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Abstract

From 1960s, Evolutionary Algorithms (EA), which is an important subtopic

of Artificial Intelligence (AI), has been studied a lot and great progresses

have been made continuously to improve the existed algorithms or pro-

pose novel methods. For example, the studies on many classical methods

such as Genetic Algorithm (GA), Genetic Programming (GP), Evolution-

ary Strategies (ES), etc. have made significant contribution to the research

of EA.

In the past decade, a new evolutionary approach named Genetic Network

Programming (GNP) was proposed and attracted more and more atten-

tion. GNP which is based on the idea of Genetic Algorithm, also can

evolve itself and search in the solution domain of large scale and finally

find the (approximate) optimal solutions. The unique character of GNP

which make it very different from other methods of EA is the utilization

of the data structure of directed graphs. Many research has demonstrated

that GNP can deal with complex problems in the dynamical environments

very efficiently and effectively due to its graph based structure. As a result,

recently, GNP is being used in many different areas such as data mining,

extracting trading rules of stock markets, elevator supervised control sys-

tems, etc. and GNP has obtained outstanding results in all the above fields.

On the other hand, many research shows that classical EAs such as GA,

usually fail to solve problems in dynamical environments. So, scholars

devote themselves to the research on the enhancement of the architecture

of EAs. For example, different memory schemes storing historical infor-

mations during evolution and reusing them later are designed for EAs to

solve complex problems in dynamical environments.



So, the motivation of this research is designing memory schemes for GNP

in order to improve its performance further in the dynamical environments.

So, four different memory schemes are proposed: GNP with rules, GNP

with reconstructed individuals, GNP with route nodes and adaptive muta-

tion in SARSA learning of GNP. GNP with rules stores first-order infor-

mation on GNP rules and uses them to generate new individuals. GNP

with reconstructed individuals will stores the complete node transitions

which can guide the agent with much more effectiveness and uses them

to enhance the gene structures of the worst individuals. GNP with route

nodes employs an indirect memory scheme which uses the stored informa-

tion associated with current environments. The adaptive mutation using Q

values to evaluate node branches adjusts the mutation rates and mutation

directions for node branches and achieves the balance between exploration

and exploitation. In order to measure the performance of the proposed

architectures, the benchmark of tile-world was used as the simulation en-

vironments. The simulation results show some improvements brought by

the memory schemes to conventional GNPs.



Contents

Nomenclature viii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Works on EAs with Memory Schemes . . . . . . . . . . . . . 3

1.2.1 Implicit Memory Schemes . . . . . . . . . . . . . . . . . . . 3

1.2.2 Explicit Memory Schemes . . . . . . . . . . . . . . . . . . . 4

1.3 Contents of this Research . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Motivation and Objective . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Research Topics . . . . . . . . . . . . . . . . . . . . . . . . 6

2 GNP with Rules 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Motivation of GNP with Rules . . . . . . . . . . . . . . . . . . . . . 8

2.3 Algorithm of GNP with Rules . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Rule Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Rule Selection . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Individual Construction . . . . . . . . . . . . . . . . . . . . 12

2.3.4 Individual Replacement . . . . . . . . . . . . . . . . . . . . 12

2.4 Comparison between GNP with Rules and GNP . . . . . . . . . . . . 13

2.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Tile-world . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.2 Experimental Environments . . . . . . . . . . . . . . . . . . 15

2.5.3 Programming Configuration . . . . . . . . . . . . . . . . . . 15

2.5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 19

iv



CONTENTS

2.5.4.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . 19

2.5.4.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . 20

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 GNP with Reconstructed Individuals 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Motivation of GNP-RI . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Algorithm of GNP-RI . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Comparison between GNP-RI and GNP with rules . . . . . . . . . . 26

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Experimental Environments . . . . . . . . . . . . . . . . . . 27

3.5.2 Programming Configuration . . . . . . . . . . . . . . . . . . 27

3.5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.3.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . 29

3.5.3.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . 31

3.5.3.3 Simulation 3 . . . . . . . . . . . . . . . . . . . . . 31

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 GNP with Route Nodes 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Motivation of GNP-RN . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Mechanism of GNP-RN . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 New Nodes: Route Nodes . . . . . . . . . . . . . . . . . . . 36

4.3.2 Procedure of the GNP-RN . . . . . . . . . . . . . . . . . . . 36

4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Experimental Environments . . . . . . . . . . . . . . . . . . 40

4.4.2 Programming Configuration . . . . . . . . . . . . . . . . . . 40

4.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.3.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . 42

4.4.3.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . 42

4.4.3.3 Simulation 3 . . . . . . . . . . . . . . . . . . . . . 46

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



CONTENTS

5 Adaptive Mutation in SARSA Learning of Genetic Network Programming 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Architecture of GNP-SLAM . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.3 SARSA Learning Model . . . . . . . . . . . . . . . . . . . . 54

5.3.4 Adaptive mutation . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.1 Experimental Environments . . . . . . . . . . . . . . . . . . 60

5.4.2 Programming Configuration . . . . . . . . . . . . . . . . . . 61

5.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.3.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . 62

5.4.3.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . 65

5.4.3.3 Simulation 3 . . . . . . . . . . . . . . . . . . . . . 68

5.4.3.4 Simulation 4 . . . . . . . . . . . . . . . . . . . . . 69

5.4.4 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . 70

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusions 73

References 75

A Genetic Network Programming 82
A.1 Directed Graph Structure of GNP . . . . . . . . . . . . . . . . . . . . 83

A.2 Genetic Operators of GNP . . . . . . . . . . . . . . . . . . . . . . . 85

A.2.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.2.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2.3 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.3 Evolutionary Algorithm of GNP . . . . . . . . . . . . . . . . . . . . 90

vi



List of Figures

2.1 An example of GNP route . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Outline of GNP with rules . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Individual replacement . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Flow chart of GNP with rules . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Training environments . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Testing environments . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Flow of GNP-RI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 GNP Route Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 An example of individual reconstruction . . . . . . . . . . . . . . . . 26

3.4 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Environment set for simulation 3 . . . . . . . . . . . . . . . . . . . . 32

3.6 Average of the best fitness curves of GNP-RI using different recon-

struction sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 GNP-RN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The Procedure of the Proposed Memory Scheme . . . . . . . . . . . 39

