View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Waseda University Repository

Program Parallelization for Effective Use of
Computational Resources

Jubgdogtdboodgobogd
Juooguotgd

February 2012

Information Network System II,
Global Information and Telecommunication Studies,
Graduate School of Global Information and

Telecommunication Studies, Waseda University

Hidehiro KANEMITSU

https://core.ac.uk/display/286936971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

|[List of Figures|

[List of Tables

st of Nofafions|

(I__Introductionl

1.1 Background|
1.2 Research target]

[.3 Abstract of each chapter]

|2 Preliminam

|EI |OE moaeII

2.2 Task clustering|.

23 System

model

2.4 Schedulelengthl

3 Task clustering in homogeneous distributed systems|

BJ1 _Introduction]

[3.2 Problem definition and assumptions|o o000

B.2.1 Cluster merging].

B.2.2 Problems in conventional approaches|

B.2.3 Proposal

[3.3 Derivation of the lower bound of every clustersizel

ol

Policie

s tor deriving the lower bound of every cluster sizel

B.3.2_ Definition of WSI]

|3;3.3 Preliminary for the analysisoft WSL}

B.3.4 Relationship between ¢ and WSL after R task merging steps|
B.3.5 Derivation of the upper bound of the increase of WSL by generating]

[§.3.6 Derivation of ALy, ypf . . - . o o o o oo

537 T

Decision of . -

B.3.8 Relationship between WSL and the scheduleTength|

[3.4 Task clustering algorithm|

B4l

Requirements for

iv

vi

CONTENTS

.42 Summary of the algorithm|. o000 27
B.43 Policy for task merging steps| 28
B.44 Definition of the range for selecting pivot, and its effect]. 29
B.45 Selectionof pivot 33
3.4.6 Selectionof targety 34
B.4.7 Task merging steps and update procedures for merging priorities| . . . 39
B.48 Complexityanalysis| 41
3.5 Experimental comparison| oo oo 43
B.51 Comparisonpoints|, 44
B52 Simulationenvironmenfl oL 45
3.5.3 Comparison targets|. oL 45
B.54 Comparison of the combination of tasks for each cluster| 46
B.55 Comparison of WSL and the schedule length with changing CCR] . . . 47
B.5.6 Comparison of therequired PEs| 51
B.5.7 Comparison of the schedule Iength by different scheduling policies| . . 51
B.58 Optimality of dop] . - - 52
B.5.9 Comparison of therunning time| 55
B.5.10 Comparison of the degree of effective use of processors in specific ap-

|Elications| 57

BL5IT Discussionl 59

B.6 Conclusionl. 61
@ Task clustering in heterogeneous distributed systems| 62
4.1 Introduction| 62
B2 Relatedworks| 63
4.3 Indicative value for the schedule lengthf 64
4.3.1 Indicative value s, (G5, ¢s)| - . - 64

4.3.2 Relationship between WSL and the lower bound of the schedule length| 65
4.3.3 Ralationship between WSL and the upper bound of the schedule length| 68

ivati iontimel 69

441 Assumedsituation| Lo o o 69

4.4.2 Policy tor deriving the lower bound tfor each cluster execution time|. . 70
4.43 Decision of the Tower bound of the cluster execution time| 72

4.5 Processorassignment|. 0 o 0oL 74
451 Characteristicsof thenextPE 75

452 Overall procedures| o0 0L, 75

453 Processorselectionphasel L. 76

454 Cluster selectionphasel. 77

4.5.5 Processor assignmentphasel. 77

4.6 Experimental comparison| oo L0 L 77
4.6.1 Objective]l. 77
4.6.2 Simulationenvironment! o Lo o L 77
4.6.3 Procedures|. 78

4.6.4 Comparison resultinrandom DAGs|. 80

4.6.5 Comparisonresultin FEFT DAGs| 81

ii

CONTENTS

4.6.6 Optimality of the lower bound for each cluster execution time| 81

4.6.7 Comparison in tems of processor assignment|. 82

468 Discussionl. 83

W7 Conclusionl. 84
5__Conclusion| 85

ii

List of Figures

[I.1 Relationships among chapters|. 5
2.1 ExampleofaDAG.| 7
[3.1 Derivation of the schedule length by task clustering and cluster merging (SL|
ochedule Length)[. o L o 12
3.2 Example of each defined symbols| 16
.3 Concept of the upper bound of sl,(G5)] 19
|§.4 An example of ny; iy and ngrapr| <o 21
[3.5 Whole procedures of our proposing task clustering| 27
3.6 Effect on LV, value of every cluster after one task merging step of pivot
fand targets 33
3.7 Pattern of selecting target(where let pivots = clss(p))| 35
.8 Procedure of task clustering at Fig. 3.5]line. 5 40
B.9 Comparison of Nsaud - - - - v oo oo 47
.10 Comparison of [topg| for eachcluster] 47
B.11 Comparison of the schedule lIength with changing the number of PEs (V] = 1000)|
... 50
.12 Optimality about dgpe] - - - . . o o oo 53
[3.13 An example of Gaussian Elimination DAG structure when N =6| 57
4.1 Assumed condition during cluster generation procedures| 67
4.2 Example of 5gpt(Pp) derivation (where s = 5)| 71
4.3 Example of an execution route which compose sl,,(G%., ¢s) 72
4.4 Overall procedures for the processor assignment| 76
4.5 Optimality of 65, (Fp)[- - - - .« - o o oo 82

iv

List of Tables

.1 Parameter definition which is related to si,,(G?,.) (n; € clss(z)). 15
E.Z Parameter definitions which are used in analysis on sl,,(G%,,) (0 <s < R)| .. 17
3.3 Configuration policies for each parameter ina random DAG| 45
3.4 Comparison of sl,(G,) and sl(G,],) with varying CCR (Each task size and)

[data size is assigned according to random value in uniform distribution)] . . 48

B.5 Comparison of sl,(G,) and sl(Gy,) with varying CCR (Each task size and|

data size is assigned according to random value in normal distribution, and

A. Proposal, B. CASS-II+LB, C. DSC+CM, D.LB)] 49
(3.6 Comparison of schedule length with two scheduling policies (A. Proposal, B||

[CASS-II+LB,C.DSC+CM, D.IB) o oo 52
3.7 Breakout of { of non-linear clusters after the task Clustering| 53
3.8 Comparison of running time of each algorithm(Each task and data size is

lassigned according to random value in uniform distribution)] 54
3.9 Comparison of running time of each algorithm(Each task and data size is

lassigned according to random value in normal distribution)] 56
3.10 Comparison of E(|V 1|, Algorithm) in Gaussian Elimination DAG| 58
3.11 Comparison of E(|V1|, Algorithm) in FFTDAG| 60
4.1 Parameter definition telated to sl,, (G,) (Here nj € clss(z))| 64
4.2 Parameter definitions which are used in analysis on sl,,(G?,., ¢). (0 < s < R)| 65
4.3 Comparison results in random DAG (g of tasks : 1000){ 79
44 Comparison results in FFT DAG (fof tasks:2048)]. 80
4.5 Comparison results in FFT DAG (fof tasks: 4608)]. 81
4.6 Comparison in terms of processor assignment in random DAGs (3 of tasks =|

.. 83

a7

Comparison in terms of processor assignment in FFT DAGs (§ of tasks = 2048)[84

List of Notations

VS

cls

cls
tops(7)
ins (i)
outs(7)
btms (i)
desc(nj, 1)

S(n, 1)
tlevel(ny)
T'Ly(i)

blevel(n})

level(ny)
BLA(i)

LVi(i)
Slw (Gils)

seqs
P

as = Vs, E

The k-th task after s task merging steps.
The precedence relationship from n; to n}.

Size of nj, i.e., time units required to be processed by the reference PE.
Size of data by e; , i.e., time units required to be transferred from n; to

l?j’
nj’ on the reference communication link.

