are not used in this algorithm, even the name RL is indicated which
mainly means that it is designed to solve RL problems.

5.3 Reinforced PMBGNP (RPMBGNP)

The main feature of RPMBGNP is to apply RL technique to learn the experience of
individuals by approximating the knowledge so-called Q values. Consequently, the
learnt Q values can measure the quality of sub-structures of PMBGNP, i.e., node
connections, which has been discussed in Chapter 4. However, different from the
method proposed in Chapter 4, the objective of using RL in RPMBGNP is to model
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a more accurate model than the MLE-based model through directly incorporating
the Q values, rather than using Q values for extracting useful sub-structures from
the bad individuals in Chapter 4. As a result, this chapter can be considered as a
straightforward extension of Chapter 4 which makes the study of the integration of
PMBGNP and RL more comprehensively.

5.3.1 Updating of Q values

The factorization of individuals to the sequences of state-action pairs has been dis-
cussed in Chapter 4.

After defining the directed graph structure G of PMBGNP, a Q table which
consists of the Q(S,A) values for all possible combinations of state-action pairs is
generated. By Definition 10 we can substitute the state-action pairs with the node
connections of PMBGNP. As a result, the structure of the Q table is similar to
that of the probabilistic model of PMBGNP, as shown in Fig. 2.2.(b). The initial
Q(S,A) values can be either 0 or positive constants, which are problem specific. In
this chapter, we initialize all Q(S,A) values at 0.

During each individual execution, the executed node transitions are recorded
sequentially, where the memorized sequence of state-action pairs forms the episode
of RL, as the instance shown in Fig. 4.1. After obtaining the episodes, Sarsa
Learning is applied to update the Q value of each state-action pair. Suppose the
current state and action at time step t are respectively b(i) and j, which means
the current state-action pair (st, at) is formed by node connection (b(i), j), and the
state-action pair in the next time step is (st+1, at+1) = (b(j), k). Then, the Q value
of (b(i), j) is updated by:

Q(b(i), j)← Q(b(i), j) + α
[
rj + γQ(b(j), k)−Q(b(i), j)

]
, (5.2)

where,
rj : reward of choosing node j at branch b(i) of node i, and,

1. In the case of NTj = 1 (j is a judgment node), rj = 0.

2. In the case of NTj = 2 (j is a processing node), rj is given after processing
node j, which is problem specific.

The procedure of updating Q values in each generation is shown in Algorithm
5. It describes that the Q values are updated based on the execution of the best
individuals (truncation selection with size N). As a result, we can collect the expe-
rience of the promising individuals into one Q table which consists of all Q(S,A)
values.

5.3.2 Probabilistic model of RPMBGNP

As described above, with Definition 10, the state-action pairs of RL is equivalent
to the corresponding node connections of PMBGNP. Consequently, the good state-
action pairs will be rewarded with higher Q values by RL, and vice-versa, which
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Algorithm 5 Algorithm for the updating of Q values
1: n← 1;
2: for n ≤ N do
3: execute individual n, and obtain the episode (sequence of state-action pairs)

(S,A)n;
4: update the corresponding Q values of (S,A)n using Eq. (5.2);
5: n← n+ 1;

implies that the collected Q values can explicitly express the quality of node con-
nections of PMBGNP. By using these learnt information properly, we can estimate
a more accurate probabilistic model for PMBGNP.

Incorporating the learnt Q values, the connection probability P (b(i), j) of RPM-
BGNP is calculated as follows

P (b(i), j) =

exp

(
Q(b(i),j)

T

)
Z(b(i))

. (5.3)

The normalization function Z(b(i)) is calculated by

Z(b(i)) =
∑

j′∈A(b(i))

exp

(
Q(b(i), j′)

T

)
,

where,
T : temperature parameter.

As indicated in Eq. (5.3), Boltzmann distribution is employed in the probabilis-
tic modeling of PMBGNP to correct its convergence. The reason for introducing
Boltzmann distribution is because of the issue of the population diversity in
PMBGNP proven in Chapter 3, which causes the large required population size M .

A) Required population size
Use a similar expression of the diversity loss discussed in Theorem 3, the di-

versity loss rate of a node connection is defined as follows:

Definition 11 (Diversity loss rate) In PMBGNP, the diversity loss rate
DL(b(i), j) of a node connection (b(i), j) in the current generation is represented
by the probability that the node connection (b(i), j) is not sampled in the next gen-
eration.

Therefore, we can calculate the diversity loss rate of node connection (b(i), j)

by:

Lemma 1 Given the population with total M individuals, the diversity loss rate of
node connection (b(i), j) in PMBGNP is calculated by

DL(b(i), j) =
(
1− P (b(i), j)

)M
. (5.4)
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Lemma 1 can be easily proven using the same way of Theorem 1 and
DL(b(i), j) is ranging at (0, 1]. In PMBGNP, once the probability P (b(i), j) is
equal to 0, the corresponding node connection (b(i), j) will never be sampled in the
future generations, which can say that its diversity is lost and DL(b(i), j) = 1.

The required population size M of PMBGNP can be estimated by discussing its
diversity loss. In the simplest way, M can be obtained by discussing its lower/upper
bound of required sample size N (the number of best individuals in truncation selec-
tion) in the initial generation. This is because in the extremely case, the lower/upper
bound of M can be represented by that of N , since N ≤M . Therefore, we have

M ∈
[

1

P (b(i∗), j∗)
,∞
)
, (5.5)

where P (b(i∗), j∗) is the initial value of the probabilistic model, which equals to
1/(|Nnode| − 1). Theoretically at least |Nnode| − 1 individuals should be obtained
to sample all node connections in the population. However, simply obtaining the
individuals with the lower bound cannot estimate an accurate model, and it is im-
practical to obtain infinite individuals to construct the perfect model. Therefore,
the size of M is generally determined by the problems. Nevertheless, since the
probability distribution of PMBGNP is actually the multinomial distribution, the
required population size of multinomial distribution could be investigated by confi-
dence interval [Hasegawa 2008], in which the lower bound of M can be represented
for a given confidence coefficient. Following this point of view, M could be obtained
by the diversity loss rate and a given confidence level ε.

Lemma 2 Given a confidence level ε (ε ≪ 1) that defines the acceptable diversity
loss rate, the required population size M of PMBGNP satisfies

M ≥ ln ε

ln
(
1− 1

|Nnode|−1

) . (5.6)

Proof 6 With Lemma 1, for a given node connection (b(i), j), its diversity loss rate
has the relation of DL(b(i), j) = (1 − P (b(i), j))M ≤ ε. After logarithmic process,
the inequality can be rewritten as

M ≥ ln ε

ln
(
1− P (b(i), j)

) .
Using the initial value of P (b(i), j), Eq. (5.6) can be obtained. �

As a result, the lower bound of M of PMBGNP is:

MPMBGNP =
ln ε

ln
(
1− 1

|Nnode|−1

) . (5.7)
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Similarly, the lower bound of M of univariate model-based PMBGA and PM-
BGP, i.e., UMDA and PIPE, can be calculated by replacing the initial values of the
probabilistic model:

MPMBGA =
ln ε

ln
(
1− 1

2

) =
ln ε

ln 1
2

. (5.8)

MPMBGP =
ln ε

ln
(
1− 1

|ϕ|

) . (5.9)

B) Boltzmann distribution
By comparing the above three Eq.s, the sensitivities of the diversity loss among

different EDAs can be easily drawn, which have also been discussed in Chapter 3.
As a result, to estimate an accurate probabilistic model with the same confidence
level, PMBGP and PMBGNP need very large M , however, which is impractical
in many real-world problems. To overcome this problem and to evolve practical
populations, one way is to introduce some exploration methods, i.e., mutation op-
erator [Salustowicz 1997], laplace correction [Yanai 2003] and hybrid mechanisms
proposed in Chapter 3. Rather than simply adding the exploration regardless of the
probability distribution, Boltzmann distribution is used to relax the sample pres-
sure with respect to the estimated distribution of PMBGNP like Eq. (2.4). The
fundamental basis of Boltzmann distribution relies on the Hammersley-Clifford theo-
rem [Shakya 2006, Hammersley 1971] that any probability distribution with Markov
property can be represented with Boltmann distribution, and the process of GN-
P program can be viewed as MDP in certain degrees [Mabu 2007b, Eguchi 2006].
Meantime, Boltzmann distribution also makes all probabilities of the probabilistic
model positive values, which allows all node connections to be sampled possibly.
Another advantage of Boltzmann distribution comparing with hPMBGNP in Chap-
ter 3 is that the number of parameters to be controlled is reduced. In hPMBGNP,
there are 3 additional parameters to be controlled for the maintenance of population
diversity, such as the number of populations R, the crossover rate pc and mutation
rate pm, while Boltzmann distribution only requires us to tune the temperature
parameter T .

In Boltzmann distribution which is also known as Gibbs measure, i.e., p(x) =

exp(E(x)/T )/
∑

x′ exp(E(x′)/T ), a parameter called temperature (T ) is introduced
to explicitly control the convergence of the probabilistic model, where:

• If T →∞, the model becomes uniform distribution. In this case, all variables
are sampled equally, regardless of the values of their energy functions.

• If T → 0, the model becomes greedy distribution. That is, the variable with
the highest energy will be sampled with the probability of 1.

In this chapter, the energy function of the probabilistic model is the Q values, which
is E(b(i), j) = Q(b(i), j).
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Algorithm 6 Algorithm of RPMBGNP
1: |Pop| = M

t← 0

2: Pop(t) ← generate the initial population randomly;
Q(t) ← initialize the Q table;
Fit(t) ← evaluate the fitness of Pop(t);

3: Best(t)← execute truncation selection to select a set of best individuals, where
|Best(t)| = N , (N ≤M);

4: Q(t+ 1) ← update Q(t) by Algorithm 5;
5: P ← construct the probabilistic model using Eq. (5.3);
6: Pop(t+ 1) ← generate the new population according to Algorithm 1;

Fit(t+ 1) ← evaluate the fitness of Pop(t+ 1);
7: t← t+ 1

if the termination conditions are not met, go back to 3.