4.3 Training environments in simulation 1 . . . . . . . . . . . . . . . . . 43

4.4 Averaged best fitness curves over 30 random rounds in simulation 1 . 44

4.5 Training environments in simulation 2 . . . . . . . . . . . . . . . . . 45

4.6 Averaged best fitness curves over 30 random rounds in simulation 2 . 46

4.7 Testing environments in simulation 2 . . . . . . . . . . . . . . . . . . 47

5.1 Framework of the proposed method . . . . . . . . . . . . . . . . . . 52

5.2 Route, State and Action . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



LIST OF FIGURES

5.3 Framework of adaptive mutation combing individual reconstruction . 60

5.4 Fitness of GNP-SLAM using different learning rates . . . . . . . . . 64

5.5 Fitness of GNP-SLAM with different t settings . . . . . . . . . . . . 65

5.6 Average of the best fitness curves of GNP-SLAM with different t settings 66

5.7 Average best fitness curves over 30 random rounds in simulation 2 . . 67

5.8 A typical example of an elite individual . . . . . . . . . . . . . . . . 67

5.9 An example showing the mutation of a worst individual . . . . . . . . 68

5.10 Average best fitness curves over 30 random rounds in simulation 3 . . 69

A.1 The directed graph structure of GNP . . . . . . . . . . . . . . . . . . 84

A.2 The genotype expression of GNP . . . . . . . . . . . . . . . . . . . . 85

A.3 Different kinds of selections of GNP . . . . . . . . . . . . . . . . . . 86

A.4 Mutation of connections . . . . . . . . . . . . . . . . . . . . . . . . 87

A.5 Mutation of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.6 One point crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.7 Several points crossover . . . . . . . . . . . . . . . . . . . . . . . . 90

A.8 Uniform crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.9 Flow chart of GNP . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

viii



Chapter 1

Introduction

1.1 Background

In computer science, evolutionary computation whose essential concept comes of Dar-

win’s Evolution Theory, is a subfield of artificial intelligence (more particularly com-

putational intelligence). It uses iterative progress, such as growth or development in

a population. In this population, a guided random search using parallel processing to

achieve the desired end is executed. Such processes are often inspired by biological

mechanisms of natural evolution.

As an effective way to solve optimization problems, evolutionary computation has

been drawing attentions and endeavors for decades. A large number of studies on evo-

lutionary computation techniques have been executed and many significant research

achievements, such as Genetic Algorithm (GA) by J. Holland (1; 2), Genetic Program-

ming (GP) by J. Koza(3; 4; 5; 6), Evolutionary Programming (EP) by L. Fogel(7; 8; 9)

and Evolutionary Strategy (ES) by I. Rechenberg and H. Schwefel(10; 11; 12), have

been obtained. The gene of GA is represented as a string structure which is mostly

used to search the global optimal solution in a feasible searching space. Traditionally,

solutions are represented in binary as strings of 0s and 1s, but other encodings are

also possible. Extended from GA, GP takes string as its encoding style in most cases,

but pioneers in generating treelike programs instead of pure strings as the solutions

to a given problem. The intensive optimization and search ability of GP appeals to

researchers enormously, and multitude efforts has been dedicated towards its differ-

ent aspects, such as solution representation(13; 14; 15), grammar(16; 17; 18), genetic
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1.1 Background

operations(19; 20; 21) and so on. The tree structure can be easily evaluated in a recur-

sive way. Every node of the tree has an operator function and every terminal node has

an operand, as a result, mathematical expressions are very easy to evolve and evaluate.

For EP, Fogel used finite state machines as predictors and evolved them. The finite

state machine is a model of behavior composed of a finite number of states, transi-

tions between those states, and actions. ES is similar to GA while its genetic operators

only include selection and mutation. The selection is only concerned about the fitness

value rankings of the individuals (not the real fitness values). After mutation, only the

offspring with high fitness rankings become the parents of next generation while the

current parents are always disregarded.

In the last decade, a new graph-based evolutionary algorithm named Genetic Net-

work Programming (GNP) is developed. It is devised to deal with problems in dy-

namic environments effectively and efficiently and it is found that GNP has some ad-

vantages over traditional evolutionary computation techniques especially in dynamical

environments(22; 23; 24; 28). As the name suggests, GNP adopts directed graphs

rather than trees as their phenotype, so, in some scholar communities, GNP is consid-

ered as a special variation of GP due to its graph based structure which brings at least

two advantages: reusability of nodes, and implicit memory function. For one thing,

GP has a tree structure which brings a problem that the size of tree is uncontrollable,

if the problem complexity is unexpectedly high. However, in GNP, no restriction is

imposed on the design of the node functions or genetic operations, while it is still

immune to the bloat problem(18). For another, since the nodes in the graph might pos-

sibly be revisited during execution, GNP offers flexible transitions from node to node,

and further benefits by creating potentially more sophisticated programs than the ba-

sic GP does, especially in the creation of sub-programs, loop and recurrence. That

is to say, the reusability of nodes makes GNP’s structure more compact than that of

GP(26; 27). On the other hand, the node transition of GNP begins from a start node

and transfers based on the judgments on the nodes and node connections, thus it can be

said that, for example, agent’s actions in the past are implicitly memorized in the net-

work flow. The effectiveness of GNP has been demonstrated by previous research on

various complex applications, such as stock market prediction(29), data mining (30),

online auction(31), elevator control systems(32), and so forth. There is also fundamen-

2



1.2 Related Works on EAs with Memory Schemes

tal research on the algorithm level, e.g., one furnishes GNP with the online learning

ability (33; 34; 35; 36) as verified by the Tile-world(37) problem.

1.2 Related Works on EAs with Memory Schemes

Traditionally, the research on evolutionary algorithms (EAs), e.g., GA has focused on

stationary optimization problems, like numerical optimization problems, whose envi-

ronment conditions, design variables, fitness function, etc. remain fixed during the

evolution process and the environment conditions are precisely given in advance. For

these stationary problems, the aim of EAs is to quickly and precisely locate the optimal

solution(s) in the search space of a large scale. However, the environments of many

real-world problems are more dynamical and complicated, e.g., in financial markets,

elevator group systems, etc. For these dynamical problems, the aim of EAs is to find

successive behaviors for agents making judgments and taking proper actions for the

current environment. So, the optimal solutions of these problems are no longer the

locus in the solution space, but a series of action regulations for agents.

So, the traditional EAs such as GA usually fail to solve these dynamical problems.

But, some researchers have introduced a kind of memory schemes, which stores histor-

ical informations on good solutions, and reuse them later, to enhance the performance

of EAs in dynamical problems(38; 39; 40; 41).

The adoption of the memory schemes has proved to be able to enhance EA’s per-

formances in many applications, especially in dynamical environments, where the en-

vironments keep on changing during the evolution process. The basic principle of the

memory schemes is to store the information, e.g. good solutions, from the current gen-

eration and reuse it in later generations. This useful information can be stored in two

ways: by implicit memory mechanisms and by explicit memory mechanisms.

1.2.1 Implicit Memory Schemes

For the implicit memory schemes, EAs use genotype representations that contain re-

dundant information. Here, the redundant representation stores good (partial) solutions

to be reused later as memory. Typical examples of the implicit memory schemes are

GAs based on diploidy or multiploidy representations. For example, Goldberg and

3
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Smith first extended the simple haploid GA to a diploid GA with a tri-allelic dom-

inance scheme(42). Thereafter, Ng and Wong developed a dominance scheme with

four alleles for a diploidy-based GA(43). Lewis et al. further investigated an additive

diploidy scheme, where a gene becomes 1 if the addition of all alleles exceeds a cer-

tain threshold, or 0 otherwise(44). All these different kinds of diploid GAs share the

following characteristics:

• 1. The gene structures of GA individuals are represented by the diploid geno-

types, each of which consists of two genotypic chromosomes.