The set of tasks after s task merging steps.

The set of edges (precedence relationships) after s task merging steps.

The set of clusters after s task merging steps.
A task graph expressed as a DAG.
{ni|Vnj € pred(nj)s.t.,n] ¢ clss(i)} U START Tasks € cls4(i).
{n{|3n] € pred(nf)s.t.,nj ¢ clss(i)} U START Tasks € cls;(i).
{ng|3In] € suc(ny)s.t.,n; ¢ clss(i)} UEND Tasks € clss(7).
{nf|Vn] € suc(nf),s.t.,n] ¢ clss(i)} U END Tasks € cls(1).
{njIn;, < nj,nj € clss(i)} U {ni}.
aneclss(i) w(nls) B ansedesc(ni,i) w(nls)
{ Selglac)lc(o {tlevel(n}) + w(n}) + c(er)}, where ni € tops(i),
nl e nk
TL(i) + S(ng, i), otherwise.

max {tlevel(n})}.
ng Etops (i)

max w(ny) + c(ey ;) + blevel(n}) ¢.
nstuc(nZ){ (k) (k’l) (l)}
tlevel(ng) + blevel(n)).

max {S(nf,i) + blevel(nf)}.

nj Eouts (1)

TL(i)+ BLs(i) = max {level(n3)}.

nj Eclss (i)
WSL (Worst Schedule Length), i.e., max {LV;(i)}.
clss(1)eVS,
Set of tasks by which si,,(G?,,) is derived.
One path of GY_, i.e., {nd,n{,n3,...,nd} U {68’1, 6(1)72, . e%_Lk},
by which a sequence < n,n{,nJ,...,n) > is constructed, where
6?7171 E EO.

n§ is a START task and n is an END task.

Vi

LIST OF TABLES

e
seq; (i)
Wmazx
cp

CPw
Gmin

Imax (nZ)

Asl,,
Asly up
len(seq (i)

len(seqy)

AL;
AL,
ALw,up

R
P
Q5
(0]
Bi.j
5

Ps
lw(Gily ¢8)

len(pv QSO)

cp(os)

One subpath of G¥y, i.e., {ng,n?,n3, ..., nY} U{ef , el 0. . 14},
by which a sequence < nj,n{,n3,...,n? > is constructed, where
6?_17l € EO

n§ is not a START task or n{ is not an END task.
One path in which every task belongs to seq;.
Set of subpaths in each of which every task in cls(i) belongs to seq; .

max {w(clsgr(i))} — 0.
clsp(i)eVE
of clusters in which at least one task belongs to seq;*.

Critical path length of GY,..
max { > w(ﬂ%)}

0
pEGclS n%Ep
min w(n?) min w(n?
n(J)Gp'r‘ed(n {]} loesuc(n { (l)}
Hllll
] k }

0 max max c(ef)
ev;l‘s Oepred(nk) Gsuc(no){ kot }

;ﬁ::‘;‘(no){“) ggﬁfsznk){“"?)}

max min 0){0(K } min {c(ekl)}

n Epred(n n; E.suc(n)
Slw(Ggs) slw(Gorg) = Slw(Ggs) - Cp-
An upper bound of Asl,,.
X wm)+ X cleqy)
ni €seqs* (i) ng.ny€seq (i),
62JEEO
X whi)+ X ey
7’L2€seqs< ny,n;Eseqy,
e%leEO
an GCZSR(i)ﬂseqR w(nkR) - len(squ (Z)>
slw(GE) — len(seqR).
An upper bound of AL,,.
The i-th PE.
{P1,Ps,...,Py,}.
The processing speed of P;.
{a1,09,...,am}.
The communication bandwidth from P; to P;.
{Br2,-- Bigs--s -
{...,<dlss(i), Py >,... }.
WSL (Worst Schedule Length) in the mapping ¢,,i.e., max {LVs(i)}.

clss(1)eVS,
5 ty(nfmaxfoa) + 5 telelel)). max (5.
nkep ek (EDP Bi €8
max< > tp(ng,ap)+ > te(cle},),Bpg) ¢, Where ni, nj are assigned to
p niep €} € ’
P,, P,, respectively.

vii

LIST OF TABLES

pr(‘lss) max Z tp(”ivap) .
peGy, nge€p

min tr(nSa i t s

(d)) . n‘;.EPTed(nZ){ p(J p)} nfer;lil(?(nz){ p(nl 70fr)}

GminPs min 9 s

nieVy, nS.eggﬁ(nz){%(e;k’ﬁp’q)} nfer;lfc)zni){tc(ek’l’ﬁqm)}
J

Gs,identical A mapping of clusters to identical processors after s task merging steps.

viii

Chapter 1

Introduction

1.1 Background

Computer technologies, i.e., how to accelerate the processing power, how to expand the
capability, and how to realize an application, have been developed on both hardware and
software aspects. High performance computing models, such as high throughput comput-
ing [5] and grid computing [6}/8,0] have been taking a critical role in such developments.
One of objectives of those computing models is typically to minimize the response time.
On the other hand, a high throughput computing [5] focuses on maximizing computing
throughput (the amount of computation per a time unit). This means that an objective of
a high performance computing model depends on the situation and the environment to be
assumed.

In the light of realization for a high performance computing model, a number of pro-
gramming models and middlewares exist. In the case of programming models, a program-
ming standard (MPI [13]]) and API sets (PVM [14], MPICH [15]) are applied for realizing
interprocessor communications. By using such programming models and middlewares, the
program can be transformed into the one which can be executed in parallel or concurrently
among processors in the computer and/or over the network. As for the common termi-
nologies, the program submitted into the system is defined as “a job,” and each execution
unit consisting the job is defined as “task.” How to schedule each task is generally known
as task scheduling problem [4]. Though whether the optimal schedule can be obtained or
not depends on the task execution model, at least how to schedule the job composed of the
set of tasks is known as a NP-complete problem [4]. Many researches have tried to find a
near-optimal solution within the practical running time.

As for a real situation, one of major trends in task execution models is to divide the
required data into several pieces and then distribute them to workers such as “a master
- worker model.” In contrast to such a data intensive job, how to divide a computation
intensive job into several execution units for parallel execution is under discussion from
theoretical points of view. If we take task parallelization into account in a grid environment
such as a computational grid [7,10,11], a task scheduling strategy should be established to
achieve effective use of processors, which means to maximize the degree of contribution per
a processor to the reduction of the response time. However, every conventional approach

CHAPTER 1. INTRODUCTION

has no criterion to achieve the goal. For example, one method to decide the set of processors
is to merge several tasks into one assignment unit [17,[18}24,126,27,129/132142-44]. In such a
method, each assignment unit is generated according to the specific criterion. Hence, both
the response time and the number of processors obtained depends on the criterion. The
problem in conventional approaches to achieve effective use of processors is that the number
of generated assignment unit can be too many because such approaches try to minimize the
response time only.

1.2 Research target

The objective of the dissertation is to propose the theoretical method for achieving effective
use of processors in distributed systems, where each processor is connected to others over
the network. In a real situation, the system to be assumed is roughly classified into two
types, i.e., a homogeneous distributed system and heterogeneous distributed systems. In
the former, both each processing speed and each communication bandwidth are identical,
while in the latter their values are arbitrary. Thus, the dissertation mainly consists of two
parts in terms of the system to be assumed, i.e., how to achieve effective use of proces-
sors in homogeneous distributed systems (chapter [3) or heterogeneous distributed systems
(chapter[). The basic concept behind the research is to impose the lower bound to each as-
signment unit (cluster) size for effective use of processors, thereby the number of processors
is limited to some extent. Thus, in both two parts, the main issue to be solved is how to
theoretically derive the lower bound.