Therefore, the temperature parameter T can control the convergence of the
probabilistic model, where the appropriate value of T can be either fixed or changed
during the evolution process. In this chapter, we use an adaptive way to determine
the value of T , where large values of the temperature in early generations and small
ones in later generations are set to avoid the premature convergence and to find
the global optimum smoothly by balancing the trade-off between the exploration
and exploitation. A monotonically decreasing function is used in this chapter to
determine the temperature:

T =
τ

t+ 1
, (5.10)

where,
τ : coefficient.
t: the generation number.

The value of τ is determined by the energy function E(b(i), j), which can explic-
itly control the shape of Eq. (5.10).

5.3.3 Algorithm of RPMBGNP and comparison with PMBGNP

The pseudocode of RPMBGNP (Algorithm 6) is similar to PMBGNP, where the
process of constructing the probabilistic model is based on the Sarsa Learning tech-
nique.

Comparing with PMBGNP, the probabilistic model of RPMBGNP replaces the
connection and transition information between different nodes (the terms δn(b(i), j)
and σn(b(i), j) in Eq. (2.5)) with the learnt Q values according to RL. For instance,
in the PMBGNP, when a state-action pair, i.e., (b(i), j), is observed n̄ times among
best N individuals, a weight n̄ and its additional count of node transitions are just
simply given to it. However, in the RPMBGNP, the weight of the observed pair
(b(i), j) is determined by the Q(b(i), j) value, which is captured by RL.
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By calculating the frequencies of node connections and transitions using simple
MLE, PMBGNP aims to gather these information of the elite individuals for con-
structing its probabilistic model. However, RPMBGNP can implicitly collect these
two factors simultaneously. That is, the updated Q values can convey both of the
node connections and transitions information. Firstly, Sarsa Learning allows us to
capture the information of node connections since a Q value will be updated iff its
corresponding state-action pair is observed in the best N individuals. Secondly,
RPMBGNP records the node transitions as the episode of RL (as Definition 7),
and if a state-action pair is transited multiple times in one episode, its correspond-
ing Q value will be updated multiple times. This implies that the influence of node
transitions is implicitly considered into the updating of Q values. As a result, the
single term Q(b(i), j) can consider both of the node connections and transitions into
one whole.

From the perspective of time complexity, PMBGNP records all the node con-
nections of G in the best N indivieduals by MLE to construct its probabilistic
model, which requires time O(N |B|). Meantime, RPMBGNP spends only the time
on the updating of Q values, which needs time O(NL). This describes that even
RPMBGNP incorporates the additional technique of Sarsa Learning, it does not
increase the time complexity than that of conventional MLE based PMBGNP. This
shows the advantage of computation cost comparing with the conventional Bayesian
network-based advanced EDAs.

5.4 Experimental analysis on Tileworld system

In order to testify the effectiveness in the problem of controlling the agents’ be-
havior, PMBGNP and RPMBGNP are firstly applied to a benchmark testbed -
Tileworld system [Pollack 1990] for comparison with traditional algorithms. And
its performance on robot control is presented in the next section.

5.4.1 Tileworld system

The Tileworld system [Pollack 1990] is a well-known parameterized environment
to investigate the performance of intelligent agents. It consists of a grid of cells
on which various objects could exist, including agents, floors, obstacles, tiles and
holes. Due to its parameterization and high flexibility, Tileworld system has been
widely used for the development of intelligent agents and multi-agents [Mabu 2007b,
Eguchi 2006, Iba 1996, Pollack 1994].

The Tileworld system used in this chapter is designed by a 12×12 2-dimensional
grid world, as an example shown in Fig. 5.1. The world consists of multiple objects,
where each object occupies one cell of the world. In the world, the agent is capable of
judging the environment around it. By taking the appropriate actions based on the
returned results, the agent can move to its neighboring cells or avoid the obstacles
unless reaching the world’s boundaries. The agent can push a tile to its forward
cell by the action of move forward when there is not obstacle in the forward cell
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Figure 5.1: (a) Tileworld system (12×12 2-dimensional grid of cells). (b) Directions
that the agent can recognize in the Tileworld system. The figure shows that when
the agent faces west, the two tiles are located in its forward and right directions,
while the hole is in its backward direction.

of the tile. Once a tile is pushed into a hole, this tile and hole disappear and the
corresponding cell becomes a floor. The primary objective of the Tileworld system
is to find the optimal strategy that could control the agents to push tiles into holes
as many and fast as possible by given constrained steps.

In this chapter, the 12× 12 2-dimensional environment of the Tileworld system
consists of 3 agents, tiles and holes which are positioned in the Tileworld. In every
step, 3 agents are controlled for movement simultaneously. The agent is designed
to have 8 sensor abilities to judge the environment around it, as shown in Table
5.1. By the judgment functions J1 ∼ J4, the agent can perceive the contents of
its neighboring cells. The judgment functions J5 ∼ J8 are designed to perceive the
direction information of the tiles and holes. The agent can recognize four directions
of it in the world. These four directions are defined as the example shown in Fig.
5.1.(b).

Based on the returned arguments, the agent can take the following four pro-
cessing actions without arguments for movements, Move Forward, Turn Left, Turn
Right and Stay (Table 5.2). As a result, the programs of controlling the agents
can be formulated by the combinations of these judgment sensors and processing
actions.

5.4.2 Fitness function and experimental environments

To evaluate the agents’ behavior, the following three factors are taken into account:
in given constrained steps: The tiles should be pushed into the holes 1) as many as
possible, 2) using as less steps as possible, or 3) the tiles should be pushed towards
the holes as close as possible if there are remaining tiles that cannot be pushed into
the holes in the given steps. As a result, the evaluation function of the solutions for
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Table 5.1: Judgment functions for Tileworld system.

Function Symbol Description #Args. Content of Args.
J1 JF Judge Forward

5

1: Floor 2: Obstacle
J2 JB Judge Backward

3: Tile 4: Hole
J3 JL Judge Left

J4 JR Judge Right 5: Agent

J5 DT
Judge the Direction of the nearest

5

1: Forward 2: Backward
Tile from the agent

J6 DH
Judge the Direction of the nearest

3: Left 4: Right
Hole from the agent

J7 DHT
Judge the Direction of the nearest

5: Cannot find
Hole from the nearest Tile

J8 DST
Judge the Direction of the Second

nearest Tile from the agent

Table 5.2: Processing functions for Tileworld system.

Function Symbol Description #Args.
P1 MF Move Forward

0
P2 TL Turn Left

P3 TR Turn Right

P4 ST Stay

the Tileworld system is formulated as follows

f = ct × DT︸︷︷︸
1)

+cs ×∆ST︸ ︷︷ ︸
2)

+cd ×

[ ∑
t∈Tile

(
D(t)− d(t)

)]
︸ ︷︷ ︸

3)

, (5.11)

and ∆ST denotes the remaining steps calculated by

∆ST = (ST − Sused),

where,
DT : the number of tiles that have been pushed into the holes.
ST : user-defined constraint step.
Sused: the number of steps that have been used.
Tile: set of suffixes of tiles.
D(t): original distance from tile t to its nearest hole.
d(t): distance from tile t to its nearest hole after ST steps.
ct, cs, cd: parameters of controlling the weights of factor 1),

2) and 3), respectively.
As denoted in Eq. (5.11), the three marked terms correspond to the three factors

1), 2) and 3) discussed above. In this chapter, ST is set at 60. To balance the effects
of factor 1), 2) and 3), the parameters are set at ct = 100, cs = 3 and cd = 20.
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Figure 5.2: Ten worlds of Tileworld system used in this chapter.

Ten worlds of the Tileworld system are used to perform the experimental en-
vironments in this chapter, as shown in Fig. 5.2. In these cases, the numbers of
agents, tiles and holes are set at 3. The positions of agents, obstacles and holes are
the same, while the positions of tiles vary case by case in order to obtain a general
strategy that could control the agents’ behavior for handling almost the same grid
world. The goal of this experiment is to find a strategy that can obtain the highest
evaluation values to control the agents in these ten environments. As a result, the
fitness function of the Tileworld system used in this chapter is as follows

Fitness =

10∑
w=1

f(w), (5.12)

where,
w: ID of the world environments of the Tileworld system.



5.4. Experimental analysis on Tileworld system 78

Table 5.3: Parameter settings for Tileworld system and Khepera robot control. ([]
presents the settings for Khepera robot control.)

GNP GP PIPE EDP Sarsa PMBGNP RPMBGNP
Population size M 300 [500] 300 [500] 200 [300] 1800 [2000] — 1800 [2000] 1800 [2000]
– elite ind. 1 1 1 100 — 100 100
– crossover ind. 120 [200] 120 [200] — — — — —
– mutation ind. 179 [299] 179 [299] — — — — —
– promising ind. N — — 1 900 [1000] — 900 [1000] 900 [1000]
Program size |Nnode| 60 156-781 [127] 156-781 [127] 156-781 [127] — 60 60
Maximum Tree Depth (DM ) — 3-4 [6] 3-4 [6] 3-4 [6] — — —
Tournament size 2 [5] 2 [5] — — — — —
Crossover rate 0.1 0.9 — — — — —
Mutation rate 0.01 [0.02] 0.1 [0.2] — — — — —
Other parameters
— PIPE (learning rate) = 0.02 [0.03] (fitness constant) = 1 [0.1] (elitist update probability) = 0

— EDP (learning rate) = 0.1 [0.05]

— Sarsa (learning rate) α = 0.2 [0.1] (discount factor) γ = 0.9 (ε-greedy policy) ε = 0.01, 0.1, 0.5

— PMBGNP η = 0.02 [0.2, 0.1, 0.07, 0.05, 0.04] τ = 200 [100]

— RPMBGNP (learning rate) α = 0.2 [0.1] (discount factor) γ = 0.9

Terminal condition 300000 fitness evaluations

5.4.3 Compared algorithms and experimental settings

Note that although there exist multiple agents in the Tileworld system, i.e., 3 in
this chapter, we use the homogeneous breeding [Iba 1996] to control the agents’
behavior. That is, all agents use the same strategy to evaluate the performance of
the Tileworld system. In order to verify the effectiveness of the proposed algorithms,
the following classical algorithms are selected from the literature of EC, EDA and
RL, for the comparison in the Tileworld system:

Genetic Network Programming (GNP) [Hirasawa 2001, Mabu 2007b]:
This is the standard implementation of original GNP. The directed graph struc-
ture described in chapter 2 is used to represent GNP programs. GNP consists of
8 judgment functions and 4 processing functions in its LIBRARY. The number of
each kind of judgment and processing nodes is set at 5. As a result, there are total
|NJ | = 8× 5 = 40 judgment nodes and |NP | = 4× 5 = 20 processing nodes. For the
case of judgment nodes, each judgment node has 5 branches since each judgment
function has 5 arguments. The number of branches for each processing node is set
at 1 since each processing function has no arguments. Therefore, the directed graph
structure G = (Nnode, B) of GNP consists of |Nnode| = 40 + 20 = 60 nodes and
|B| = 40 × 5 + 20 × 1 = 220 branches. The time delays of GNP are set as chapter
2. That is one time unit for judgment nodes, five time units for processing nodes
and zero for node transitions. One step of the agents ends when five or more time
units are used. Each GNP individual ends when the predefined steps ST , i.e., 60,
are reached.