• 2. The dominance scheme is used to map the two genotypic chromosomes to the

haploid phenotype and the fitness of the individual is evaluated according to the

haploid phenotype.

• 3. The genetic recombination, i.e., crossover and mutation affects on the two

genotypic chromosomes of the diploid genotype.

Different approaches may organize different dominance schemes, i.e., different

genotype-phenotype mapping mechanisms and the dominance schemes may be up-

dated in different ways during the evolution.

In addition to multiploidy GAs, Dasgupta and McGregor proposed the structured

GA which is a quite different implicit memory scheme(45). In structured GA, the

individua has a multileveled structure. In this representation, high-level genes can

regulate the activation of a set of low-level genes. The set of low-level genes can

memorize good (partial) solutions at the current stage, which can be reactivated by

high-level genes later.

In summary, the implicit schemes contain redundant information in the genotype of

individuals. The redundant information may not affect the fitness evaluation, but it can

be remained in the gene structures so as to maintain the population diversity. Mean-

while, in structured GA, genetic recombinations among different levels have different

effects, which make the search range flexible and wide.

1.2.2 Explicit Memory Schemes

While the implicit memory schemes depend on the redundant representation, where the

useful information is stored during the evolution, the explicit memory scheme makes

4
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use of valuable knowledge in an extra storage space, where the useful information from

the current generation can be explicitly stored and reused in later generations. For ex-

ample, Louis and Xu used a memory to store the best individuals during a run for

the open shop rescheduling problem(46). Whenever a change occurs, GA is restarted

from a population with partial (5% − 10%) individuals retrieved from the memory

corresponding to the previous run, while the rest is initialized randomly. And instead

of storing the best solutions only, the approach of storing good individuals and their

corresponding environment information has been also proposed. For example, Ram-

sey and Grefenstette studied GA for a robot control problem, where good candidate

solutions are stored in a permanent memory together with the information about the

current robots environment(47). When reusing the good individuals, the similarity of

the current environment to the recorded environment information is measured and the

associated best individuals will be selected and reused. The memory scheme recording

only the best solutions is called directed memory scheme and the one recording both

solutions and their associated environment informations is called indirected memory

scheme or associative memory scheme.

Usually, the memory size is fixed. So, when the memory is full with the past

knowledge, the update mechanism should be designed to maintain the memory. A

common way is to replace some solutions by the better ones. When the environment

information is also stored, the similarity of the current environment to the recorded

environment information will be measured. Then, the associated solutions with the

highest similarity will be compared and the solution with higher fitness will replace

the one with worse fitness.

1.3 Contents of this Research

1.3.1 Motivation and Objective

All the aforementioned research showed significant improvements when GA is equipped

the memory schemes. So, it is expected that GNP will be enhanced if it also utilizes a

well designed memory scheme. Originally, GNP is devised to solve dynamical prob-

lems effectively. Considering the profit of GA using the memory scheme, we think

GNP will be also enhanced by employing the memory scheme in dynamical problems.

5
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The main objective of the research is to develop a memory scheme to enhance the

architecture of standard GNP and improve its performance when solving dynamical

problems.

In GNP, the route of GNP transitions which consists of a series of successive GNP

transitions from node to node corresponds to the agent’s actions. However, it is gen-

erally found that not all of the GNP nodes and connections but only a part of them is

included in the route and others are not used by agents at all. Thus, one of the points

of the research is that we can extract and accumulate the information on the node and

connection transitions that are carried out by agents from each individual and reuse the

accumulated information later. Another point is that we can design a precise criterion

to evaluate the merits of all the branches of nodes over the population and make use of

the information to guide the evolution process.

1.3.2 Research Topics

This thesis includes four topics to be studied based on the aforementioned motivation

and objective.

In Chapter 2, a memory scheme name GNP with Rules (GNP-R) is proposed. The

memory scheme stores the informations on the node branches with their importance

values which are evaluated according to the fitness values and reuse them to construct

a fixed number of new individuals to replace the worst individuals in each genera-

tion. The construction of new individuals utilizes a certain probabilistic policy that the

rules with higher importance values have higher probability to be used. The proposed

method is evaluated in the tile-world problems where the agents have sensors with the

limited sight range in a maze. The program should control the agents to conduct a

series of actions to accomplish their missions. The tile-world problem is very difficult

for agents. Firstly, the agents have only the sight of very limited range, so they cannot

see the environment situations in advance. Secondly, during the task execution of the

agent, the actions of itself and other agents will change the environment dynamically.

As a result, it is an excellent benchmark problem for the agent control approaches.

In Chapter 3, another memory scheme named GNP with Reconstructed Individuals

(GNP-RI) is studied. The memory stores the informations of the best solutions (instead

of node branches in GNP-R) and reuse them to modify the gene structures of the worst

6
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individuals. The best solutions containing the whole node transitions of agents imply

the successive series of actions taken by the best agents. So, the worst individuals

can learn experiences from their elite peers from the memory scheme. The proposed

approach is also evaluated in tile-world problems and compared with standard GNP.

In Chapter 4, a more effective memory scheme name GNP with Route Nodes

(GNP-RN) is designed for GNP. The memory also stores the informations of the best

solutions which are reused by all the individuals during the evolution. Each individual

has some extra route nodes which mark an reference to the memory. When the agent

transfers to the route node, it will refer to the memory and select one solution to use.

When using the best solutions, the current environment information is also considered

by the agent and only the rules which satisfy the environment condition will be used

by the agents. The architecture of GNP-RN is evaluated in different kinds of tile-world

problems and compared with GNP-RI and standard GNP.

In Chapter 5, SARSA learning is used to evaluate the node branches (instead of

importance values in GNP-R) and the memory stores a table containing the Q values

of the node branches. And the adaptive mutation which dynamically configures the

mutation rate and flexibly guides the mutation direction is applied depending on the

Q table information storing the memory. The adaptive mutation in SARSA learning

of GNP (GNP-SLAM) is also evaluated in different kinds of tile-world problems and

compared with GNP-RI and standard GNP.
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Chapter 2

GNP with Rules

2.1 Introduction

In artificial intelligence, an agent is used for intelligent actors which observe and act

upon an environment. A rational agent is an entity that is capable of perception, action

and goal directed behavior. And the node transition of GNP which begins from a start

node and transfers based on the judgments on the nodes and connections, is just the

behavior regulation to guide the agent’s action upon the environment and it can be said

that the agent’s actions in the past are implicitly memorized in the network flow of

GNP.

In other words, in GNP, the route of GNP transitions which consists of a series

of successive GNP transitions from node to node corresponds to the agent’s actions.

However, it is generally found that not all of the GNP nodes and connections but only

a part of them is included in the route and others are not used by agents at all. Thus,

one of the points of the proposed method is that we can extract and accumulate the

information on the nodes and connections that are carried out by agents and make

use of the accumulated information to guide the evolution process. In this sense, the

proposed method could strengthen the exploitation ability during evolution in order to

obtain better performances than conventional GNP does.