1.3 Abstract of each chapter

Figure [L.1] shows relationships among chapters. Before describing those two parts, the job
model is defined (chapter 2). The job is the one which is abstracted from a program, in
which each statement and function call are handled as a task. On the other hand, each data
exchanged among tasks corresponds to a communication over the network. If we assume
a general purpose job, which can be modeled as a DAG (Directed Acyclic Graph), where
a task corresponds to a node and a data corresponds to an edge. The specific model we
assume is how to parallelize the DAG type job over the completely connected network for
effective use of processors. In the first part (chapter), i.e., in homogeneous distributed
systems model, the lower bound for every asignment unit (cluster) is statically derived be-
fore each task is scheduled. In other words, we have no way to decide the response time at
the derivation phase. Hence, it is necessary to derive the lower bound with estimating the
response time. The assumed procedure is to estimate the response time using the indicative
value, while each cluster is generated by a task merging step. We define the indicative value
as WSL (Worst Schedule Length, denoted as sl,,(G%,,)) which means the largest value the
response time can take when every task is executed as late as possible after s task merging
steps. G2, means the state that the set of clusters and communications after s task merg-
ing steps have been performed. Since the variation of indicative value must have effect on
the minimization of the response time, we theoretically analyze the relationship between
sl (G?),) and the response time decided after a task scheduling. As a result, two theorems

CHAPTER 1. INTRODUCTION

are proved, i.e., the one is that the reduction of sl,,(G%;,) can lead to the reduction of the
lower bound of the response time, and the other is that the reduction of sl,,(G%;,) can lead
to the reduction of the upper bound of the response time. Then we estimate the task com-
bination in an cluster when slw(Gﬁs) is effectively reduced (where R is the number of task
merging steps when every cluster size exceeds the lower bound 4). By considering § as a
variable, we derive the value of § as d,,; when slw(Ggs) can be minimized. The processes to
generate each cluster are as follows.

1. Derive the lower bound d,,; by assuming the ideal structure for each cluster after R
task merging steps.

2. Generate each cluster until every cluster size exceeds ., with minimizing sl,(G%,).

As the second process, we propose the task clustering algorithm (the set of task merging
steps) which has the low time complexity and is capable of effectively reducing sl,,(GE,).
Then we prove the following points by experimental simulations.

1. The generated clusters by the proposal have the task combination for each of them for
minimizing sl,, (GE).

2. The response time can be effectively reduced with the reduction of sl,(G%,) by the
proposal.

3. The derived lower bound, i.e., d,,: has a good impact on the reduction of the response
time.

4. The algorithm running time is practical.

5. Applicability of the proposal in realistic jobs such as a Gaussian Elimination DAG and
a FFT DAG.

From results shown by the experiments, we make conclusion that the proposal can achieve
effective use of processors in homogeneous distributed systems.

As the second part (chapter d), we propose how to achieve effective use of processors in
heterogeneous distributed systems. Specifically, we present three points as follows.

(1) The lower bound of a cluster execution time (sum of each task execution time in the
cluster on a processor) is derived with taking the processor’s capability into account.

(2) The policy for selecting the processor to be assigned.

(3) A task clustering algorithm to generate the cluster which is assigned to the processor
selected in (2). As a result, the generated cluster execution time exceeds the lower
bound derived in (1).

In contrast to the case of homogeneous distributed system, each task execution time de-
pends on not only each processing speed, but also each communication bandwidth. Thus,
the lower bound of each cluster execution time should be decided according to the proces-
sor which has been selected as the assignment target. At (1), at first we define the indicative
value for the response time as sl,,(G%, ¢s) , where ¢5 means the mapping state between

3

CHAPTER 1. INTRODUCTION

each cluster and each processor after s task merging steps. Then we prove that the reduc-
tion of sl,, (G2, ¢s) can lead to the reduction of the lower bound of the response time. Also
we prove that so is true for the upper bound of the response time. Hence, the fundamental
objective of the proposal is to minimize sl,,(G, ¢r) by imposing the lower bound for each
cluster execution time decided according to each processor and the processor assignment.
Then we derive the lower bound of the cluster execution time for the selected processor as
the next assignment target. The lower bound is expressed as 4;,,(F,) , where P, is selected
before s th task merging step, and then we estimate the lower bound for every cluster execu-
tion time on the path dominating slw(Gil_Sl, ¢s—1), 1.e., by which slw(Gzl_Sl, ¢s—1) is decided.
That is, we derive the lower bound by temporally assuming the homogeneous distributed
system by the set of P, . At the same time, the upper bound of sl,,(G%,,, ¢s) is derived as
Asl . Since 65, (P,) is a function of P, , both the processing speed and the communication
bandwidth are variables. Furthermore, Asl5; ! is a function of the lower bound for a cluster
execution time. Hence, the actual processor to be assigned after s- th task merging step is
decided by assigning every processing speed and communication bandwidth in the set of
unassigned processors to Asls L . The processor by which Asls; } is minimized is selected
as the next assignment target. Each cluster is generated by the task clustering algorithm
for each derived lower bound. Experimental comparisons are conducted to confirm, (i) the
reduction of sl,,(G%,,, ¢s) can lead to the reduction of the response time, (ii) optimality of

opt(Fp) , and (iii) optimality of the processor assignment. As a conclusion, the contribution
of the dissertation is to propose a new theoretical approach for effective use of processors in
distributed systems. The main achievement is to decide how large each assignment unit size
should be set. As a future work, more realistic aspects such as communication bottlenecks

by hops should be taken into consideration.

CHAPTER 1. INTRODUCTION

Objective:
Theoretical Model of program
parallelization for effective use of

processors
Chap. 2
is achieved by Preliminary is achieved by
is used i {s used in
\ 4 A 4
Chap. 3 Chap. 4

The case of a heterogeneous

The case of a homogeneous
distributed system

distributed system

Derivation of the lower bound
o 0 for each assignment unit size
iterature
iterature [20] Literature [23] Proposes

(Processor assignment\A

policy D
J Literature [23]

Proposes

‘[Task clustering \A
'K algorithm J -
Literature [23]

\ 4

Chap. 5
Conclusion

Figure 1.1: Relationships among chapters

Chapter 2

Preliminary

2.1 Job model

We assume a job to be executed among distributed processor elements (PEs) can be ex-
pressed as a Directed Acyclic Graph (DAG), which is one of task graphs. At first, let
G%,, = (Vs, Es, Vi) be the DAG after s task merging steps. Merging steps will be discussed
in the later part of the dissertation. Vj is the set of tasks after s task merging steps, E is the
set of edges (data communications among tasks) after s task merging steps, and Vi, is the
set of clusters which consists of one or more tasks after s task merging steps. An i-th task is
denoted as nf. Let w(n;) be the task size of], i.e., the time a reference processor takes to
execute the task. A reference processor is the one selected for measuring the processing time
of a task, while the reference communication link is the one selected for measuring the data
transfer time of a data. Thus, the processing time for each task and the data transfer time
for each data are derived by taking ratios in terms of the processing speed and the commu-
nication bandwitdh. We denote data dependency and direction of data transfer from n; to
nj with e;‘” e And c(ei j) is used to denote the data size, i.e., the time to transfer the data from
n; to nj over the reference communication link.

One constraint imposed by a DAG is that a task can not be started execution until all
data from its predecessor tasks arrive. For instance, e; ; means that nj can not be started
until data from n; arrives at the PE which will execute nj. And let pred(n;) be the set
of immediate predecessors of n;, and suc(nf) be the set of immediate successors of n. If
pred(ni) = 0, nf is called START task, and if suc(nf) =), n{ is called END task. If there are
one or more paths from n; to n;, we denote such a relation as nj < n}.