The evolution of GNP is achieved by standard genetic operators, including u-
niform crossover and mutation, which are similar to the other EAs (Details of
the uniform crossover and mutation in GNP can be referred to [Hirasawa 2001,
Mabu 2007b]). Elite selection (with elite size 1) is used to directly reproduce the



5.4. Experimental analysis on Tileworld system 79

current best GNP individual into the next generation. Tournament selection (with
size 2) is adopted to select GNP individuals for crossover and mutation.

Genetic Programming (GP) [Koza 1992]: The function set of GP is com-
posed of 8 judgment functions, and its terminal set is defined by the 4 processing
functions. Since all the functions have 5 arguments, each function node in GP’s
tree structure consists of 5 arities. Terminals have no arguments and can be only
assigned to the leaf nodes. Therefore, the GP programs are encoded in complete
5-ary trees. Maximum tree depth DM is defined to determine the size of GP pro-
gram. Since the GNP program consists of 60 nodes,DM is set to 3 and 4 to create its
program with similar size for comparison1. In the case of DM = 3, GP tree consists
of 156 nodes, while 781 nodes are existed when DM = 4. FULL method is used to
initialize the GP individuals2.

To evolve GP programs, one-point crossover and point mutation [Poli 2008a]
are used. In one-point crossover, the crossover point is selected with biased, while
function nodes are selected as crossover point 90% of the time and terminal nodes
are selected 10% of the time.

Probabilistic Incremental Program Evolution (PIPE) [Salustowicz 1997]:
It is a univariate PMBGP, which uses Probabilistic Prototype Tree (PPT) to repre-
sent its probabilistic model. Since the GP programs are encoded in complete 5-ary
trees and DM is defined, we can easily create the PPT of PIPE which is a complete
5-ary tree with depth DM according to [Salustowicz 1997]. The function nodes of
PPT can be only picked from the function set, while the terminal nodes can only
select instructions from the terminals. As a result, the PPT of PIPE consists of
31×8+125×4 = 748 probabilities for DM = 3, and 156×8+625×4 = 3748 prob-
abilities for DM = 4. It can be easily found that the probabilities in the function
and terminal nodes of PPT are initialized to 1/8 and 1/4, respectively.

PPT is used to replace crossover and mutation for the generation of new pop-
ulations in PIPE. The construction of PPT is similar to that of PBIL, where an
incremental learning method called Generation-Based Learning (GBL) is designed
to update the probabilities of PPT towards the best GP program found so far.
Mutation of PPT reported in [Salustowicz 1997] is not used in the experiments in
order to present the pure performance of EDA. Since the GP tree for the Tileworld
system in this chapter is complete 5-ary trees, growing and pruning of PPT are not
necessary, and many parameters of PIPE can be omitted. For the remaining pa-
rameters, the learning rate is set at 0.02, and the fitness constant and elitist update
probability are set at 1 and 0, respectively.

Estimation of Distribution Programming (EDP) [Yanai 2003]: EDP is an
1Larger tree depth can be also set, however, which generally increases the search space, decreas-

ing the evolution efficiency for finding optimal solutions. For example, DM = 5 and 6 are also
testified in this simulation, however, which have shown worse results than that of DM = 4.

2Although GROW and Ramped half-and-half can create trees of more varied sizes and shapes,
we tend to fully use the trees with the maximum tree depth. This allows the agents to obtain more
precise environmental information surrounding them by taking more function nodes. According to
our experiments, FULL method can obtain the best performance.
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extension of PIPE whose probabilistic model is constructed by conditional probabil-
ities between parent node and child node. It can model pairwise interactions of GP
tree. For the Tileworld system, its probabilistic model consists of 8 marginal proba-
bilities for the root node and (5+52)×82+53×8×4 = 5920 conditional probabilities
for the other nodes when DM = 3. In the case of DM = 4, EDP should maintain 8

marginal probabilities for the root node and (5+52+53)×82+54×8×4 = 29920 con-
ditional probabilities for the other nodes. The initial probability values for function
nodes are 1/8, and that for terminal nodes are 1/4.

The population size for EDP is set at 1800, and top 50% individuals are selected
for the probabilistic modeling. The learning rate is set at 0.1 to perform the best
results.

Sarsa Learning (Sarsa) [Sutton 1998]: This is a standard implementation of
Sarsa, which is selected as a state-of-the-art RL algorithm for the comparison with
this work. The states are defined by the observations that the agents can possibly
see in its four adjacent cells of the grid world3. This means that there are 54 = 625

possible observations. The actions are the processing functions of the Tileworld
system. Therefore, there are total 625 states, 4 actions and 625 × 4 = 2500 state-
action pairs for Sarsa. Sarsa updates its Q values by its updating function. When a
tile has been pushed into the hole, a reward (r = 1) is assigned for the updating of
Q values. The agents are controlled to move until all tiles are pushed into the holes
or the maximum steps ST is reached. The learning rate α and discount factor γ are
set at 0.2 and 0.9, respectively, and ε-greedy policy (with ε = 0.01, 0.1 and 0.5) is
used for the selection of actions to study the balance of the exploitation-exploration.

PMBGNP : PMBGNP uses the same graph structure G = (Nnode, B) of GN-
P to represent its individual. However, a probabilistic model is used to replace
crossover and mutation of GNP for the generation of new populations. The proba-
bilistic model of PMBGNP is constructed by MLE method described in this chapter.
However, different from the ones of standard MLE-based probabilistic modeling used
in chapter 2, 3, and 4, PMBGNP used in this chapter also applies Boltzmann distri-
bution to relax the sample pressure to avoid the premature convergence. The size of
PMBGNP’s probabilistic model can be calculated by |P | = 220× (60− 1) = 12980.
The population size is set at 1800 to model an accurate probability distribution.
For the parameters of the probabilistic modeling in PMBGNP, η is set at 0.02 to
balance the effects of the connection information and transition information. τ is
set at 200 to control the shape of Boltzmann distribution for the trade-off between
the exploration and exploitation.

RPMBGNP : This is the extension of PMBGNP by combining the technique
of RL, i.e., Sarsa in this chapter. The settings of graph structure G, population size
and parameter τ are the same as that of PMBGNP. As described in chapter 4, the
states and actions of Sarsa in RPMBGNP are defined by the branches and nodes of
G, since we aim to learn the graph structure. As a result, there are total 220 states,

3Although we can use the combinations of judgment functions to represent more realistic states
that the agents can observe in the grid world, we do not consider this way, since it will create
extremely large state space (with size of 58 = 390625) which is almost impossible to be learnt.
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Figure 5.3: Fitness curves of a single Tileworld system (Simulation I).

60 actions and 220 × 60 = 13200 state-action pairs in RPMBGNP. The reward is
defined similarly as standard Sarsa, where the reward (r = 1) will be assigned when
a tile has been pushed into the hole by a processing node. The learning rate α is
set at 0.2, and discount rate γ is set at 0.9.

All the settings are listed in Table 5.3, which are determined by hand-tuning to
perform the best results of each algorithm.

5.4.4 Experimental results and analysis

A) Simulation I: Case study in a single world
In the first experiment, we compare the algorithms in a single world of the

Tileworld system. Here, World 1 of Fig. 5.2 is used to perform the experiment.
In this case, the fitness is calculated by the evaluation of World 1, which means
Fitness = f(1). In this world, theoretically the agents need at least 15 steps to
push all tiles into holes. As a result, the maximum fitness value of World 1 can be
calculated by

fmax(1) = 100× 3 + 3× (60− 15) + 20×[
(2− 0) + (3− 0) + (5− 0)

]
= 635.

(5.13)
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Table 5.4: Results of a single Tileworld system (Simulation I).

Fitness (std. dev.) suc%1 Rank t-test 12 RFEs (std. dev.) t-test 2

GNP 586.5± 69.8 93.3 3
2.06e-01

56160± 73983
3.69e-03

4.04e-02 4.86e-02

GP (DM = 3) 339.0± 121.1 13.3 8
6.34e-12

275790± 63075
7.18e-20

8.53e-13 7.84e-18

GP (DM = 4) 478.9± 151.6 40.0 5
4.03e-05

238090± 90072
5.89e-14

2.07e-05 9.64e-13

PIPE (DM = 3) 180.7± 3.7 0.0 10
7.95e-28

300000± 0
1.34e-59

2.38e-40 1.12e-35

PIPE (DM = 4) 191.3± 18.0 0.0 9
1.34e-26

300000± 0
1.34e-59

2.96e-36 1.12e-35

EDP (DM = 3) 339.7± 128.3 16.7 7
8.24e-12

269560± 76582
2.57e-17

1.98e-12 5.24e-16

EDP (DM = 4) 481.3± 99.9 76.7 4
2.58e-06

172720± 101916
2.74e-09

3.39e-08 4.73e-08

Sarsa 396.8± 114.3 26.7 6
5.17e-10

268761± 66519
5.52e-19

1.85e-11 3.09e-18

PMBGNP 608.5± 54.4 100.0 2
—

12600± 2865
—

4.32e-01 4.28e-05

RPMBGNP 617.4± 20.2 100.0 1
—

28320± 18137
—

— —

t-test 1 analyzes the statistical difference of fitness results between PMBGNP/RPMBGNP and
the other algorithms, while t-test 2 is studied by Required Fitness Evaluations (RFEs).