2.2 Motivation of GNP with Rules

Conventional GNP has a feature that some of the nodes and connections of GNP may

not be used by agents during its transition. For example, Figure 2.1 shows such a

8



2.2 Motivation of GNP with Rules

case that the agent follows the route 1-2-3-5-4. In this route, firstly after starting from

the start node, the agent executes the processing on Node 1 and transfer to Node 2.

Then, after making the judgement on Node 2, it makes a decision to move to Node 3,

etc. Finally, the agent ends with Node 4 and the task is finished. So, we can see the

connections from node 2 to node 6, from node 3 to node 4, from node 5 to node 6 and

from node 6 to node 1 are not used. Since only a part of the nodes and connections is

used, we concentrate our attention on the used part of GNP because the unused part is

considered unimportant.

2

31

6

Start 

Used

5

4

Used

Used

Used

Figure 2.1: An example of GNP route

For further explanation, some definitions are given as follows.

Definition 1 (GNP route).
GNP route is a path on which the agent travels in a GNP individual. It consists of

all the nodes and connections that the agent passes by.

Definition 2 (GNP rule).
GNP rule is a GNP connection contained on a GNP route. It can be denoted as

r(i(α), j), which represents the connection from node i to node j via the αth branch

of node i.

As shown in Figure 3.1, in this example, the GNP route is 1−2−3−5−4 consisting

of all the used nodes and connections. This GNP route contains rules: r(1(1), 2),

9



2.3 Algorithm of GNP with Rules

r(2(2), 3), r(3(1), 5) and r(5(1), 4).

Obviously, the nodes and connections which are excluded from the GNP route are

not used at all. Hence, an individual’s fitness value is calculated only by the combi-

nation of its GNP rules. So, GNP rules could be considered essential to obtain good

fitness values. The aim of the proposed method is to collect the information of GNP

rules and make use of them to guide the evolution process and finally to get better

individuals.

2.3 Algorithm of GNP with Rules

We consider the GNP rules of better individuals are better than those of worse individ-

uals. In other words, good individuals could be obtained by the combination of good

GNP rules. This approach strengthens the ability of exploitation. So, we make use of

good GNP rules in evolution process. The proposed method consists of 4 steps:

• Step 1: Rule extraction to obtain all the GNP rules and their importance value in

each individual in every generation and store them in the rule pool;

• Step 2: Rule selection to choose GNP rules for their use from the rule pools;

• Step 3: Individual construction to generate some new individuals by using the

selected GNP rules;

• Step 4: Individual replacement to renew worse individuals by the constructed

ones for the next population of the evolution process.

Figure 2.2 shows the outline of the algorithm of GNP-R. We are going to explain

each step in detail in the followings.

2.3.1 Rule Extraction

In each generation, we record all the GNP rules of each individual and the number of

individuals which include rule r(i(α), j) denoted by c(i(α), j). For example, if there

are m individuals that include rule r(i(α), j), then c(i(α), j) = m.

10
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2

31

6

Start 

5

4

Rule Pool

Rule 1

Rule 2

Rule 3

Rule 4

.
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Extract Rules

Rule i

Rule j

Rule k

Rule j

.

.

.

2

31

6

5

4

2

31

6

5

4

Select Rules & 

Construct Individuals

Figure 2.2: Outline of GNP with rules

And we evaluate the rules with ”importance value” denoted by v(i(α), j). Impor-

tance value is the criterion of rule selection and it is calculated as follows:

vn(i(α), j)) =
1

cn(i(α), j)

∑

m∈IND

fn
m (2.1)

where, vn(i(α), j) is the importance value of rule r(i(α), j) in the nth generation,

cn(i(α), j) is the number of individuals which include rule r(i(α), j) in the nth gener-

ation, fn
m is the fitness value of the mth individual in the nth generation, and IND is

the set of suffixes of individuals which include rule r(i(α), j).

The rule pool is updated generation by generation. If vn−1(i(α), j)) < vn(i(α), j)),

the importance value of r(i(α), j)) is updated by the higher one.
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2.3 Algorithm of GNP with Rules

2.3.2 Rule Selection

The greedy policy is to choose the rule with the highest importance value. But, instead,

the Boltzmann probability policy is used when selecting the rules such as r(i(α), j).

In the nth generation, the probability of selecting rule r(i(α), j) is denoted as

P n
r(i(α),j) and it is calculated as follows:

P n
r(i(α),j) =

evn(i(α),j)/T

∑
j∈N

evn(i(α),j)/T
(2.2)

where, N is the set of suffixes of nodes and T is the temperature parameters.

2.3.3 Individual Construction

After the step 2: rule selection, we construct new individuals by using the selected

rules. To construct a new individual, we first generate an individual which contains

only nodes, but no connections. Then, we select rules and add connections of the

selected rules to the new individual. For example, if rule chain r(i(α), j) is selected

for individual construction, the αth branch of node i connects node j. If a node branch

is not stored in the rule pool, an individual is selected by running a tournament selection

and the branch will be connected to the same node as the one that is connected from

the corresponding branch in the selected individual.

To construct how many new individuals depends on the problems. In our simula-

tions, 20% individuals of the population size are constructed.

2.3.4 Individual Replacement

As is shown in Figure 2.3, after the individual construction, we replace the worst in-

dividuals of the population by constructed ones to obtain a new population. In our

simulations the worst 20% individuals are replaced. Then the rest 80% individuals

will undergo genetic operations.

Figure 2.4 shows the flow chart of the algorithm of GNP with rules.
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Generation n

Individual

Constructed Individual

Generation n

Genetic 

Operation

Individual

Replacement

Generation n+1

Offspring Individual

Figure 2.3: Individual replacement

2.4 Comparison between GNP with Rules and GNP

The evolution process of conventional GNP is similar to GA’s. Essentially, the most

significant difference between GNP with rules and conventional GNP is that GNP with

rules replaces the worst part of individuals with new ones reconstructed by GNP rules

in every generation. And the used GNP rules are mostly extracted from excellent

individuals. Hence in GNP with rules, accumulated information is used to strengthen

the ability of exploitation.

On the other hand, sometimes, in some generations, the genetic operators of GNP

don’t take effect. Because if the mutation and crossover parts of parents are never

included in the GNP routes, the changes made by genetic operators do not influence the

calculation of fitness values. This kind of situation occurs frequently especially when

the individual has many nodes and connections. However, GNP with rules deletes the

cases caught by such situations. In every generation, the population is preprocessed

and the worst part of individuals are replaced by new individuals reconstructed by GNP

rules before genetic operations. This replacement reduces the probability of occurrence

of such situations.
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Generate an initial population

Elite Selection

Evaluation
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Start
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satisfied?
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End

No

generation=1

generation=generation+1

Construct new individuals

Figure 2.4: Flow chart of GNP with rules

2.5 Simulations

2.5.1 Tile-world

Since GNP is an agent-based algorithm, the effectiveness of GNP is evaluated based

on the behaviors of the agents. In many research, tile-world problem has been adopted

to study various GNP-related algorithms. Therefore, our experiments are still on the

tile-world so as to compare the proposed method with standard GNP.