Figure 2.1l shows a DAG example. In (a), it is assumed that each task corresponds to
one statement. On the other hand, in (b), each task is assumed to be one function call. In
general, a DAG, i.e., a task graph can be generated from a dominance tree [3], which rep-
resents data dependencies and control dependencies among tasks. If we assume that one
task corresponds to one statement (e.g., only a variable assignment), the total number of
tasks in the DAG becomes very large, so that both the total communication overheads and
the time taken for a task scheduling become large. Thus, typically many program paral-
lelization compilers adopt the transformation from small granularity to larger granularity

in terms of the task structure. For example, in HTG (Hierarchical Task Graph [1}12]), each

CHAPTER 2. PRELIMINARY

1: a = 1; :a = func_firstQ;

2: b =a+ 1; : b = func_second(a);

3: c=a * a; : ¢ = func_third(b);

4: d =b + c; : d = func_fourth(b,c);
(a) 1 task :1 statement (b) 1 task :1 function call

Figure 2.1: Example of a DAG.

task corresponds to one execution block, e.g., one looping or one function call in order to
reduce both the number of tasks and communication overheads. Thus, in this dissertation
we assume that each task corresponds to one function call (i.e., (b) at Figure 2.1).

2.2 Task clustering

The i-th cluster in Vj, is denoted as cls,(i). If nj is included in cls4(i) by “the s-th task merg-
ing step,” we formulate one task merging step as clss41(i) < clss(i) U {n; }. If any two tasks,
ie,n’and nj, are included in the same cluster, they are assigned to the same PE. Then the
communication between n; and n] is localized, so that we define (e ;) becomes zero. Task
clustering is a set of task merging steps, that is finished when a certain criteria has been sat-
isfied. Let one task merging step for cls,(i) and cls,(k) be defined as merge(clss(i), clss(k)).

This procedure is expressed as

clss41(1) « clss(i) U clss(k);
Vel s — {clss(k)}, Esp1 — Es;

cls cls
c(e;*ql) — 0 for anfl,ngﬂ € clssy1(7), efgzl € Esiq;
return clssy1(i); (2.1)

Then one cluster is one assignment unit for a PE.

Let the input DAG for task clustering be G%,, = (V;, Es, Vj,), where s is the number of
task merging steps. Let the set of tasks in V; be {nj,n3,...}, and let the set of edges in E;
be {...,e; ;... }. This means that G%, is the DAG just after s task merging steps have been
performeci to Gg. At the initial state, let s = 0 and let Vj <« V, Ey < E. Furthermore, let
clso(1) = {n9}, clso(2) = {n3},..., VI, « {clso(1),clso(2), ... }. The sum of each task size in
clss(i) is defined as w(clss(i)), and in this dissertation w(clss(7)) is called “cluster size” of
clss(1).

Throughout this dissertation, we denote that cls,(7) is “linear” if and only if cls,(i) con-
tains no independent task [24], i.e., every task in clss(7), has precedence relationships with
other tasks. Note that if one cluster is linear, at least one path among any two tasks in the

cluster exists and the task execution order is unique.

CHAPTER 2. PRELIMINARY

2.3 System model

We have two assumptions in terms of the system in this dissertation, i.e., homogeneous
distributed systems described in chapterBland heterogeneous distributed systems described
in chapter @

In both chapters, every PE can independently execute a task and send/receive data at
the same time in a completely connected network. Every PE has its local memory space to
store data required to execute programs. The communication model among PEs is based on
a message passing model such as MPI [13]. In such a communication model, it is assumed
that multiple data are communicated at the same time with a constant communication band-
width. This means that communication bandwidth is time invariant'.

In chapter[3] we assume the number of PEs is unbounded. On the other hand, in chapter
Ml there are limited number of PEs and each PE has a non-identical processing speed and a
non-identical communication bandwidth. The set of PEs is expressed as P = { P, P, ..., Pp},
and let the set of processing speeds as «, i.e.,

a={aj,a,...,an}. (2.2)
Let the set of communication bandwidths as 3, i.e.,

oo Pz Bz - Bim
P21 oo P23 ... Bom
B=|Bs1 P32 oo ... B3m|. (2.3)

ﬁm,l ﬁm,Z ﬁm,3 oo

Bi,; means the communication bandwidth from P; to P;. The processing time in the case
that nj is processed on P; is expressed as t,(ny, ;) = w(ny)/c;. The data transfer time of
e, over B is te(ef ;. Br1) = c(ef ;)/Br,- This means that both processing time and data
transfer time are not changed with time, and suppose that data transfer time within one
PE is negligible. Since every processing speed and communication bandwidth are the same
among PEs in homogeneous distributed systems, without loss of generality both «; and 3; ;
aresetto 1,i.e., w(ny) and c(e; ;) are considered as the processing time and the data transfer
time. Such assumptions are applied in chapter[3

24 Schedule length

Each task can be executed after every data from its immediate predecessors have been ar-
rived. At first, let the start time (scheduled time) of n;’ be ¢ (n}g), and let the completion time
of nj be tg(n?). Thenty(n?) is defined as follow.

tp(ng) = ts(nj) + tp(w(ng), ap). (2.4)

1Since our study is based on the classical communication model, we do not focus on multiple data transmis-
sion at one time [40], one-port model [40]

CHAPTER 2. PRELIMINARY

When every data from pred(n;) has been arrived, n] can be executed immediately. However,
even if every data from pred(nj) has been arrived at n}, n} can not be started until the
execution of another task in the same cluster is finished.

In this dissertation, the time when every data from every immediate predecessor tasks
has been arrived is named as Data Ready Time (DRT [16,41]). DRT of nj(n] € cls;(k)) is

defined as follow.

tdr(”?) = max) {tf(nf) + tc(c(eij), 517,(1)}

ni Epred(n?

= max max te(nd)}, max tr(ng) + te(cle; 5, . (25
e () ma {1 (08) 4 (el) - @)

n?eclss(k) ni¢clss(k)

From eq.(2.5), it can be seen that t4,(n}) is derived from the maximum completion time of
a task in pred(n;) included in the same cluster and the maximum data arrival time from a
task in pred(nj) included in other clusters. In the former case, data transfer time between
pred(n3) and n} is zero, because they are included in the same cluster. On the other hand, the
latter case requires data transfer time of c(e; ;). If execution of every immediate predecessor
task has been completed but every data from one or more tasks from other clusters has
not arrived, the task must be wait for delay its execution. In such a case, the data waiting
time exists. The data waiting time of n} in clss(k) is defined as I(n], k), which is derived as
follow.

0,if max Aty = max {t(nd) + teleles;) Bpa) b

nfepred(n;), nprred(nj),
I(’I’LS k‘) _ nieclss(k) ni¢clss(k) (2 6)
70 - . .
a tr(nS) + tolc(es), }— a te(n)Y, oth .
s (e)+ telelel,) B} = e {ty(nd)} otheruise
niéclss(k) niEclss(k)

Even if ¢4,(n}) is known, the scheduled time of n] may be varied by the execution order
(i.e., the scheduling policy) when some tasks are independent from n} in the same cluster
have not been scheduled. Thus, we have tdr(n;’f) < ts(nj-) [16,41]. From the relationship, it
follows the fact that the completion time of each task depends on the scheduling policy. In
this dissertation, the schedule length of G%,, is defined as si(G%,,).

1(G2,) = tr(n%)) . 2.7
sl(G3) wseetss (S v {tr(n3)} 2.7)

cls

In eq.(2.7), it is assumed that the start time of a START task is set to 0.