1 suc%: percentage that all 3 tiles can be pushed into the holes within ST steps in 30 independent
trials.

2 the upper value is the p value of t-test for PMBGNP, while the lower value is that for RPMBGNP.
The bold value denotes there is statistically significant difference.

The objective of this experiment using a single world is to investigate the evolu-
tion/learning behavior of each algorithm, and whether they can find the optimal
strategy to control agents successfully.

The terminal condition for each algorithm is the maximum number of fitness
evaluations, where 300000 is used. All the experimental results are the average of
30 independent trials. These settings are also used in the rest experiments of this
chapter.

Fitness results: The fitness curves of the compared algorithms are shown in
Fig. 5.3, and the detailed fitness results are described in Table 5.4. The results
show that:

Graph structures of GNP achieve better performance than that of tree structures
of GP. It is found from Fig. 5.3 that even if GNP has a smaller number of program
size (60 for GNP, and 156/781 for GP with depth 3/4), it can achieve much better
fitness results than that of GP. On the other hand, it is natural that GP programs
can have higher expression ability as DM increases, however, GP programs will also
increase the computation time and memory exponentially. The same phenomenon
holds in the comparison between the proposed algorithms and PIPE/EDP.
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It is clear from the simulation results that the algorithms using EDA show better
fitness results than that of conventional EAs. However, the only exception can be
found in PIPE, where it achieves worse performance than GP. This is due to the fact
that PPT of PIPE can only estimate the univariate model, which cannot cover the
interactions between judgment and processing functions of the Tileworld system.

Sarsa achieves worse fitness results than the other algorithms except GP/EDP
with DM = 3 and PIPE. This is because the most important lack of RL is that the
optimal strategy is hardly learnt when the state-action space (Q table size) becomes
large. In this problem, the Q table size is 2500, where 300000 episodes cannot find
the optimal ones. Meantime, the value of ε should be determined appropriately
to balance the exploitation and exploration. The results show that 0.1 is the best
setting.

From the perspective of the proposed algorithms, both of PMBGNP and RPM-
BGNP can achieve better results than the others. By incorporating RL, RPMBGNP
can find slightly better result than PMBGNP. In RPMBGNP, Sarsa is used to learn
the graph structure G. The learning of Q values is biased. That is, truncation se-
lection is employed to select the promising individuals for the updating of Q values.
Moreover, the learning of Q values are used to enhance the quality of node connec-
tions in G, which is different from that of Sarsa used as a control strategy. The
results show that the Q values can be learnt to measure the quality of node connec-
tions appropriately. By incorporating them into the probabilistic modeling, we can
construct a probabilistic model by considering the interactions between agents and
environments. On the other hand, it is shown from the curves that RPMBGNP has
a little lower evolution speed than PMBGNP in early generations, since the updating
of the Q values plays the most important role in the evolution of RPMBGNP which
requires more time to gather the sufficient information for probabilistic modeling.
However, in later generations, RPMBGNP can continuously evolve to find better
results.

Overall, as shown in the column of "t-test 1" of Table 5.4, t-test (two tailed,
paired) results show the statistically significant differences between the proposed
algorithms and the other algorithms. Meantime, although RPMBGNP can obtain
slightly better result than PMBGNP, it is found that there is no statistical difference
between them. This is because both of PMBGNP and RPMBGNP can successfully
push all the tiles into the holes using as less steps as possible for the simple problem
of Simulation I.

Required fitness evaluations (RFEs) and Reliability : The required fitness
evaluations (RFEs) is further counted to testify the search speed. The RFEs is
calculated in the following way: for the successful trials that the agents can push all
3 tiles into the holes within ST (=60) steps, the exact RFEs is used; for the failed
trials that the agents cannot push all 3 tiles into the holes even after ST steps, the
maximum fitness evaluations, i.e., 300000, is counted. Afterwards, the average value
of 30 independent trials is calculated to form the final RFEs.

The results of RFEs of Simulation I is shown in Table 5.4. The results show
that on average PMBGNP can successfully push all the tiles into the holes with the
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Table 5.5: Results of ten Tileworld systems (Simulation II).

Fitness (std. dev.) DT perc.%† Rank t-test

GNP 4171.4± 692.0 23.0± 3.8 76.6 3
2.06e-01
1.20e-04

GP (DM = 3) 3042.5± 524.5 15.9± 3.0 52.9 8
4.36e-11
8.39e-14

GP (DM = 4) 3356.3± 679.2 17.6± 3.5 58.7 6
2.44e-06
2.04e-12

PIPE (DM = 3) 1968.7± 303.3 9.9± 1.9 33.0 10
1.56e-16
2.28e-21

PIPE (DM = 4) 2267.4± 338.0 11.5± 2.4 38.4 9
3.05e-15
1.12e-21

EDP (DM = 3) 3144.8± 463.5 16.1± 2.5 53.6 7
9.78e-09
4.06e-14

EDP (DM = 4) 3619.7± 653.3 18.3± 4.0 61.0 5
4.09e-05
4.04e-11

Sarsa 3719.2± 1106.2 18.9± 5.1 62.9 4
1.72e-02
2.68e-05

PMBGNP 4384.1± 735.5 24.2± 3.7 80.7 2
—

7.20e-03

RPMBGNP 4820.2± 495.0 26.5± 2.2 88.4 1
—
—

† perc.%: percentage that the tiles has been pushed into the holes within ST steps
in 30 independent trials. (For each trial, perc.%=100×

∑10
w=1DT/30.)

fastest speed, while RPMBGNP stands in the second rank which requires slightly
larger FEs. The t-test 2 results describe the statistically significant difference
between PMBGNP/RPMBGNP and the other algorithms from the perspective of
RFEs. Overall, from the perspective of reliability, the two proposed algorithms can
succeed in all 30 independent trials, while GNP fails in 2 trials. EDP with DM = 4

achieves the best result among all GP variants, while PIPE fails in all trials.

B) Simulation II: Case study in ten worlds
In this experiment, ten worlds shown in Fig. 5.2 are used to perform the com-

parison. The fitness is calculated by Eq. (5.12), which are the sum of the evaluation
results of ten worlds. This experiment is much more complex than that of Simula-
tion I, since it is needed to find a strategy that can handle all the ten worlds well.
Consequently, it is almost impossible to explicitly know the expected maximum fit-
ness value of this experiment. The objective of Simulation II is to illustrate the
performance of the proposed algorithms in complex Tileworld systems.

The fitness curves of the compared algorithms are shown in Fig. 5.4, and the de-
tailed fitness results are described in Table 5.5. The results show similar conclusions
to Simulation I, where the proposed algorithms, i.e., PMBGNP and RPMBGNP,
can obtain the highest fitness after 300000 fitness evaluations.

From the fitness curves of Fig. 5.4.(a) it is explicitly found that the probabilistic
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Figure 5.4: Fitness curves of ten Tileworld systems (Simulation II).
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modeling allows PMBGNP to have faster convergence behavior than that of GNP.
On the other hand, RPMBGNP has slower convergence speed than PMBGNP in
early generations by incorporating RL, however, it gradually finds higher fitness
values in later generations. As for GP and its variants, the results show smoother
curves than that of Simulation I. This is because that Simulation II uses ten worlds
to perform the results, where the fitness landscape becomes more smooth. The
results report that EDP with DM = 4 can obtain the best fitness values than the
other GP variants, where PIPE performs the worst result. The t-test results show
the significant difference between the proposed algorithms and the others.

From the perspective of dropped tiles (DT ), the results report that the proposed
algorithms can push as more tiles into the holes as possible within ST steps. On
average the proposed algorithms can push the most tiles into the holes comparing
with the other algorithms. As the Simulation II reports the results in the complex
problems of the Tileworld system, RPMBGNP can achieve better performance than
PMBGNP in terms of solution quality (fitness values) and reliability (successful
rate). This is because that higher evolution ability is required to find the accept-
able solutions in complex problems. As a result, from the viewpoint of reliability,
RPMBGNP can successfully push 88.4% tiles into the holes, while PMBGNP can
succeed in pushing 80.7% tiles.

5.4.5 Generalization ability

To testify the generalization ability of each algorithm, we applied the 30 best so-
lutions found by the independent trials of Simulation II to the new environments.
Two experiments were carried out, where one randomly changes the tile positions
of the ten worlds in Fig. 5.2, and another randomly changes both of the tile and
hole positions. For each best solution, we applied it to the ten worlds and ran 1000
times to calculate the average results. The results of each algorithm are reported in
Table 5.6.

As shown in Fig. 5.2, the best solutions are trained and obtained by ten worlds
with different tile positions. As a result, for the testing environments with random
tile positions, the trained solutions perform quite well to achieve robust results. On
the other hand, when randomly changing both of the tile and hole positions, the
trained solutions show the lack of robustness. Based on the comparative study, the
proposed algorithms PMBGNP and RPMBGNP show higher generalization ability
than the other algorithms in both testing experiments.

5.4.6 Additional experimental results on Tileworld system

This section studied the computation time of each algorithm to confirm the
efficiency of the proposed algorithms, and the effects of parameters needed to be
configured in the proposed algorithms, i.e., α and γ in RPMBGNP.

A) Computation time
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Table 5.6: Fitness results (std. dev.) in new environments of Tileworld system.

GNP GP PIPE EDP Sarsa PMBGNP RPMBGNP
Change tile 2282.8 1376.4 1148.4 1435.0 1903.8 2466.8 2770.8
positions ±944.9 ±781.0 ±870.0 ±865.2 ±864.1 ±823.3 ±944.9

Change tile and 552.0 219.0 203.8 244.2 324.4 594.8 650.0
hole positions ±860.1 ±830.0 ±786.6 ±850.6 ±641.4 ±833.8 ±918.6

Rank 3 6 7 5 4 2 1

Table 5.7: Computation time for 300000 fitness evaluations in ten Tileworlds. In
the variants of GP, DM = 4 is used since it performs better results than that of
DM = 3.

GNP GP PIPE EDP Sarsa PMBGNP RPMBGNP
Computation Time

367.3 696.9 760.0 1081.2 284.6 429.5 482.0
(Unit: sec.)