Tile-world is a two-dimensional world that contains five types of objects, namely,

floor, obstacle, tile, hole and agent(37). The objective is to make the agents drop as

many tiles into the holes as possible within a certain amount of time. Agents are able

to move one grid per time step, and are able to push a tile to its neighboring grids.
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2.5 Simulations

The move or push should fail if the target grid contains an obstacle, a hole, or another

agent. If a tile is dropped into a hole, they both will vanish and the grid will turn

into a normal floor. Agents have some sensors and action abilities which should be

predefined and they are required to use sensors and take actions properly according to

their situations. Since the given sensors and simple actions are not enough to achieve

tasks, agents must make smart combinations of judgments and processings. So, the

tile-world is a reasonable benchmark to evaluate agent oriented systems, especially the

GNP-based agent oriented systems.

2.5.2 Experimental Environments

We run 2 simulations to evaluate the performance of GNP with rules in the training and

testing phase. In simulation 1, we trained GNP for the agents in 10 different worlds.

Each world has 3 agents, 3 tiles and 3 holes. The positions of holes, obstacles and

agents are the same in the 10 worlds. However, the positions of tiles are different from

each other. Figure 2.5 shows the environments for training.

In simulation 2, after training, we tested the trained GNP in 8 new different envi-

ronments, where the positions of tiles, holes and obstacles are totally different. Figure

2.6 shows the environments for testing.

2.5.3 Programming Configuration

In our program, there are 8 kinds of Judgment Nodes. Agents can find out what exists

in front of each agent, in the same way, right, left, and back of each agent. Agents can

also find out the rough direction from the agents to the place where the nearest tile is,

where the second nearest tile is and where the nearest hole is. Furthermore, they can

find out the rough direction from the nearest tile of the agent to the nearest hole. These

different judgements help agents to make a decision in the following step.

And there are 4 kinds of Processing Nodes: to go forward, to turn left, to turn right

and to stay. Once the agent takes an action, it consumes one step. In our program,

totally, there are 60 allowable steps.

Each individual contains 60 nodes including 40 Judgement Nodes (5 for each kind

of Judgement Nodes) and 20 Processing Nodes (5 for each kind of Processing Nodes).

Each Judgement Node has 5 branches and each Processing Node has only one branch.
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2.5 Simulations

Figure 2.5: Training environments
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Figure 2.6: Testing environments
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2.5 Simulations

We used different populations of 30 individuals, 50 individuals, 100 individuals

and 200 individuals in the experiments, with crossover rate = 0.1, mutation rate =

0.01. And all cases of different populations are carried out for 10 rounds. Table 2.1

shows other parameter configurations.

Table 2.1: Parameter Configuration

Individuals Mutation size Crossover size

31 20 10

51 30 20

101 60 40

201 120 80

Elite size 1

Mutation rate 0.01

Crossover rate 0.1

Generations 500

Temperature parameters T 20

The fitness is calculated by accumulating the scores obtained from each tile-world.

The score function is closely related to the objective of the tile-world problem, repre-

sented by

Score = 100 · DT + 20 ·
P∑

p=1

d(p) + (Mt − Ut), (2.3)

where, DT is the number of tiles dropped into the holes, p is the ID of the relatively

nearest tile-hole pair at every time step in the trials, P is the maximum number of the

relatively nearest tile-hole pairs, d(p) is the decrease of the distances between the tiles

and holes in the pairs, Mt is the maximum time step, and Ut is the used time step.

Then, the fitness function is defined by

Fitness =
W∑

w=1

Score(w), (2.4)

where, w is the ID of the tile-world, W is the maximum number of the training tile-

worlds, and Score(w) is the score obtained in the wth tile-world.
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2.5 Simulations

2.5.4 Simulation Results
2.5.4.1 Simulation 1

We compare GNP with rules and standard GNP. Figure 2.7 shows the average training

results of different populations in 10 rounds. After 500 generations, in the case of

30, 50, 100 and 200 individuals, the average fitness value of standard GNP is 2943.8,

3154.6, 3432.9 and 3651.9, respectively, while the GNP with rules obtained the value

of 3117.2, 3319.4, 3603.4 and 3844.4, respectively.
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Figure 2.7: Training results

We can see that the proposed method obtained better performances than the con-

ventional GNP did in the training process. Its advantage is more remarkable especially

when the population size is smaller. Because population size is large, the agent can
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search in a wide range and finally find the optimal solutions. In this case, the effects

brought by the extracted rules are not very remarkable. But, when the population size is

small, the agent failed to find the optimal solutions due to a very limited search range.

So, the extracted rules can make worst individuals learn experiences from the memory

and construction of the individuals gains new recombinations in gene structures.

2.5.4.2 Simulation 2

After simulation 1, we tested the trained agents in 8 new environments showed in

Figure 2.6. Table 2.2 and Table 2.3 show the testing results of different populations of

conventional GNP and the proposed method. The testing results are the average best

fitness obtained for each test set over ten runs.

Table 2.2: Testing results of the proposed method

Population Size 31 51 101 201

World 11 880 1060 1460 1820

World 12 520 1100 1460 1520

World 13 60 100 100 220

World 14 1280 1340 1160 1580

World 15 -60 -80 0 20

World 16 780 700 560 660

World 17 240 220 480 420

World 18 1880 1360 880 840

Average 723 725 763 885

We can see that GNP with rules can strengthen the search ability of GNP. However,

in the testing phase, when the trained agents deal with the new environments, although

GNP with rules obtained better results than GNP, either standard GNP or GNP with

rules can solve the new problems perfectly. Actually, it is very difficult for trained

agents to deal with such situations and this drawback in the testing phase needs more

hard research work in the future.
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2.6 Summary

Table 2.3: Testing results of the conventional GNP

Population Size 31 51 101 201

World 11 1220 1640 1400 2880

World 12 1260 1000 1620 1260

World 13 -120 -180 -80 240

World 14 1520 1200 1400 1660

World 15 0 0 -200 -210

World 16 320 540 140 240

World 17 120 360 440 500

World 18 640 600 640 480

Average 620 645 670 881

2.6 Summary

This thesis proposed the method of GNP with rules to obtain better training results,

faster convergence rate and better testing results. The proposed method strengthens

the ability of exploitation and as a result, efficiently enhances the conventional GNP,

especially when the population size is small.

In order to improve GNP with rules, some future work should be done in the fu-

ture. We could extend GNP rules to even longer transitions of connections. As this

extension considers more about the sequence of node connections, it could bring more

exploitation ability in evolution process contributing to gain faster convergence rate,

better training and testing results. And we could improve the method of GNP rules

by considering not only the fitness value, but also other elements, e.g. rule occurrence

frequency. That is to say, a more appropriate and scientific criterion to evaluate rules

should be considered.

And the studies on strengthening the ability of solving complex problems in new

environments in the testing phase is attractive and needed.