Chapter 3

Task clustering in homogeneous
distributed systems

3.1 Introduction

In distributed systems where each PE sends or receives data over the network, scheduling
tasks to minimize schedule length is very important [12,[18,27-29]. It is known that a task
graph which consists of a DAG, has been considered as an NP-complete problem [27]. If
the number of PEs is given and every PE must be used, a priority for scheduling order is
adopted by conventional approaches. Such approaches have been named as “list schedul-
ing.” On the other hand, if the number of PEs is not given or not all PEs must be used,
we must derive not only execution order for each task, but also the number of PEs in or-
der to obtain a good schedule length. As one approach in such a case, task clustering [17]
has been known. One fundamental feature of a task clustering is to merge several tasks
into one cluster by localizing communication overhead among them, so that each cluster
corresponds to each assignment unit per one PE. However, if the smaller communication
overhead among tasks becomes, the longer schedule length becomes, thereby the sched-
ule length can be prolonged. In distributed systems such as grid where several application
programs can be processed simultaneously, effectively using computational resources is a
key factor to achieve short schedule lengths for all executing applications. To achieve ef-
ficient utilization of computational resources, it is important to derive the execution order
to minimize schedule length, while to reduce the number of clusters as much as possible.
There are several heuristic approaches whose purposes are to reduce the number of clus-
ters by merging several clusters into a larger one after a task clustering. Pyrros compiling
infrastructure [25] adopts a criterion for equalizing each cluster size. Liou et al. proposed
two task merging approaches, i.e., LB(Load Balancing) and CTM (Communication Traffic
Minimizing) [26]. The merging criterion of LB is the same as the cluster merging adopted in
Pyrros [25] except that LB does not consider data dependencies among tasks. On the other
hand, the criterion of cluster merging performed by CTM is that sum of data transfer time
among clusters to be merged is minimized as much as possible. According to the results
of performance comparisons between LB and CTM, both of cluster merging approaches
have bad effects on the schedule length when they are performed after a task clustering,

10

CHAPTER 3. TASK CLUSTERING IN HOMOGENEQOUS DISTRIBUTED SYSTEMS

e.g., CASS-II [26]. According to the literature [26], by using LB after CASS-II, the schedule
length is prolonged up to 19 % compared with the schedule length obtained by only CASS-
II. In the case of performing CTM after CASS-II, the schedule length is prolonged up to 55
%. This means that a cluster merging approach which sacrifices task parallelism can pro-
long the schedule length. Thus, a cluster merging strategy for maintaining task parallelism
with the small number of clusters is required.

In this chapter, we present a cluster size determination method in order to obtain a good
schedule length with the small number of clusters in homogeneous distributed systems. As
one heuristic for reducing the number of clusters generated by a task clustering, we impose
the lower bound “0” of every cluster size.

The fundamental objective is to minimize the schedule length. Hence, we derived the
lower bound of every cluster size while effectively minimizing the schedule length. Then
we present requirements and the algorithm for a task clustering heuristic, and then experi-
mental comparisons by simulations are presented.

3.2 Problem definition and assumptions

3.2.1 Cluster merging

If the number of generated clusters by a task clustering is smaller than that of actual existing
PEs, every cluster can be assigned to a PE. Otherwise, it is necessary to reduce the number
of clusters by merging them such that each PE can be assigned to one cluster [25,26]. In this
dissertation, cluster merging means to a procedure for merging several clusters generated
by a task clustering.

Figure3.Ilshows an example of a task clustering and cluster mergings. In this figure, (a)
represents the initial state of the DAG, and (b) represents the state after a task clustering has
been finished. The schedule length in (a) is equal to the critical path length (the maximum
path length including both every task size and every data size on a path), i.e., 23 by tracing
ny — ng — nd — nf. On the other hand, in (b), no task scheduling is required because every
cluster is linear. Hence, the schedule length in (b) is uniquely determined to be 20.

If the number of clusters must be reduced to two due to the fact that there are only two
PEs, a cluster merging such as figure 3.1] (c), (d), and (e) is needed. As for each cluster
generated in (b), if cls4(1) and cls4(2) are merged by LB [26], some independent tasks exist,
e.g., “n3 and n}” and “n3 and n2” in (c), (d) and (e). As a result, the schedule length in the
order of n — nj — n3 in (c) is 23. In (d), the schedule length in the order of n3 — n3 — n3
is 24, because the data arrival time of € ; at n} is delayed by the increase of the start time
of n3. In (e), the schedule length is larger than that of (c) and (d) by scheduling n3 in cls5(2)
at the latest execution order. From those examples, it can be concluded that the schedule
length after a cluster merging can become larger than that after a task clustering, because
the number of tasks which can be executed at the same time may be reduced by a cluster
merging. It can also be concluded that the schedule length is varied depending on the
execution order for each task, even if the set of tasks belonging to the cluster is same among
(c), (d), and (d).

11

CHAPTER 3. TASK CLUSTERING IN HOMOGENEQOUS DISTRIBUTED SYSTEMS

cls, (1) cls, (2) cls, (4 0 cls; (1) cls;(4) 0 cls;(1) cls; (4)

2 ol 2 | Py L
cls, (1= 4 n; s
2 a } 23 n; o —6 6 [— 5 o, 6
H H 2 n, n, n,
: H cls,(4) 8 . 77 . 8 17
2 H 27", 9 ; ng 3 ng n, ng
N> n; 12 12
16 16
18 7
20 L
TimeV 21 n 22 3
23 24 n
TimeY Time ¥
Sched. of (b) Sched. of (c) Sched. of (d)

0 cls, (1) cls;(4)

2 LM

5
n,

n,

N o

g

13 12

5
n,

17

(c) Cluster Merging (SL=23) (d) Cluster Merging (SL=24) (e) Cluster Merging (SL=29)

27 .
29
Time Y

y
Sched. of (e)

Figure 3.1: Derivation of the schedule length by task clustering and cluster merging (SL:
Schedule Length)
(appears in [22]).

3.2.2 Problems in conventional approaches

The objective of conventional task clustering heuristics [17,[18]24,27,29H33] mainly derive
the number of clusters (PEs) when the schedule length is minimized. In such approaches,
some heuristics adopt criteria that a task merging step is not accepted if the schedule length
is increased, otherwise the task merging step is accepted [18,27,29,30]. In Convex Cluster-
ing [32], tasks having the “convex” relationship each other are selected for a task merging
step. Thus, only precedence relationships are considered in Convex Clustering. Other ap-
proaches are based on the optimization methods [31,33]]. Those approaches described above
do not impose any constraint for limiting the number of clusters to be generated, so that the
number of obtained clusters may become huge depending on not only each cluster struc-
ture, but also criteria for each task merging step. If the objective of the task clustering is to
minimize the schedule length, the larger the number of generated clusters is, the lower the
speed up ratio (the degree of contribution for reducing the schedule length) per one PE may
become.

As for the cluster merging, in the literature [25] mentions “Cluster Merging(CM),” which
performs cluster mergings based on the criterion that every cluster size is equalized until the
number of clusters is equal to that of PEs, while it does not take the precedence relationship

12

CHAPTER 3. TASK CLUSTERING IN HOMOGENEQOUS DISTRIBUTED SYSTEMS

between tasks. As a result, several tasks without precedence relationships belong to the
same cluster, so that the schedule length can be larger like figure B.T(c), (d), and (e).

Load Balancing(LB) described in the literature [26] and Communication Traffic Minmiz-
ing (CTM) [26] are cluster merging heuristics which are performed after one of task clus-
tering heuristic, i.e., CASS-II [29]. Those two cluster mergings try to merge two clusters,
in which at least one precedence relationship exists. However, LB and CTM are performed
after a task clustering, so that a cluster required for cluster merging can have two or more
tasks. Thus, some tasks may have no precedence relationship in a merged cluster like figure
B.Ic), (d), and (e).

With those points described above, it can be said that conventional approaches have two
problem as follows.

e The number of required PEs derived by a conventional task clustering exceeds the
number of actual PEs.

e There is no criterion for minimizing the increase of the schedule length by a cluster
merging.

3.2.3 Proposal

The objective of our proposal is to minimize the schedule length with the small number of
PEs. Our proposals are as follows.