Rank 2 5 6 7 1 3 4

Table 5.7 shows the computation time of each algorithm in Simulation II of
Tileworld system. All experiments are carried out on a PC with Intel Core i5
running at 2.80 GHz with 4 GB of RAM. The used complier is Visual Studio 2010
under the OS of Windows 7. For each algorithm, the experiments end when 300000
fitness evaluations are achieved.

Sarsa requires the smallest computation time for problem solving, since the
updating of the Q values only needs linear time cost with respect to the maximum
steps, i.e., ST in this chapter. On the other hand, GNP is the faster than GP,
since GP (with DM = 4) has much more nodes which takes more time than that
of GNP with compact program size. EDA based algorithms need more time than
conventional EAs since the estimation of the probability distribution generally re-
quires additional time cost. Meantime, the computation time is proportional to the
accuracy of the probabilistic model. This means that learning a probabilistic model
that can capture more complex variable interactions requires more computation
time. As a result, EDP requires more time than PIPE, since it needs to maintain
more probabilities in every generation. As for the proposed algorithms, the results
show that even integrating RL into the probabilistic modeling, RPMBGNP only
requires similar computation time to PMBGNP. This could be explained by the
discussion presented in section 5.3.3, where the time complexities of PMBGNP and
RPMBGNP are in the same level.

B) Effects of parameters
This part discusses the effect of parameters in the proposed RPMBGNP. All the

results are carried out based on Simulation II of the Tileworld system.
As discussed in the previous section, η is removed from the probabilistic modeling
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Figure 5.5: Effect of α and γ of the Tileworld system in Simulation II.

of RPMBGNP, where the Q values play the role of automatically counting the
information of both node connections and transitions. As a result, the parameter of
RL, i.e., learning rate α and discount factor γ should be configured in RPMBGNP.

Too small α will cause the slow learning speed for updating Q values (α=0 will
make the agent not learn anything), while too large α will lead to the big update
of Q values causing the unstable learning of Q values. The appropriate α should be
set to update Q values gradually. As shown in Fig. 5.5.(a), α=0.2 can achieve the
highest fitness values comparing with the other values in Simulation II.

The discount factor γ determines how much future reward is taken into account
for the updating of Q values. Small γ denotes that the agent only cares about the
current reward obtained by the action, while high γ causes Q values to be updated by
more strongly counting future rewards. Empirically speaking, for complex problems,
long-term future rewards should be counted more seriously since finding the optimal
solution requires us to consider not just the current action but also the consequent
future actions. However, if γ approaches to 1, the Q values may diverge. Fig. 5.5.(b)
reports the fitness curves with different γ, where γ=0.9 shows the best result.

5.5 Experimental analysis on robot control

Besides solving the benchmark problem of the Tileworld system, the proposed algo-
rithms is further applied to the Wall-Following problem of Khepera robot control.

The experimental environment is defined by a map used in Chapter 3 and 4.
The settings of node functions and Wall-Following problem are remaining the same
as the ones used in the previous chapters. In this chapter, the predefined steps is
ST ∈ {100, 200, 300, 400, 500} to study the performance of the proposed algorithm
under different problem sizes.
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5.5.1 Compared algorithms and experimental settings

The same algorithms shown in the Tileworld system will be used to present a com-
parative study of the proposed algorithms and the classical ones. The experimental
settings are listed in Table 5.3, which have been testified to perform the best results.

The judgment and processing functions of GNP is designed as the ones presented
in the previous chapters, which consists of 8 judgment functions and 10 processing
functions. The number of each kind of judgment nodes is set at 5, and that of pro-
cessing node is equal to 2. As a result, the directed graph structure G = (Nnode, B)

of GNP has |Nnode| = 40+ 20 = 60 nodes and |B| = 40× 2 + 20× 1 = 100 branch-
es. The function and terminal set of GP consists of 8 judgment functions and 10
actions. The GP programs are represented by complete 2-ary trees. DM is set at
6 (with 127 nodes) for relative fair comparison with GNP. FULL method is used for
the initialization of GP.

The setting of tree structure in PIPE is the same as that of GP. The PPT is
a complete 2-ary tree with depth DM . The size of PPT is 1144. The parameters
of PIPE, including learning rate, fitness constant and elitist update probability, are
set at 0.03, 0.1 and 0, respectively. In the probabilistic model of EDP, there exists
8 marginal probabilities and 9088 conditional probabilities. The learning rate is set
at 0.05.

The states of Sarsa for this problem is defined by the combinations of judgment
functions. Since each judgment function has 2 arguments, the total number of states
for Sarsa is 28 = 256. The actions are defined by the settings of different speeds
for left and right motors, which are 5 × 5 = 25. Therefore, there are total 6400
state-action pairs. In every step, the reward is calculated by Eq. (3.17) for the
updating of Q values. The task ends until ST is reached. α, γ and ε are set at 0.1,
0.9 and 0.1, respectively.

The setting of graph structure G in PMBGNP remains the same as GNP. The
size of its probabilistic model is |P | = 100 × (60 − 1) = 5900. In the probabilistic
modeling of PMBGNP, the value of η varies w.r.t. ST in order to balance the
effects of the connection and transition information. For the five settings of ST in
this chapter, η is set at 0.2, 0.1, 0.07, 0.05 and 0.04, respectively. τ is set at 100. In
RPMBGNP, the sizes of states and actions for Sarsa are 100 and 60, respectively.
The updating of Q values is done by Sarsa, where the reward of Eq. (3.17) is
assigned in every execution of processing nodes. α and γ is set at 0.1 and 0.9.

5.5.2 Experimental results and analysis

The environment of Fig. 3.2 used in the previous chapters is used to conduct the
experiments. All the results are the averaged of 30 independent trials.

Fitness results: The fitness curves for the five studied Wall-Following problems
are presented in Fig. 5.6, and the detailed fitness results are described in Table
5.8. The reporting results draw similar conclusions to that of Tileworld system.
The proposed algorithm PMBGNP outperforms the classical algorithms, and by
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Figure 5.6: Fitness curves in the Wall-Following problems with different settings of
ST .
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incorporating RL to propose RPMBGNP, the performance can be further improved.
Considering the five Wall-Following problems as a whole, the results clarify the
scalability of the proposed algorithms that they can obtain higher fitness values
than the others. For simple problems, i.e., ST=100, all the algorithm can solve the
problem successfully. However, with the increase of the problem size, the proposed
algorithms can significantly outperform the others. The results of t-test 1 report the
statistically significant difference between PMBGNP/RPMBGNP and the compared
algorithms.

RFEs and reliability : The results of RFEs for the five Wall-Following prob-
lems are shown in Fig. 5.7 in order to study the search speed. The results of detailed
RFEs are shown in Table 5.8. The t-test 2 is reported to present the statistical anal-
ysis of different algorithms with respect to RFEs. According to the results, most
algorithms can solve the simple Wall-Following problem, i.e., ST = 100, successful-
ly. However, the number of RFEs are different. Overall, the results indicate that
the proposed algorithms need the smallest RFEs to solve the tasks, while the others
need larger ones. Meantime, with the increase of the problem size, the gaps among
different algorithms become more significant. In the large problem size, Sarsa and
PIPE almost cannot find the acceptable trajectories under the constrained FEs,
where GNP, GP and EDP can only find a small number of successful trials. t-test
results show that there are statistically significant differences between the proposed
algorithms and the others. The results of suc% in Table 5.8 indicate the reliability
of each algorithm in this problem. It shows that PMBGNP has much higher prob-
ability than the classical algorithms to find the acceptable trajectory to solve the
Wall-Following problems. On the other hand, by integrating RL, RPMBGNP can
almost achieve the 100% probability to solve all the five problems.
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Table 5.8: The fitness results and required fitness evaluations for Wall-Following
problems.

Problem size ST GNP GP PIPE EDP Sarsa PMBGNP RPMBGNP

100

Fitness 0.88±0.02 0.86±0.05 0.85±0.06 0.87±0.05 0.87±0.04 0.88±0.02 0.89±0.01
t-test 1 7.40e-01 1.31e-01 1.02e-02 3.96e-01 7.39e-02 — 5.94e-03

2.71e-05 2.31e-03 3.78e-04 2.91e-02 4.82e-04 — —
RFEs 52300±47379 67200±56564 54967±82806 49800±68639 52800±51392 20467±27883 18000±14325
suc% 100 100 90 93.3 100 100 100

t-test 2 6.28e-03 3.61e-04 4.95e-02 4.64e-02 7.40e-03 — 6.81e-01
2.64e-04 9.32e-05 2.78e-02 1.99e-02 2.88e-03 — —

200

Fitness 0.83±0.11 0.79±0.15 0.72±0.10 0.82±0.11 0.72±0.11 0.87±0.05 0.88±0.06
t-test 1 1.29e-01 2.25e-03 1.33e-07 4.94e-02 2.02e-04 — 2.64e-01

3.91e-02 2.68e-03 1.15e-07 1.04e-02 1.78e-04 — —
RFEs 107733±76205 140427±97119 143713±109848 135347±97818 149850±97569 48033±20993 37377±14584
suc% 90 76.7 56.7 83.3 60 100 100

t-test 2 5.63e-04 4.88e-05 7.06e-05 9.412e-05 1.14e-05 — 2.87e-02
4.82e-05 7.79e-06 2.67e-05 5.62e-06 1.07e-06 — —

300

Fitness 0.82±0.09 0.77±0.15 0.64±0.16 0.79±0.12 0.52±0.21 0.86±0.05 0.88±0.03
t-test 1 3.99e-02 1.20e-02 5.11e-08 1.05e-02 3.59e-09 — 1.21e-01

2.28e-03 9.29e-03 5.02e-09 1.19e-03 5.38e-10 — —
RFEs 132000±101807 164180±82590 187520±106868 160340±116551 194707±99035 79500±64111 51167±32248
suc% 76.7 63.3 40 70 36.7 93.3 100

t-test 2 1.50e-02 5.79e-06 1.38e-04 1.49e-03 4.40e-06 — 2.88e-02
4.56e-04 8.00e-09 1.15e-07 5.42e-05 1.70e-08 — —

400

Fitness 0.76±0.08 0.64±0.08 0.59±0.17 0.62±0.14 0.55±0.19 0.81±0.09 0.84±0.10
t-test 1 5.17e-02 5.41e-08 5.80e-07 9.92e-08 2.33e-07 — 2.04e-01

9.02e-04 9.43e-10 5.85e-08 2.65e-08 6.11e-08 — —
RFEs 177300±87890 208893±121929 228220±112741 211093±102287 216529±106187 112867±95416 73593±21606
suc% 70 36.7 30 36.7 23.3 83.3 100

t-test 2 8.71e-03 7.56e-03 2.53e-04 8.20e-04 2.48e-04 — 3.57e-02
5.7e-07 1.00e-06 3.68e-08 4.71e-08 6.78e-08 — —

500

Fitness 0.66±0.15 0.57±0.10 0.51±0.06 0.59±0.08 0.45±0.22 0.70±0.08 0.76±0.08
t-test 1 1.93e-01 1.01e-05 1.33e-09 4.00e-05 2.26e-06 — 2.57e-02

6.01e-03 2.02e-08 6.67e-14 9.79e-10 3.48e-08 — —
RFEs 211833±111542 268827±70595 283700±62032 267040±85622 232970±100870 145467±87187 98500±75761
suc% 43.3 20 6.7 13.3 16.7 80 93.3

t-test 2 1.55e-02 1.30e-06 7.01e-08 5.26e-06 1.71e-03 — 1.42e-02
2.51e-05 2.20e-08 4.12e-10 5.11e-08 1.00e-05 — —

the upper value of t-test 1/2 is the p value of t-test for PMBGNP, while the lower value is that for RPMBGNP. The bold value denotes there is
statistically significant difference.