21



Chapter 3

GNP with Reconstructed Individuals

3.1 Introduction

GNP with rules adopts a memory scheme storing the node branches used by the agents

and their importance values. In this chapter, another memory scheme named GNP with

reconstructed individuals (GNP-RI) which stores the whole node transitions used by

the agents, i.e., the GNP routes, is studied. In the previous chapter, the GNP rule is a

connection from node to node indicating only one judgement or action for the agents.

But, the complete node transition consists of successive judgements and actions of the

agents which can be considered as the series of regulations guiding the agents to solve

concrete problems. So, GNP-RI could be considered as an extension of GNP with

rules.

In GNP-RI, the GNP routes of the best individuals are stored in the memory and

they are used to reconstruct the worst individuals. So, the worst individuals can learn

more knowledge from the elite ones. This approach mimics the maturing phenomenon

in nature where bad individuals can become smarter after receiving a good education.

In this sense, the proposed method could strengthen the exploitation ability during the

evolution. Also in this chapter, GNP-RI is evaluated in tile-world problems.

3.2 Motivation of GNP-RI

As mentioned above, only the part of the nodes and connections are used during the

agent’s execution of the task in GNP, so the solution of GNP for the concrete problem
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3.3 Algorithm of GNP-RI

is represented only by the used nodes and connections instead of the whole individuals.

As a result, in the case of the explicit memory, GNP has an advantage in the smaller

size of memory, because it only needs to store the part of nodes and connections of

the good solutions. So, it is natural to design an elegant explicit memory for standard

GNP to improve its performances. In this chapter, an explicit memory scheme for GNP

named GNP with reconstructed individuals (GNP-RI) is proposed.

GNP-RI is very similar to the aforementioned explicit memory of GA which stores

the previous best solutions. In traditional GA, fitness is calculated by the string or

vector of the individual. In that case, the best solutions is just the best individuals.

While in GNP, an individual’s fitness value is calculated only by the GNP route, so the

GNP route can be considered the best solution instead of the whole gene structure of

the individual.

The aim to propose GNP-RI is to collect the information of GNP routes of the best

individuals in each generation and make use of them to guide the evolution process

and finally to get better individuals.

3.3 Algorithm of GNP-RI

The aim of GNP-RI is to enhance the GNP population by reconstructing the worst

individuals. The information on GNP routes of the best individuals is considered as

the excellent model from which the bad individuals should learn and imitate. The

reconstruction of bad individuals is executed before genetic operations as the education

process instead of reproducing or selecting individuals as parents directly to the next

generation without any reconstruction.

In nature, individuals grow up and become more suitable to the environments by

learning from good examples. To incorporate this phenomenon into GNP, the recon-

struction of the bad individuals is adopted, which is inspired by social interaction of

knowledge. Currently, such kind of inspiration has been used in many studies. For ex-

ample, Particle Swarm Optimization (PSO) which works based on social adaptation of

knowledge introduces the concept of ”social” and ”cognition” by which the individu-

als share information and their individually learned knowledge each other(48; 49). The

reconstruction can be considered similar to the ”social” concept in PSO that the bad

individuals is reconstructed by the information of elites. There are also many research
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3.3 Algorithm of GNP-RI

indicating that such kind of enhancement for the population in the genetic algorithm

can achieve better performance in applications(50)(51). For example, in (50), Juang

proposed a hybrid method combining GA with PSO. In the hybrid method, in every

generation the worst half of the population is enhanced by PSO and the better half

reproduces offspring using GA’s genetic operators.
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Figure 3.1: Flow of GNP-RI

For clarity, the flow of GNP-RI algorithm is illustrated in Figure 3.1. In each

generation, after the fitness values of all the individuals are calculated, the top R%

best-performing ones are regarded as elites. All the GNP routes of the elites are ex-

tracted and accumulated, then before undergoing genetic operations, the accumulated

information is used to reconstruct the worst R% individuals. So, after reconstruction,

the genes of the worst R% individuals are modified but the population size does not

change.

In concrete, the GNP route of each of the best R% individuals is coded in a string

structure, where the node number and the connection index of nodes are coded bit by
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bit as follows:

|Node No.|Branch No.|Node No.|Branch No.|......| (3.1)

Figure 3.2 shows the string code of the GNP route which indicates a transition from

Node I to Node J via the bth
i branch, from Node J to Node K via the bth

j branch, etc.

I bi J bj K bk

I, J and K mean node indexes

bi, bj and bk mean branches

Figure 3.2: GNP Route Coding

For example, if we use the GNP route shown in Figure 3.2 to reconstruct indi-

vidual r, the corresponding connections of individual r will be modified according to

the route information. Consequently, in individual r, the bith branch of Node I will

connect to Node J and the bjth branch of Node J will connect to Node K, etc. The

gene of individual r is modified by every accumulated GNP routes one by one. The

modification sequence starts from the routes with lower fitness values to the ones with

higher fitness values. At the beginning, the route with the lowest fitness value will

modifies individual r and then the one with the second lowest will modifies individual

r, etc. And the route with the highest fitness value will come at last. This sequence

ensures that the GNP routes with higher fitness values have the priority to modify the

gene of individuals over the ones with lower fitness values. For example, now GNP

routes Rm and Rn have a disagreement on the lth branch of Node L. Rm who has the

lower fitness value makes the lth branch of Node L connect to Node P , then, Rn who

has the higher fitness value makes the lth branch of Node L connect to Node Q. Rm

makes the modification first because it has the lower fitness value, but Rn overrides

Rm’s modification and at last the lth branch of Node L becomes connected to Node Q.

These research indicate that the agents can improve themselves by learning form the

elite peers and the historical information.

Figure 3.3 shows an example of how to use a GNP route to reconstruct the individ-

ual. Here, we use the route 1, 1, 4, 2, 3 which means node 1 connects to node 4 via its
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1st branch, and node 4 connects to node 3 via its 2nd branch, to reconstruct an individ-

ual. After reconstruction, in the new individual, the 1st branch of node 1 connects to

node 4 which once was connected to node 2 and the 2nd branch of node 4 connects to

node 3.
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Figure 3.3: An example of individual reconstruction

During the evolution process, in each generation, we first evaluate all the individu-

als. The R% individuals with the smallest fitness values will be reconstructed, and as

a result, their genes are changed. After the reconstruction, the rest 100 − R% of the

population undergoes the mutation and crossover. So, in GNP-RI, reconstruction can

be considered as a new genetic operator and it produces the next generation combining

with mutation and crossover.

3.4 Comparison between GNP-RI and GNP with rules

Essentially, the most significant difference between GNP-RI and GNP with rules is that

GNP-RI modifies the gene structures of the worst part of individuals by using GNP

routes in every generation. And the used GNP routes are extracted from excellent in-

dividuals. While GNP with rules replace the worst individuals with new individuals

constructed by GNP rules. GNP rules are connections between nodes which indicates
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one step of judgement or action for the agents. But, GNP routes are the whole tran-

sition of nodes and connections which indicates the complete regulations to execute

the task for the agents. Both approaches make use of the accumulated information

strengthening the exploitation ability.