1. Derivation of the lower bound of every cluster size (defined as ¢,,;), by which the
schedule length can be minimized.
From figure[3.1(c) and (d), it can be said that the schedule length after a cluster merg-
ing is longer due to the fact that independent tasks are included in the same cluster.
Thus, a criterion for minimizing the schedule length with the small number of clusters
is needed. In this chapter, the lower bound of each cluster size is imposed as ¢ for lim-
iting the number of PEs, and we study how to decide ¢ for minimizing the schedule
length. Then we derive d,,;, which is the value of § when the schedule length can be
minimized.

2. The policies for task merging steps under the constraint that every cluster size is
dopt OF More.
Even if §,,; is decided before a task merging step, the schedule length can be varied
by a task merging policy and an execution order for each task. We present a task
clustering algorithm, which performs task merging steps until each cluster size is d;
or more and which tries to minimized the schedule length.

3.3 Derivation of the lower bound of every cluster size

In this section, we present details about the first proposal in sec3.2.3] For GE_, which is the
state after R task merging steps have been performed, the following condition is assumed

to be satisfied.

13

CHAPTER 3. TASK CLUSTERING IN HOMOGENEQOUS DISTRIBUTED SYSTEMS

w(clsp(i)) > 0 s.t., Velsg(i) € VE. (3.1)

Eq.(3.I) means that every cluster size is § or more. When s < R, at least one cluser size is
smaller than §. In this chapter, the range of s is defined as 0 < s < R. In this section, we
study how to decide for minimizing the schedule length.

3.3.1 Policies for deriving the lower bound of every cluster size

If each task in V], is scheduled, the schedule length varies by the execution order for each
task. Even if the scheduling policy is decided, the schedule length is also changed by the
combination of tasks in each cluster. This fact leads to that to find the optimal schedule is
said to be N P-hard problem [27]. Furthermore, each cluster can not be generated before the
lower bound has been derived. This means that each combination in a cluster, the execution
order for each task, and DRT of each task (defined at eq.(2.6)) are unknown before a task
clustering, and the schedule length is also unknown before the lower bound of every cluster
size has been decided. Hence, it is necessary that an indicative value, which can have effect
on the schedule length by varying the lower bound of every cluster size, must be derived.
Thus, we define the indicative value as sl,,(G%,,), which is the maximum schedule length,
provided that each task is executed as late as possible without data waiting time (defined
in sec[3.3.2). We define the lower bound of every cluster size when the upper bound of
sl (GE) is minimized as d,,:(defined in sec3.3.7). In sec38.3.8, how the variation of sl,,(G%,)

cls cls
has effect on the actual schedule length is described.

3.3.2 Definition of WSL

Table[B.Tshows notations and definitions for deriving si,,(G%,,). In the i-th cluster, we define
the set of tasks which can firstly be executed as top,(i). The set of tasks in the i-th cluster
which requires incoming data communication from other clusters is defined as in(i). On
the other hand, The set of tasks which requires outgoing data communication with other
clusters is defined as outs(i), and the set of tasks which can be executed at the last in the i-th
cluster is defined as btm(7).

More specifically, tops(i) is the set of tasks whose all immediate predecessor tasks belong
to other clusters. Every task in in(i) has at least one immediate predecessor task which
belongs to another cluster. Every task in out4(i) has at least one immediate successor task
which belongs to another cluster. Every task in btm (i) has one or more successor tasks all
of which belong to other clusters. Thus, every task in btm(4) is included in outs(3).

desc(nj,) is the union of the set of tasks executed after n; in cls,(i) and nj itself. S(n}, 1)
is the sum of task size which can be executed before n;, provided that nj is scheduled as
late as possible in cls,(i). Next, we define tlevel(n;), which is the scheduled time of n;
when cls(i) is executed as late as possible. If nj € tops(i)(where n; € cls(4)), tlevel(nf) is
the time every data from immediate predecessor tasks of n; arrives, since those immediate
predecessor tasks belong to other clusters. 7'L(%) is the maximum value of tlevel(n;), where
n;, € tops(i). If TL,(i) = tlevel(ny) for n;, € tops(i), every task (except nj)) which belongs to
tops (i) is not executed until the completion time of n;.

14

CHAPTER 3. TASK CLUSTERING IN HOMOGENEQOUS DISTRIBUTED SYSTEMS

Table 3.1: Parameter definition which is related to sl,,(G%;,) (n} € clss(i))

(appears in [22]).

Parameter ‘ Definition
tops (i) {ni|Vn; € pred(nj)s.t.,n] ¢ clss(i)} U START Tasks € cls,(i).
ins(7) {ni|3In; € pred(nj)s.t.,n] ¢ clss(i)} U START Tasks € cls4(i).
outs(7) {ng|3n; € suc(ny)s.t.,nj ¢ clss(i)} UEND Tasks € clss(7).
btmy (1) {ng|Vn; € suc(n}), s.t.,n] ¢ clss(i)} U END Tasks € cls4(i).
desc(ny,, 1) {njng < nj,nj € clss(i)} U {n}}
S(”Z’ Z) anEclss (%) w(nf) - ansedesc(nz,i) w(nf)
max {tlevel(n]) +w(n}) + c(eyr)}, wheren; € tops(i),
tlevel(ns) nj €pred(n;)
TLg(i) + S(ng,i), otherwise.
TLs(7) max {tlevel(n})}
n}, Etops (i)
blevel(n}) max {w(ni) +c(ef ;) + blevel(nf)}
nj€suc(ny,) ’
level(ny) tlevel(ny) + blevel(nf)
BL(i) max(: {S(nf,i) + blevel(n)}
ng €outs (i
LVy(4) TLs(i) + BLs(i) = m?x({level(n})}
nj €clss(i
Lw(G? LV,(i
s (cls) CZSS%?EXVC% { (Z)}

Next, we define tlevel(nj}) in the case of nj ¢ top,(i). From eq.(2.6), the data waiting time
I(nj,1i) for n; depends on the scheduling policy(i.e., execution order of every task). That is,
I(nj,i) is unknown before a task clustering. Thus, we define tlevel(n}) = T'L,(i) + S(nj, 1)
for nj ¢ tops(i), which means that the start time of n; when I(nj,i) is neglected. Let
blevel(nj) the maximum path length from n;j to the END task. That is, blevel(n;) is the
maximum value of the time taken if every task which has precedence relationships with n}
from nj to the END task is executed. BL, (i) is the time taken from the start time of a task in
cls(i) to the completion time of the END task, i.e., the maximum of the sum of S(nj,7) and
blevel(n}). LV(i) is the sum of T'L(i) and BL(4). If we define

level(ng) = tlevel(ng) + blevel(ny),

we have
LVs(i) = TLs(i)+ BLs(i) =TLs(i) + max(: {S(n3,i) + blevel(n},)}
ng €outs (i
= max {TL(i)+ S(ny, i)+ blevel(ny)}

ng Couts (1)

= max {level(n})}. (3.2)

ng Eclss (i)

For each cluster cls,(i) € V], the maximum of LV;(i) is sl.,(G%;,). From this value, it
can be seen that sl,,(G%,,) is derived by deciding which cluster takes the maximum of LV,

i.e., which task in a cluster is scheduled as late as possible.