5.6 Summary

RPMBGNP has been proposed by integrating PMBGNP and RL in this chapter.
PMBGNP factorizes the individuals to the sequences of state-action pairs/node con-
nections, and uses RL, i.e., Sarsa Learning, to learn knowledge/experience during
the individual executions. The collected knowledge formulated by Q values can
correctly measure the quality of node connections. As a result, RPMGNP incor-
porates the learnt Q values into its probabilistic modeling, which has shown better
performance than the MLE-based PMBGNP.

To evaluate the effectiveness of the proposed algorithms, a benchmark testbed
called the Tileworld system and a real mobile robot control have been selected as
the typical problems for this study. We compared the proposed algorithms with
the classical algorithms from the literature of EC, EDA and RL. The experimental
results showed that PMBGNP inherits both of the features of the graph structure
and EDA to achieve higher expression and evolution ability than the conventional
algorithms. On the other hand, by introducing a new method of integrating EDA
and RL, we showed that the performance of fitness values, search speed and relia-
bility can be significantly improved. Meantime, the computation cost is remaining
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in the same level as PMBGNP.
Until now, the proposed variants of PMBGNP are applied to solve the discrete

optimization problems. In the next chapter, PMBGNP will be extended to solve
the continuous optimization optimization problems.



Chapter 6

Continuous PMBGNP
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6.1 Introduction

Standard PMBGNP and its variants proposed in the previous chapters are main-
ly designed for discrete optimization problems. Therefore, it cannot deal with (or
directly handle) continuous variables. To solve this problem, the discretization of
continuous variables should be employed, which will cause the loss of solution pre-
cision. In this chapter, a new PMBGNP algorithm is proposed to directly handle
the continuous variables.

On the other hand, much progress has been made in the development of E-
DA for continuous domains [Sebag 1998, Larrañaga 1999, Bosman 2006]. This s-
tarts with the early attempt of continuous Population-based incremental learning
(PBILc) [Sebag 1998] and continuous Univariate marginal distribution algorithm
(UMDAc) [Larrañaga 1999], in which the probability density function is modeled
by unidimensional Gaussian distribution and variable independencies assumption
is employed. Naturally, some later research extended continuous EDA to cov-
er multivariate interactions by factorization of multivariate Gaussian distribution
[Larrañaga 1999, Bosman 2000a]. Some other continuous EDAs include Gaus-
sian kernels, mixtures of Gaussian distribution [Bosman 2000b], binary encoding
by histograms [Tsutsui 2001], and variants using clustering [Lu 2005] and niching
[Dong 2008] techniques.

This chapter proposed a continuous PMBGNP named PMBGNP with Actor-
Critic (PMBGNP-AC). In PMBGNP-AC, Gaussian distributionN (µ, σ2) is used for
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the distribution of continuous variables of nodes. The mean value µ and standard
deviation σ are constructed like those of classical PBILc [Sebag 1998]. However,
a RL technique, i.e., Actor-Critic (AC) [Sutton 1998, Mabu 2007a], is designed to
update the parameters (µ and σ). AC is applied to calculate the Temporal-Difference
(TD) error to evaluate whether the selection of the continuous value (action) is better
or worse than expected. The evaluation result is formulated as a scalar reinforcement
signal which can decide whether the tendency to select this continuous value should
be strengthened or weakened, allowing us to determine the shape of the probability
density functions (µ and σ) of the Gaussian distribution.

The fundamental differences between PMBGNP-AC and conventional continu-
ous EDAs are:

• PMBGNP-AC uses a directed graph structure to represent its solutions, dif-
fering from conventional GA’s string-based approaches.

• Two probability distributions corresponding to node connections and continu-
ous variables in each node are to be constructed and evolved simultaneously to
determine the optimal solutions in PMBGNP-AC. This is quite different from
conventional continuous EDAs which only consist of one probabilistic model
of continuous variables due to their fixed string structures.

• PMBGNP-AC can model not only the univariate interactions explicitly as
conventional PBILc, but also multivariate interactions implicitly according to
AC.

Therefore, with these unique features, the probabilistic model of PMBGNP-
AC can be viewed as a mixture of discrete (node connections) and continuous
(continuous variables) distribution to represent the solutions. Nevertheless, most
of the current continuous EDAs are designed for function optimization problems,
where PMBGNP-AC is applied to a RL problem, i.e., autonomous robot control
[Cyberbotics , K-Team Corp. ], in which the robot’s wheel speeds and sensor values
are continuous. The experimental results show the superiority and scalability of
PMBGNP-AC comparing with the conventional algorithms.

Chapter 6 is organized as follows: Section 6.2 presents the proposed algorithm
in details. The experimental study is carried out in section 6.3. Section 6.4 presents
the summary of this chapter.

6.2 PMBGNP with Actor-Critic (PMBGNP-AC)

The individual representation of PMBGNP-AC is the same as that of GNP and
PMBGNP. However, in the previous work of GNP and PMBGNP, the variables
of each node is discretized in advance and fixed during the evolution process. As a
result, the evolution mainly enforces the changes of node connections among different
nodes. For discrete problems in which the variables of nodes do not need to be
evolved, PMBGNP can work well. However, one can easily observe that PMBGNP
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cannot evolve the continuous variables since its probabilistic modeling is designed
for the determination of node connections. To solve this problem, PMBGNP-AC
is proposed in this section. Besides modeling the probability distribution of node
connections using the existing PMBGNP, this section proposes another probabilistic
model to estimate the probability density of the continuous variables in each node.

6.2.1 Probabilistic modeling

The probabilistic modeling of PMBGNP-AC consists of two parts: the distribution
Pnc of node connections and the distribution Pcv of continuous variables.

A) Probabilistic modeling of node connections
The construction of Pnc is actually the ones introduced in the previous chapters.

It estimates the probabilities of connections between the nodes, where Pnc(b(i), j)

represents the connection probability from branch b(i) of node i to node j. For
each branch in the graph structure, the probabilities to connect to the next node is
calculated to represent the probabilistic model Pnc.

To calculate the probabilities of node connections, the RPMBGNP proposed
in Chapter 5 is used. In RPMBGNP, Sarsa Learning is employed to learn the
experience of individuals to formulate the Q values. The Q values are used for the
construction of Pnc, as shown in Eq. (5.3). The factorization of individuals to the
sequences of state-action pairs are shown in Fig. 6.1-Middle.

As discussed in Chapter 5, this algorithm has been confirmed to outperform the
MLE-based method since Q values play roles as weights to quantify the importance
of node connections.

B) Probabilistic modeling of continuous variables
Most attempts on extending EDA to continuous domains are to use Gaussian dis-

tribution [Sebag 1998, Larrañaga 1999, Bosman 2006]. The advantages of utilizing
Gaussian distribution is its simplicity of implementation and without loss of gener-
ality for solutions which ensures the performance in continuous domains. Most of
the current continuous EDAs are based on Gaussian distribution or related variants.
PMBGNP-AC proposed in this chapter is a straightforward extension of classical
univariate continuous EDAs. That is, unidimensional Gaussian distribution is used
for the distribution of continuous variables in each nodes of PMBGNP-AC.

Inspired by classical PBILc [Sebag 1998] and UMDAc [Larrañaga 1999],
PMBGNP-AC optimizes Gaussian distribution N (µ, σ2) of each node. That is,
the mean value µ and standard deviation σ of each continuous variable in each node
are to be evolved. The probabilistic model Pcv of continuous variables in PMBGNP-
AC consists of a set of probabilities P i

cv(x;µ, σ), where P i
cv(x;µ, σ) represents the

probability density function (pdf) of the continuous variable of node i, described by:

P i
cv(x;µ, σ) =

1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
, (6.1)
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b(i) b(j) b(k)Node i Node j Node k Node l
Time step:

t                  t+1 t+2 t+3

st = b(i) st+1 = b(j) st+2 = b(k)

at = j          at+1 = k           at+2 = l

State:Action:Sarsa-Learning
st = i           st+1 = j           st+2 = k          st+3 = l

at = xi at+1 = xj at+2 = xk at = xlState:Action:Actor-Critic
: activated branch: other branch

pi(x) xxi pj(x) xxj pk(x) xxk pl(x) xxl

Figure 6.1: (Top): Example of node transitions of PMBGNP-AC individuals; (Mid-
dle): Factorization of node transitions to state-action pairs in Sarsa Learning of Pnc;
(Bottom): Factorization of node transitions to state-action pairs in Actor-Critic of
Pcv.

where,
x: continuous variables of node i.