3.5 Simulations

3.5.1 Experimental Environments

The performance of GNP-RI is evaluated in the benchmark of title-world problems

using 3 simulations. In simulation 1, we trained GNP-RI and GNP for the agents in 10

different worlds. Each world has 3 agents, 3 tiles and 3 holes. The positions of holes,

obstacles and agents are the same in the 10 worlds. However, the positions of tiles are

different from each other. The training environments are shown in Figure 2.5.

In simulation 2, after training, we tested the trained agents in 8 new different en-

vironments, where the positions of tiles, holes and obstacles are totally different. The

tesing environments are shown in Figure 2.6.

As some research has demonstrated the significant superiority of GNP over some

classic evolutionary algorithms such as GA an EP in the bench mark problem of tile-

world, so in this paper, we only compare the performance of GNP-RI and GNP.

In simulation 3, we studied the best R% of reconstructed individuals for GNP-RI.

The parameter R% is very important to the architecture because it controls the degrees

of exploitation and exploration during the evolution which generate significant effects

on the performance of agents.

3.5.2 Programming Configuration

In our program, there are 8 kinds of Judgment Nodes: J-forward, J-left, J-right, J-

backward, J-near-tile, J-near-hole, J-near-tile-to-hole and J-second-near-tile. The first

4 kinds of nodes represent the judgement of what is in front of the agent, what is at the

left of the agent, what is at the right of the agent, and what is at the back of the agent,

respectively. Each agent has a sensor, which can help the agent to identify which range

the target objects locate in. So, the last 4 kinds of nodes represent the judgement of
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where the nearest tile is, where the nearest hole is, where the nearest tile’s nearest hole

is, and where is the second nearest tile is, respectively.

And there are 4 kinds of Processing Nodes: to go forward, to turn left, to turn right

and to stay. Once the agent takes an action, it consumes one step. In our program,

totally, there are 60 allowable steps.

Each individual contains 60 nodes including 40 Judgement Nodes (5 for each kind

of Judgement Nodes) and 20 Processing Nodes (5 for each kind of Processing Nodes).

Each Judgement Node has 5 branches and each Processing Node has only one branch.

We used the population of 31, 121 and 201 individuals in the experiments for GNP

and GNP-RI, with crossover rate = 0.1, mutation rate = 0.01. And all cases of

different populations are carried out for 30 random rounds. Table 3.1 shows the details

about parameter configurations.

Table 3.1: Parameter Configuration

GNP

Population size Mutation size Crossover size Elite size

31 20 10 1

121 72 48 1

201 120 80 1

Mutation rate 0.01

Crossover rate 0.1

Number of generations 1000

GNP-RI

Population size Mutation size Crossover size Elite size

31 16 8 1

121 58 38 1

201 96 64 1

Mutation rate 0.01

Crossover rate 0.1

R% 20%

Number of generations 1000

The fitness is calculated by accumulating the scores obtained from each tile-world.

The score function is closely related to the objective of the tile-world problem, repre-
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sented by

Score = 100 · DT + 20 ·
P∑

p=1

d(p) + (Mt − Ut), (3.2)

where, DT is the number of tiles dropped into the holes, p is the ID of the relatively

nearest tile-hole pair at every time step in the trials, P is the maximum number of the

relatively nearest tile-hole pairs, d(p) is the decrease of the distances between the tiles

and holes in the pairs, Mt is the maximum time step, and Ut is the used time step.

Then, the fitness function is defined by

Fitness =
W∑

w=1

Score(w), (3.3)

where, w is the ID of the tile-world, W is the maximum number of the training tile-

worlds, and Score(w) is the score obtained in the wth tile-world.

3.5.3 Simulation Results
3.5.3.1 Simulation 1

Figure 3.4 shows the average best fitness curve of training results of GNP-RI and GNP

with population of 31, 121 and 201 individuals over 30 random rounds. We can see

that when the population size is small (31 individuals) both GNP-RI and GNP made

premature convergence and their performances are almost the same due to the low

diversity of the population. When the population size becomes larger, GNP-RI shows

an increasing superiority over GNP. Table 3.2 shows the average fitness of the best

individuals result of GNP-RI and GNP at the last generation and the results of t-test

which demonstrate that there are significant differences between the training results of

GNP-RI and GNP.

Table 3.2: Average of the best individual fitness results at the last generation

Population size 31 121 201

GNP-RI 3063.1 3876.1 4363.5

GNP 2957.8 3653.6 3994.6

t-test (p-value) 0.0175 0.0133 0.0096
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Figure 3.4: Training results
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3.5.3.2 Simulation 2

Table 3.3 and Table 3.4 shows the average best fitness of GNP-RI and GNP over 30

random rounds in the 8 new worlds in the testing case, respectively. We can see that

in new environments, where the agents have never been trained before, GNP-RI can

obtain better testing results than GNP. GNP-RI performed better than the conventional

GNP in most of the worlds. The experiment is a stochastic process and the simulation

result varies between different random runs. So, it is possible that there exist the cases

when GNP-RI is worse than GNP. I have run the program for many random rounds

(30 rounds) in order to show that in most cases, the proposed method can obtain better

performance than GNP, but due to the stochastic characteristic of the problem, we

cannot ensure the proposed method is sure to be better than GNP every time. The

testing results indicate that not only GNP-RI can perform better than GNP in the trained

environments, but also GNP-RI has more generalization ability than GNP in the new

environments. But, the testing results are not as good as the training results which

means the generality of agents in different environments are not obtained yet.

Table 3.3: Testing results of GNP-RI

Population size 31 121 201

World 11 36.7 162.3 203.3

World 12 24.3 133.7 196.7

World 13 11.7 128.7 245.0

World 14 -10.3 102.3 184.7

World 15 64.3 152.3 227.3

World 16 77.3 -54.7 172.3

World 17 46.7 201.7 248.7

World 18 12.7 144.3 196.3

Average 32.925 121.325 209.2875

3.5.3.3 Simulation 3

In this simulation, we trained agents using GNP-RI with different R% settings in 10

tile-worlds. The 10 environments are shown in Figure 3.5 where the tile positions are

different and the initial positions of the agents are the same. World 1-6 have the same
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Figure 3.5: Environment set for simulation 3
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Table 3.4: Testing results of GNP

Population size 31 121 201

World 11 46.0 106.7 154.7

World 12 -16.7 99.3 215.3

World 13 20.0 93.7 198.3

World 14 24.3 -59.3 166.7

World 15 -18.7 88.7 237.3

World 16 84.7 115.3 -56.7

World 17 -9.3 126.7 226.3

World 18 24.3 73.7 174.3

Average 19.325 80.6 164.525

distribution of obstacles and holes and World 7-10 have the same obstacle distribution,

but the hole positions are different. So, the last 4 worlds are more complicated. The

purpose of this simulation is to find the optimal R% configuration in general cases.