15

CHAPTER 3. TASK CLUSTERING IN HOMOGENEQOUS DISTRIBUTED SYSTEMS

tops(1) = {n}},top;(4)={n3}, |------ cls,(4) section------
in(1) = {n],ng},in, (4) = {n},n3} TL,(4) = tlevel(n,) =2 +4 =6,
outy(1) = {n},n3,n3},out,(4) = {n{,n3} tlevel(n,) = TL,(4)+ w(n}) = 6+1=7
btmy(1) = {n3,n3}, btm, (4) = {n3} blevel(n®) = w(n$) + max {2+ blevel(n), blevel(n®)}
—————— cls,(1) section------ —1+13=14
o”"Ss = Sy=
clss (12 TLs(1) = dlevelm) =0, o level(nd) = 6+14 = 20
§ 0 cls,(4)]"e) T TR St DZ0rWI)E W) EWO) TR 1y 08y - T (4) 4 wind) + wind) = 64145 =12
Q 4 blevel(n}) = w(n) +c(e},) +blevel(n}) = 4+10+2 =16, . s
A . ' blevel(n3) =2, level(n})=2+12=14
! level(n;) = 28,

BL,(4)=

5 + 5
tlevel(n?) = TL, (1) +S(n%, 1) = 0+ w(n®) + w(n) + w(n?) = 10 max_{S(n,,4)+blevel(n)}

S(nj,1)=0, =S(n,4)+blevel(n) = 0+14 =14

blevel(n;) = w(n})+ max {blevel(n}), blevel(n3), 4+ blevel(n})} LV,(4)=TL(4)+BL,(4)=6+14=20= level(nj)
=2+4+blevel(n})=20,leveln})=20 |._____ cls, (4) section END------

tlevel(n}) = TL,(1)+S(n,1) = 0+ w(n}) + w(n}) +w(n}) =12 ol (G°.) = max {LV, (1), LV,(4)} = LV,(1)= 28

bleveln})=4+5+2=11, levelny)=23 |~ cls, (1) section END------

BL(1)= .,{Eﬂff,,{s(ni’l) +blevel(n})}

=S(nj,1) +blevel(n}) = 28
LV, (1)=TL,(1)+BL,(1) = 28 = level(n})

Figure 3.2: Example of each defined symbols

(appears in [22]).

Example 1. Figure[3.2shows an example for deriving sl,,(G?,,). The DAG in this figure is identical
to that of B.11 (c),(d) and (e). In figure LV5(1) is equal to level(n3), and LVs(4) is equal to
level(n3). From this fact, it can be said that the schedule length becomes large when n3 is scheduled
as the last task in clss(1). On the other hand, the execution order in clss(4) is unique because
clss(4) is linear. Since LV5(1) = 28 and LVs(4) = 20, we have sl,,(G5,,) = LV5(1). If the data
waiting time (defined at eq.(2.6) is neglected, the maximum schedule length is obtained when n3 is
scheduled as late as possible in cls5(1). This fact holds in figure Bl (e). sl(G?),) = 29 in figure[3]]

cls

(e), while sl,,(G>,,) = 28 because the data waiting time(9 — 8 = 1 unit time at Bl (e)) from nj is

cls

neglected at ns. W

3.3.3 Preliminary for the analysis of WSL

Since sl,,(G%,) is the value decided after R task merging steps (R is defined by eq.(3.)),
sly(GE) is unknown before a task clustering. Thus, we study the upper bound of sl,,(GE,),
for different cluster structure (precedence relationships among tasks in a cluster and the set
of tasks in a cluster). In particular, we try to find the lower bound of the cluster size when
the upper bound of sl,,(G%),) is minimized. Then we determin the objective of our task
clustering by clearify the relationship between sl,,(G%) and the schedule length.

Table 3.2l shows definitions for the analysis of the upper bound of sl,,(GE). Let the set
of tasks included in the execution path be seq,, by which sl,,(G%;,) is decided after s(s < R)
task merging steps. That is, segs is the union of the set of tasks by which tlevel(nf) is
decided for nft such that s, (G%,,) = LVg(i) = level(nf) and the set of tasks which belong
to the path by which blevel(nf) is decided (detailed in example 2).

Next, in seq let the path p in which every task has precedence relationships be seqy .

seqy is the union of tasks and edges in a path p, in which nj, n} and e; ; satisfy the following

16

CHAPTER 3. TASK CLUSTERING IN HOMOGENEQOUS DISTRIBUTED SYSTEMS

Table 3.2: Parameter definitions which are used in analysis on sl,,(G%,) (0 < s < R)

(appears in [22]).

Parameter Definition
seqs Set of tasks by which sl,, (G z .) is derived.
D One path of G?,, i.e., {nd. Y, n3, oy ud{ed ey, el 1, Ny
by which a sequence < no, n(l)7 ng, .. nk > is constructed where el 11 € Ey,
”0 is a START task and n? & is an END task.
Iy One subpath of G, , i.e., {nJ,n¥,n3,. .., n{} U {60’1, 6(1),27 e 62—1,k}/
by which a sequence < nJ,n9,n3,...,nQ > is constructed, where 6?71’ | € Eo,
ng is not a START task or ng is not an END task.
seqS One path in which every task belongs to seqs.
seq (i) Set of subpaths in each of which every task in cls(i) belongs to seq .
Wmazx max {w(ClsR())} 0
clsR(i)EVds
¢ # of clusters in which at least one task belongs to seqy.
cp Critical path Iength of GO, _.
CPpuw max Z w(ng)
pEGD n? LEP
0
[16/24]] mtemio) Lo T
9min , min
0 0 (0
np €V, n,?Epred(n,g){L(e-7”“)} oer::}arx({c(ek z)}
0
(S) n,oegr)nr:)r;(nk){w(nj)} 06151117:({w(nl)}
9max (Mg max -
rL Epred(no){ (ik } OEbul(I,](r {C(Ek’l)}
Asly slw (1s) = 8lw(Gorg) = sly (GE Jis) —cp-
Aslw up An upper bound of Asly,.
len(seq; (7)) > w(ng) + > c(eg,l).
nzeseqj (i) ni,nféseq: (i),
ngEEo
Ten(seq?)) DRIETICEIESE DR
nzeseq.f nZ,n?Gseq:,
e%LEEQ
AL; anGclsR(i)ﬂseqR ’LU(’I’LkR) B len(squ (Z))
ALy slw(GE) — len(seqR).
ALw,up An upper bound of AL“).

condition.
nj, € seqs,nj € seqs,ny, € pred(ny).

Note that more than one of seq;* can exist for each task in seqs, because seqy is defined by
tracing tasks with precedence relationships. For example, if seqs is {n}, n§, n§, nj} and there
are two paths, e.g., {n{,n3,nj} U {ef,, €5 ,} and {n{,n3,ni} U {ej 3,€3,}, those two paths
are one of seqy, respectively.

In seqy, let seq;(i) be the union of the set of tasks belonging to cls,(i) and the set of
edges among them. That is, seq;(i) is the subset of the path p’(defined in table B.2) and
satisfying the following condition. n},n] in seq;* (i) are expressed as follow.

ny € seq;,n; € seq;,ny € pred(ny), ng,n; € cls(i).

seqy (i) is a subset of seqy*. Thus, there is only one seg; (i) in seq;*. If there are two or
more seqy, two or more seq; (i) exist.

17

CHAPTER 3. TASK CLUSTERING IN HOMOGENEQOUS DISTRIBUTED SYSTEMS

The schedule length of GY,, is the critical path length, which is expressed as cp. The
maximum of the summation for every task size on a path is expressed as cp,,.

Let gmam(ng) be the maximum granularity of ng, and let g,,;, be the minimum granular-
ity for every task in GY,, [24].

cls

Example 2. In this example, the meanings of seqs and seq;* are described. From figure[3.2] we have
sly(G3),) = level(n3). Since {n3} is executed before n3 in clss(1) and {n}} has the precedence

relationship with nj3, we have seqs' (1) = {n3,n3} U {€f ,}. Furthermore, we have
blevel(n3) = w(nj) + 0(62’7) + blevel(n3), seqs (4) = {n3}.
Hence, the following result is obtained.
seqs’ = {n{,n3,n3} U {e 2, €37}
On the other hand, in cls5(1), any one of {n3,n3,n2} can be executed before n3. Since we have
blevel(n3) = w(nj) + 6(63’7) + blevel (n3)
as described above, we have seqs = {n?,n3,n3,n3, n2}. W

Example 3. Figure[3.3]is another example for deriving seqs and seqy . In this figure, at (1) cls,()
and clss(i + 1) are linear, and (2) shows the cluster structure in the case of sl,,(G%;,) = level(ng)
with both clss(i) and clss(i + 1) being non-linear. Furthermore, dashed lines mean the execution
order of tasks dominating sl.,(G%,,).