In order to update the mean value µ and standard deviation σ of the continuous
variable in each node, one may concern with the incremental learning [Sebag 1998] or
Maximum Likelihood Estimation [Larrañaga 1999]. In this chapter, a novel method
is used to update the Gaussian distribution by AC. The partial derivative of param-
eters µ and σ is firstly calculated as follows:

∂P i
cv(x;µ, σ)

∂µ
=

2√
2πσ2

exp

[
−(x− µ)2

2σ2

]
︸ ︷︷ ︸

>0

·(x− µ), (6.2)

∂P i
cv(x;µ, σ)

∂σ
=

1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
︸ ︷︷ ︸

>0

·
[
(x− µ)2

σ2
− 1

]
(6.3)
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As shown above, the front terms in the right side of Eq. (6.2) and (6.3) are
always greater than 0. Therefore, inspired by the idea of gradient descent the
updating directions of µ and σ are obtained given a sampled value x of this Gaussian
distribution as follows:

∇(µ;x) = x− µ, (6.4)

∇(σ;x) = (x− µ)2

σ2
− 1. (6.5)

These two equations are the simplified versions of Eq. (6.2) and (6.3). Then,
the following updating rules of µ and σ are used:

µ← µ+ αµ∇(µ;x), (6.6)

σ ← σ + ασ∇(σ;x), (6.7)

where αµ and ασ are the learning rates (step size) of the corresponding parameters,
respectively.

Using the sampled values x from the promising individuals, Eq. (6.6) and
(6.7) become similar to those of PBILc and UMDAc. Based on this foundation,
an extended version is proposed using a RL technique, i.e., Actor-Critic (AC)
[Sutton 1998, Mabu 2007a].

In RL, an agent is interacted with its environment through observations and
actions. At every step, the agent observes the current state of the environment,
then chooses an action to change the state of the environment. At every step of
choosing actions, a scalar reinforcement value is formulated according to the reward
the agent obtains. This value is backwardly sent to the agent which allows the
modification of its actions to maximize the reinforcement value. Based on this idea,
this chapter proposes an algorithm PMBGNP with Actor-Critic (PMBGNP-AC)
to update the Gaussian distribution. To incorporate AC, the state and action are
defined according to the structure of PMBGNP-AC as follows (Fig. 6.1-Bottom):

Definition 12 (State) State s is defined as a node in the directed graph of
PMBGNP-AC.

Definition 13 (Action) Action a is defined as the selection of continuous variables
in each node.

Therefore, the set of states refers to the set of nodes in the directed graph of
PMBGNP-AC. Consequently, the set of actions is infinite and bounded according to
the range of the continuous variables. Note that these two definitions (Definition
8 and 9) are different from that of Pnc (see Fig. 6.1). With such definitions, AC is
incorporated to the proposed algorithm, where the Gaussian distribution is known
as the actor since it is used to select actions (sample continuous variables), and
the critic is formulated as the state-value function to criticize the actions made by
the actor. At each action selection, the critic evaluates the new state to determine
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whether this selection is better or worse than expected. The evaluation is formulated
by the Temporal-Difference (TD) error δ as follows:

δt = rt + γacV (st+1)− V (st), (6.8)

where,
rt: reward obtained by the agent at time step t.
V (st): value function of state s at time step t.
γac: discounted factor of AC.

After obtaining the TD error of each time step, it is sent back to update the
state-value function V by:

V (st)← V (st) + αacδt, (6.9)

where,
αac: learning rate of AC.

This TD error can evaluate the action of each time step. If δt is positive, it
suggests that the tendency to select at should be strengthened, and vice-versa.
Accordingly, a scalar reinforcement signal θt is formulated to indicate whether the
tendency to select this action should be strengthened or weakened.

θt =


−1, for δt < 0

0, for δt = 0

1, for δt > 0

(6.10)

Inserting this scalar reinforcement signal into Eq. (6.6) and (6.7), the final
updating rules of the Gaussian distribution of PMBGNP-AC is obtained as follows:

µ← µ+ αµ∇(µ;x)θt, (6.11)

σ ← σ + ασ∇(σ;x)θt. (6.12)

6.2.2 Algorithm of PMBGNP-AC

The algorithm of PMBGNP-AC is a combination of the probabilistic model Pnc of
node connections and Pcv of continuous variables of each node, as shown in Algorith-
m 7. As a result, the final probability of generating individual n by PMBGNP-AC
is:

P (n) =
∏

i∈Nnode

P i
cv(xi;µi, σi)

∏
b(i)∈B(i)

Pnc(b(i), j)

 . (6.13)

The initial Q values and state-values V are prepared in advance, which are set
at zero in this chapter. Pnc is initialized to uniform distribution, while initial values
of µ and σ in Pcv is determined problem-specifically.



6.3. Simulations 100

Algorithm 7 : PMBGNP-AC
1: t← 0;

Initialize population Pop(t) with the size of M and two probabilistic models Pnc

and Pcv;
2: Evaluate the fitness of Pop(t);
3: Select a set of promising individuals Best(t) in which (|Best(t)| = N < M);
4: for i ∈ Best(t) do
5: Update the Q values according to Sarsa Learning;
6: Update the TD error δ and state-value function V according to Eq. (6.8) and

(6.9), respectively;
7: Calculate Pcv by updating µ and σ according to Eq. (6.11) and (6.12), where

∇(µ;x), ∇(σ;x), θt is obtained by Eq. (6.4), (6.5) and (6.10), respectively;
8: Calculate Pnc according to Eq. (5.3);
9: Generate P (t+ 1) by sampling Pnc and Pcv;

t← t+ 1;
10: Go back to step 2 until the terminal criteria is met.

6.3 Simulations

To evaluate the performance of the proposed algorithm, the Wall-Following problem
of Khepera robot control is applied for the experimental study.

The following algorithms are selected for comparisons:
1) Standard GNP : the discretization is used to transfer the continuous variables
into discrete values, while the node connections are evolved by crossover and muta-
tion.
2) RPMBGNP : the discretization is used to transfer the continuous variables into
discrete values, where the value of each node remains unchanged during evolution. In
this case, only Pnc is constructed to evolve the node connections by Sarsa-Learning
introduced in Chapter 5.
3) PBILc: µ and σ of continuous PMBGNP are evolved like those of PBILc
[Sebag 1998].
4) Sarsa Learning (Sarsa) [Sutton 1998]: A classical RL metod, Sarsa Learning
in which the continuous state and action space is defined as the discrete space. ε-
greedy policy is used for the action selection.
5) PMBGNP-AC : the proposed algorithm.

6.3.1 Node functions and continuous variables

As shown in Table 6.1, the node functions used in PMBGNP-AC are set similarly
as the ones in the previous chapters. However, the discretization process is not used
to transfer the continuous domain to discrete values in PMBGNP-AC. Instead, it
directly evolve the continuous variables by updating the Gaussian distribution. The
roles of continuous variables in judgment/processing nodes to be optimized are as
follows:
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Judgment node iContinuous variable xiSuppose the sensor’s returned value is viif vi ≥ xiif vi < xi Continuous variable xjProcessing node j
set the wheel speed to xj

Figure 6.2: Roles of continuous variables in judgment/processing nodes.

Judgment node (i.e., node i): continuous variable xi divides the domain of its
sensor value into two intervals ([0, xi) and [xi, 1023]), where the selection of branches
is determined by the comparison of real returned value and xi.
Processing node (i.e., node j): continuous variable xj ([-10, 10]) formulates the
speed of its corresponding wheel motor.

These two kinds of continuous variables are to be evolved to determine the final
solutions, as an example shown in Fig. 6.2. Meanwhile, in standard RPMBGNP,
these two types of variables are discretized in advance. For judgment nodes, the
domain is divided into two fixed intervals, [0, 1000) and [1000, 1023]. In processing
nodes, the domain is discretized into the set of {-10, -5, 0, 5, 10} to determine the
robot’s speed (Details can be found in chapter 3).

The discretization of Sarsa is done similarly as RPMBGNP, where the state
space is defined by the combinations of sensor values and the action space is defined
by different settings of the robot’s speed. Therefore, there are total 28 = 256 states
and 5× 5 = 25 actions in Sarsa.

6.3.2 Parameter settings

The time delay of judgment nodes is set at 1 time unit, that of node transition is set
at 0 time unit and that of processing nodes is set at 5 time units. The robot will take
one step of actions if 5 time units or more are reached. In each step, GNP judges
the sensor values and determines the speed of the wheels to control the movement
of the robot. The simulation ends when the step exceeds ST .

The number of judgment nodes for each judgment function is set at 5. The
number of processing nodes for each processing function is set at 10. Therefore, the
program size1 of each individual is 5× 8 + 10× 2 = 60.

The simulation conditions are defined as shown in Table 6.2. All these settings
are the appropriate ones defined by hand-tuning.

6.3.3 Simulation results and analysis

Five simulations of ST ∈ {100, 200, 300, 400, 500} are carried out to testify the
effectiveness and scalability of the proposed algorithm. The simulation results are

1Start node is not taken into account in this case.



6.3. Simulations 102

Table 6.1: Node functions used for Khepera robot.

Node NF Function Domain
J1, J2, ..., J8 1, 2, ..., 8 Judge the value of the sensor of 1, 2, ..., 8 [0, 1023]
P1, P2 1, 2 Determine the speed of the right/left wheel [-10, 10]

Table 6.2: Simulation conditions.

GNP RPMBGNP PBILc PMBGNP-AC
Population size M 300 2000 2000 2000
– elite ind. 1 100 100 100
– crossover ind. 120 – – –
– mutation ind. 179 – – –
– promising ind. N – 1000 1000 1000
Program size |Nnode| 60 60 60 60
Crossover rate 0.1 – – –
Mutation rate 0.01 – – –
Other parameters (— Sarsa-Learning) αs = 0.1, γs = 0.9

(— Actor-Critic) αac = 0.1, γac = 0.9

αµ = 0.05, ασ = 0.05

(— ε-greedy policy) ε = 0.1

Terminal condition 300,000 fitness evaluations

the average over 30 independent runs.

A) Fitness results
The detailed fitness values and curves of the compared methods are shown in

Table 6.3 and Fig. 6.3. Each value of Table 6.3 indicates the average fitness with
standard deviation, where the bold ones denote the best results of the problems.
The analysis of different methods is performed as follows:

GNP : In most cases of the five problems, GNP performs worse results than the
variants of PMBGNP, and only outperforms Sarsa. This is due to the lack of evolu-
tion ability by standard genetic operators, i.e., crossover and mutation, which has
been verified in the previous chapters. The results show that such genetic operators
cause GNP achieve worse evolution ability than that of EDA based PMBGNP.