At (1), execution orders in clsg(i + 1) and clss(i) are unique because those clusters are linear.
As a result, {nf,n5, n3,ni,ni} belong to both seqs and seqy . (2) shows that tasks in both dashed
arrows and dashed lines belong to seqs. Here, if sl,,(G%,,) = level(n§), we have the following result.

cls
tlevel(ng) = tlevel(ng) + w(ng) + w(ng) + w(nz),
blevel(ng) = w(ng) + c(eg ;) + blevel(niy).

The start time of nj is delayed as late as possible by scheduling nj after n3,n3 in the dashed
circle, i.e., tlevel(ny) = tlevel(n]) + w(n3) + w(nj). Since every task in nf{,n3, nj has precedence
relationships each other, seq; (i) is {ni,n3,nj} U {ef 5, €3 4}.

In clss(i + 1), since every task in ng,n3, n§ has precedence relationships each other and belongs
to seqs, we have seqg (i + 1) = {n3,n3,ng} U{es 7, €54} A

3.3.4 Relationship between 6 and WSL after R task merging steps

As described in sec[32] only one task belongs to a cluster in G, and then we obtain the

schedule length of G%, = G,y as cp. Moreover, since {n)} = clso(i) € VI, in G%, = Gorg,

from eq.(3.2) we have

slu(Gorg) = slu(GY) = max {LVi(i)}
clso(i)eVy,
= mazx {level(n))} = maz {tlevel(nl) + blevel(n?)} . 3.3
mag {level(n)} = mag {level(n}) +bevel()} . (33)

18

CHAPTER 3. TASK CLUSTERING IN HOMOGENEQOUS DISTRIBUTED SYSTEMS

cls, (1) cls (1)
seq; (i) o

seq (i) =falnni}oleine,)

:{nf,n;n;}H Seq.of sl (G,,) cls, (i+1)

Seq.of sl (G,,)

CISS (i+1) () 3 seq, (i+1) seq; (i+1)
SF. =mjulad T\ 8/ | lhmjulane)
N :
seq, ={...,n},n,,n;,n;,n:...}, seq, = {...,n;,n,,n;,ny,n;, Ny, N5, Ng, Ny, N, ...},
seq; = {...,n},n5,n;,n;,n;...}, seq; ={...,n},n5,n;,n;,n5,ny,n;,,...},
Utis €] 5563355 4,€5 5500 » U{s€]25€04,€455€57:€50,80 1505

(1) Every cluster is linear. (2) Every cluster is non-linear.
(wheresl (G;,) =LV, (i) = level(n})) (where sl (G},)=LV,(i+1) = level(n}))

Figure 3.3: Concept of the upper bound of sl,,(G%,,)
(appears in [22]).

From definitions of tlevel(nft)(nft € topg(i)) and blevel(nf?) in table B} with eq.(33) we
have

$ly(Gorg) = cp = sl(Gorg). (3.4)

Hence, if we define the difference between slw(Ggs) and sly,(Gorg) as Asl,,(defined in table
B.2), Asl,, is equal to the difference between sl,,(G%,) and cp (defined in table B.2). How-
erver, as described in sec[3.3.3] the combination of tasks for each cluster depends on the task
merging policy, Asl,, can not be derived before a task clustering. Thus, we derive the upper
bound of Asl,,, i.e., Asly p(defined in table[3.2).

At first, let a cluster in which at least one task belongs to seqr be clsg(i). Let assume
that clsr(i) such that clsgr(i), w(clsr(i)) > ¢ is generated. Then let the difference between
“the summation of sizes of tasks which belongs to seqr but does not belong to seqy; (i) and
“the summation of data size localized in seqr” be AL;(defined in[B.2). That is, AL; can be
obtained by taking the difference between “the summation of sizes of tasks without prece-
dence relationship any one task in seqp(i)” and “the summation of data size localized in
seqp(i).” Let the length of the subpath which consists of tasks in seqj (i) and communica-
tion among them in the initial state be len(seqz(i)).

As presented in sec[3.3.3] there can be one or more combinations in seqf%. Since squ is
not always the critical path in G4, we have

len(seqy) < cp. (3.5)

19

CHAPTER 3. TASK CLUSTERING IN HOMOGENEQOUS DISTRIBUTED SYSTEMS

Then if we define AL,, as the difference between sl,,(G%.) and len(seqj)(defined in table
B.2), we have

Asl, = sl,(GE)—cp
< slo(GE,) — len(seqy)
= ALy,
< Asly < ALy,. (3.6)

If we define the upper bound of ALy, as ALy, .,(defined in table B.2), ALy, ., is an upper
bound of Asl,,. Thus, we derive AL,, ., and then we define the upper bound of Asl,, i.e.,
Aslyup = ALy up-

Next, we describe the policy for deriving ALy, .. At first, the upper bound of AL; is
derived. By summing the upper bound for each cluster which has tasks in segr belong to,
we derive ALy, p.

The more tasks without precedence relationship each other exist in a cluster, the larger
the value of tlevel of a task not included in topr (i) becomes. As a result, it can be conceivable
that the upper bound of AL; depends on whether each cluster in which at least one task
belongs to seqp; is linear or not. Thus, we derive the upper bound of AL; for each linear
cluster clsg(i) and the upper bound of AL; for each non-linear cluster clsg(j), respectively.
Then we derive AL, 4, by summing the upper bound of AL; and the upper bound of AL;
for each linear cluster and each non-linear cluster.

Example 4. At figure[3.3(1), if we assume s = R, then we have

AL; = w(ny) +w(ns)) +w(n3)) — len(seqs (i) = —(c(e] o) + c(e3 3)),
ALy = w(ng) 4+ w(ng) — len(seq; (i + 1)) = —c(ej 5).

4
AL = Y w(ng) —len(seq; (i) = w(ng) — (e(ef 2) + e(e34)),

ALy =) w(ng) = len(seqs (i + 1)) = w(ng) + w(ng) — (c(ef 1) + clef o).
|

3.3.5 Derivation of the upper bound of the increase of WSL by generating one
cluster

At first, we derive the upper bound of AL; of a linear cluster and non-linear cluster, respec-
tively as 1 and 2 described as follows.

1. The case that a cluster clsg(7), in which at least one task belongs to sequ, is linear
The communication among tasks in seqz () is localized by generating clsg (i),

20

CHAPTER 3. TASK CLUSTERING IN HOMOGENEQOUS DISTRIBUTED SYSTEMS

s .8
Nenpy = Ngs

s s
DgrarT(isny = Do

: S S S S S S S S S
if seq, ={...,n;,n3,n;,n;,ng,n>,ng,ny,nj,...},
S S S S S S S S
seq, ={...,n;,n5,n3,n;,N5, Ny, Ny, NJy,.. s
S S S S S S S
UL €15,€5 7,5 558 5,€565 695 Cg 105+ »

Seq: (1) = {n; > HZ > Il; > HZ} o {eiz > e;,s}a

Figure 3.4: An example of nj,y ;) and ngy 4 ;)

(appears in [22]).

w(clsg(i)) > §. Here, we define

. R R .
Vi = seqp (i) U {nsrarrusnENDG) € seqp (i),

ngND(i) A nf for Vnf € seqg (i),

R <(s R R
ngrarr+1) € S€dr (i + 1), ngrapris1) € SUC(MEN D)

R .
€END(i),START (i+1) ¢ seqp (i),

RN D) sTART(+1) F 5edn i+ 1)},

(3.7)

That is, in eq.(3.7), ng ND() is the last executed task in squ (7). Also, it means that the

. . R R . .
communication between ny; D) and NS ART(i+1) 18 not localized. For example, at

i