RPMBGNP : RPMBGNP achieves better performance than that of Sarsa and
GNP. However, it has worse performance than PMBGNP-AC. This is due to the
loss of the solution precision by the discretization. On the other hand, RPMBGNP
actually obtains very stable performances among five problems (has the smallest
standard deviation), which is because of the balance of exploitation and exploration
by Boltzmann distribution.

PBILc: In this method, only the information of three individuals (the best two
and the worst one) are used to update the pdf of Gaussian distribution [Sebag 1998].
It might cause that the search space is explored in a too restricted region and
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Figure 6.3: Fitness curves in five wall-following problems.
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Table 6.3: The fitness results over 30 independent runs.

Fitness (std. dev.)
ST 100 200 300 400 500

GNP 0.88± 0.02 0.83± 0.11 0.82± 0.09 0.76± 0.08 0.66± 0.15

RPMBGNP 0.89± 0.01 0.88± 0.06 0.88± 0.03 0.84± 0.10 0.76± 0.09

PBILc 0.90± 0.01 0.87± 0.09 0.83± 0.09 0.80± 0.15 0.70± 0.12

Sarsa 0.87± 0.04 0.72± 0.11 0.52± 0.21 0.55± 0.19 0.45± 0.22

PMBGNP-AC 0.90± 0.02 0.90± 0.03 0.89± 0.10 0.86± 0.14 0.79± 0.11
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Figure 6.4: Average fitness evaluation for five wall-following problems.

slow speed. Therefore, this method can ensure quite good performance in simple
problems (ST = 100, 200), however, obtain poor results when the problem size
increases (ST = 500).

Sarsa : The discretization causes that Sarsa has to update a huge size of Q table
(consists of 256×25 state-action pairs in each time step). This might cause the slow
learning speed of Sarsa. Therefore, Sarsa can only work well in simple problems
among five simulation results. However, with the increase of the problem size, it
cannot find the optimal solution.

PMBGNP-AC : The simulation results confirm the effectiveness and scalability
of PMBGNP-AC. It ensures the best results among all the five problems. Although
in a certain respect it is more volatile than RPMBGNP (larger standard deviation),
it would still be said that PMBGNP-AC works quite well in directly handling the
continuous variables.

Fig. 6.4 plots the average number of required fitness evaluations to solve the
wall-following problems. Results confirm the higher evolution ability of PMBGNP-
AC over the other methods.

B) Statistical analysis
In order to further analyze the simulation results, the statistical analysis of
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Table 6.4: The t-test results of PMBGNP-AC and the other methods (The bold
ones denote statistically significant difference).

t-test (p value)
ST 100 200 300 400 500

PMBGNP-AC
6.67e-05 9.50e-05 1.19e-04 5.71e-05 2.53e-05

vs. GNP
PMBGNP-AC

1.59e-02 7.57e-01 7.18e-01 3.37e-02 1.40e-02
vs. RPMBGNP
PMBGNP-AC

9.52e-01 2.79e-02 2.20e-02 1.17e-02 1.39e-03
vs. PBILc
PMBGNP-AC

4.68e-05 2.05e-06 5.12e-07 6.46e-08 2.86e-05
vs. Sarsa

different methods by t-test of the number of required fitness evaluations is shown in
Table 6.4. This shows that PMBGNP-AC statistically outperforms GNP and Sarsa
among all the problems, and outperforms RPMBGNP and PBILc in some problems.
Particularly, in the case of the largest problem size (ST = 500), PMBGNP-AC is
statistically superior than the other methods.

6.4 Summary

This chapter extends PMBGNP from the discrete domain to continuous cases. The
conventional research on the topic of continuous EDAs was followed and a novel
method was formulated to learn Gaussian distribution N (µ, σ2) by a Reinforcement
Learning method, i.e., Actor-Critic (AC). The resulting PMBGNP-AC method can
be thought as an extension of PBILc, where AC can implicitly update the pdf of
Gaussian distribution by considering multivariate interactions. The results show
that in the Wall-Following problems of autonomous robots, PMBGNP-AC outper-
forms the conventional methods, including conventional genetic operators based
EAs, discretization based EDA, PBILc based variant and classical RL method.
Moreover, the scalability of PMBGNP-AC is confirmed by different settings of the
problem size.
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This thesis proposes a novel Estimation of Distribution Algorithm (EDA) named
Probabilistic Model Building Genetic Network Programming (PMBGNP), and sys-
tematically studied PMBGNP by proposing several enhanced algorithms and ap-
plying to several problems. This chapter first presents the conclusions of the thesis
and highlight the contributions. Finally, some future directions of this topic are
addressed.

The conclusions of the thesis are drawn through two aspects: algorithm aspect
and application aspect.

7.1 Algorithm aspect

In Chapter 2, PMBGNP that extends EDA from bit-string and tree structures
to graph structures is proposed. Inspired by classical EDAs, such as PBIL and
UMDA, PMBGNP constructs a probabilistic model from the promising individuals
by Maximum Likelihood Estimation (MLE) to generate the new population. As a
result, it inherits the advantages of EDA, where the frequent breakage of the BBs in
conventional genetic operator-based EAs can be avoid in certain respects. On the
other hand, due to its distinguished graph structure, PMBGNP can achieve higher
expression ability, where a large number of problems can be explored and solved
efficiently and effectively comparing with the conventional EDAs.

Chapter 3 discusses the population diversity loss of PMBGNP. First, this chapter
theoretically compares the sensitivity of the diversity loss among PMBGA, PMBGP
and PMBGNP. Based on the discussion, a hybrid PMBGNP (hPMBGNP) is pro-
posed to maintain the population diversity of PMBGNP, where two methods named
multiple probability vectors and genetic operator are introduced. This chapter fi-
nally verifies the effectiveness of hPMBGNP theoretically and empirically.

Chapter 4 and chapter 5 mainly focus on the improvement of PMBGNP by
studying the integration of PMBGNP and Reinforcement Learning (RL). Chapter
4 applies RL to identify and extract useful sub-structures of the bad individuals,
while the sub-structures are used in the probabilistic modeling of PMBGNP. The
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simulation results show that the proposed method can accelerate the evolution of
PMBGNP in terms of requiring smaller number of fitness evaluations.

Chapter 5 provides another method to utilize the integration of EDA and RL
called Reinforced PMBGNP (RPMBGNP). In RPMBGNP, RL is used to learn
knowledge/experience during the individual executions. The collected knowledge
formulated by Q values can correctly measure the quality of node connections. As
a result, RPMGNP incorporates the learnt Q values into its probabilistic modeling,
which has shown better performance than the MLE-based PMBGNP and various
classical algorithms from the literature of EA, EDA and RL. On the other hand,
another advantage of RPMBGNP is that although RL is applied to the framework
of PMBGNP, the computation time still remained in the same level as PMBGNP,
while classical Bayesian network-based EDAs generally requires much time cost for
the probabilistic modeling.

From Chapter 2 to Chapter 5, PMBGNP and its variants are applied to solve
the discrete optimization problems. Chapter 6 extends PMBGNP to continuous
domains, where an algorithm named PMBGNP with Actor-Critic (PMBGNP-AC)
was proposed. In PMBGNP-AC, the continuous variables of nodes are formulated
by Gaussian distribution N (µ, σ2). Actor-Critic (AC), is designed to update the
parameters (µ and σ) of the Gaussian distribution. This chapter fulfills the topics
of integrating EDA and RL techniques, and extends PMBGNP to solve continuous
optimization problems.

Concretely speaking, the contributions of the thesis can be mainly summarized
in the following two points from the perspective of algorithms:

1. Extending EDA from GA’s bit-string structure and GP’s tree structure to a
more complex individual structure: directed graph structure.

2. Studying on the integration of EDA and RL.

The thesis focuses on studying these two points by proposing the algorithm of
PMBGNP and its several variants.

7.2 Application aspect

Various empirical studies have been conducted to clarify the performance of EDA
in the benchmark problems of GA and GP, i.e., function optimization problems by
PMBGAs, symbolic regression and Royal trees problems by PMBGPs. Meanwhile,
EDA has also been successfully applied to a number of applications, such as multiob-
jective optimization [Zhang 2008], dynamic problems [Yang 2008] and bioinformat-
ics [Santana 2008a], etc. Despite many different implementations, one important
challenge of EDA is to explore it to some other applications [Santana 2008b].

From the perspective of applications, the thesis contributes to explore the prob-
lem solving of EDA to two classes of problems, including data mining problems and
the problems of controlling the agents’ behavior.
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Chapter 2 studies on applying PMBGNP to solve one of the data mining prob-
lems, class association rule mining (CARM), where the empirical studies show the
superiority of PMBGNP over classical algorithms in terms of the efficiency of rule
extraction and the accuracy of prediction.

From Chapter 3 to Chapter 6, PMBGNP is mainly studied on the problems of
controlling the agents’ behavior. There is a wide range of work on studying EAs,
such as GP and Evolutionary Programming (EP) [Fogel 1994], to successfully solve
the problems of controlling the agents’ behavior, while until now, there is only a
few work on studying EDA to solve such kind of problems. [Salustowicz 1997] and
[Salustowicz 1998] were the limited work that applies PIPE, a univariate PMBGP,
to solve the problems of controlling the agents’ behavior. Another work on applying
EDA to control the agents is a recent one named EDA-RL [Handa 2009], which
has been reported to successfully solve simple problems but fail on some complex
partially observable problems. Meanwhile, it is meaningful to study the problems of
controlling the agents’ behavior, since many real-world applications can be solved
by such kind of agent systems, i.e., stock trading, foreign exchange prediction and
real robot control, etc.

Through the studies on both benchmark testbed the Tileworld system and the
robot control problems, it has been confirmed that PMBGNP and its variants can
achieve better results than the classical state-of-the-art algorithms in the fields of
EA, EDA and RL.

Further studies will include the extensions of PMBGNP to the other problems,
such as stock trading, foreign exchange prediction and dynamic optimization prob-
lems, etc. More in-depth theoretical analysis of PMBGNP will also be done in the
later research. On the other hand, improving the method of integrating EDA and
RL, and extending it to the other EDAs will be another future research.
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