Figure 3.6 shows the average of the best fitness curves of GNP-RI with the popu-

lation of 201 in 500 generations over 30 random rounds using different R% configu-

rations. The result suggests that GNP-RI obtains an excellent performance when R%

is set at small values (0.1, 0.15 and 0.2). If R% is set at too large values, a great num-

ber of individuals will be reconstructed resulting in a massive loss in the population

diversity.

3.6 Summary

We proposed a method of GNP with Reconstructed Individuals (GNP-RI) which shows

a significant improvement of the performance of GNP. The proposed method modifies

the gene structures of the worst individuals before undergoing genetic operations in ev-

ery generation by using the information on the routes of elite GNPs in order to enhance

the performance of the conventional GNP. The enhanced reconstruction makes the bad

individuals learn from the elite individuals before they reproduce offspring. The sim-

ulation results in the tile-world problem shows the superiority of the performance of

GNP-RI over that of the conventional GNP both in the training and testing phase.
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Furthermore, the simulation results show that GNP-RI can obtain much more re-

markable superiority over GNP in the case of large population than that in the case of

small population. While the opposite results are obtained by GNP with rules. Because

much more useful route informations is extracted and used during the evolution in the

case of large population. As a result, GNP-RI can perform much better than GNP when

population size is large. While GNP with rules extracts and uses first-order rule infor-

mation (length 1) which is less sufficient and effective than route information. Since

GNP itself can evolve to achieve good results when population size is large, the less

effective first-order rule information cannot enhance GNP too much.
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Chapter 4

GNP with Route Nodes

4.1 Introduction

In Artificial Intelligence, an agent is used for intelligent actors which observe and act

upon an environment. A rational agent is an entity that is capable of doing perception,

action and goal directed behavior. The aforementioned GNP-RI employs an explicit

memory scheme storing the GNP routes of the best solutions in each generation. Be-

cause the node transition of GNP which begins from a start node and transfers based on

the judgments on the nodes and connections, is just the behaviors regulation to guide

the agent’s action in the environment. In other words, the route of GNP transitions

which consists of a series of successive GNP transitions from node to node in each

individual of GNP corresponds to the agent’s behaviors. So, the stored GNP routes

can be considered as the best solutions.

The memory of GNP-RI reuses the best solutions in the way that the gene structures

of the worst individuals are modified by the stored GNP routes. In this chapter, a

new explicit memory scheme for GNP named GNP with route nodes (GNP-RN) is

proposed. GNP-RN also stores the GNP routes of the best individuals, but reuse them

in a different way which is much more flexible and efficient. In order to verify the

effectiveness of the proposed architecture we report the experimental results using the

tile-world.
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4.2 Motivation of GNP-RN

4.2 Motivation of GNP-RN

It is mentioned before that GNP-RI uses the stored best solutions to modify the gene

structures of the worst individuals. But this reusing mechanism has the following two

disadvantages: firstly, after reconstruction, the gene structures of the worst individu-

als become more similar to the elite ones’ which means a loss in population diversity.

Secondly, the worst individuals learn experiences from the elite ones without consid-

ering their own situation but other ones’ experiences may not suitable for them at all.

So, GNP-RN is designed to overcome the above drawbacks which let individuals learn

information from the memory more efficiently.

4.3 Mechanism of GNP-RN

4.3.1 New Nodes: Route Nodes

In GNP-RN, the memory also stores the GNP routes of the best individuals and the

memory is updated to ensure the elitism of the recorded GNP routes in each generation.

The encoding of the GNP routes and the organization of the memory are similar to

GNP-RI. But in GNP-RN, a fixed number of route nodes is added into each GNP

individual which is connected from other nodes and has only one output to the next

node. When the agent transfers to the route node, it will refer to the memory and

retrieve some useful information from the recorded GNP routes.

4.3.2 Procedure of the GNP-RN

In the initial generation, an empty route pool without any route in it is built and

N empty route nodes are assigned to each individual, which means when the agent

reaches these empty route nodes, it will take no actions at all. After evaluating GNP,

the GNP routes of the top R% individuals are extracted and accumulated in the route

pool. In the following generation, new GNP routes will be extracted and the route pool

will be updated. The whole procedure of the memory maintenance consists of 2 steps:

• Step 1: GNP route extraction;

• Step 2: Route pool update;
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In the first step, after evaluating all the individuals, the GNP route of each individ-

ual is extracted and an important value is assigned to each route, which equals to its

fitness value. In the second step, according to the fitness values, the top R% routes

are mixed with the routes accumulated in the route pool. So, the route pool contains

2 × R% routes and in order to maintain the size of the pool, only the better half of the

routes will remain in the route pool. This procedure ensures that the only the historical

best solutions are stored in the memory. Figure 4.1 shows the flow of the GNP-RN

architecture.

Initialization of Population 

and Route Pool

Route Pool Update

Evaluate & Route Extraction

Start

No

ind=1

ind=number of 

individuals?

ind=ind+1

Yes

Crossover

Mutation

Terminated?

Yes

End

No

generation=generation+1

generation=1 Selection

Figure 4.1: GNP-RN architecture
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When the agent reaches the route node, the memory runs a tournament selection

to select a better recorded GNP route, and the agent directly follows the judgements

and processings on the selected GNP route. If the agent meets a judgement node on

the route, it will make the judgement of the node using the current condition in the

environment. If the judgement result satisfies the condition indicated by the route,

the agent will move to the next node on the route, otherwise, it will directly jump

to the judgment node right after the next processing node on the route. Let’s make

the maze problem as an example. An agent is located in a maze with obstacles and

paths distributed in it. The agent should make judgements in many situations, such as

whether an obstacle or a path is in front of it. When the agent transfers to a route node

and refer to a certain recorded route in the memory, it will consider the judgements and

processings on this route. For example, if the judgement and processing nodes on the

route indicate a task regulation like IF front is path, THEN move forward., the agent

will judge whether there is a path in front of it in the current environment. If there is

a path, the agent will move forward. Otherwise, it will make the next judgment on the

route. Figure 4.2 illustrates how the recorded GNP routes are used by GNP individuals

in the proposed memory schemes. In this figure, when the agent reaches the route

node, it first judges the current situation on judgement node 2 and if the judgement

result doesn’t satisfy the route condition, then the agent directly jumps to judgement

node 3 instead of taking an action on processing node 1.

4.3.3 Discussion

GNP route is a path on which the agent transfers in a GNP individual. It consists of

all the nodes and connections that the agent passed by. It actually contains the series

of regulations that the agent should follow in the form of ”Judge & Process”. So,

the individuals can learn experiences from the route of the best individuals recorded

in the memory. Unlike the aforementioned EAs with memory, GNP-RN stores only

GNP routes that are the useful part of the elite individuals in the memory. GNP-

RN storing GNP routes in the memory can be naturally considered as the associative

memory scheme which not only stores the best solutions, but also their environment

information, when considering the unique characteristics of GNP that the transitions
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Figure 4.2: The Procedure of the Proposed Memory Scheme

of judgement nodes and processing nodes can memorize the past environment infor-

mation and its associated judgement results and its associated actions. Consequently,

when the agent refers to the memory, it will use the good experiences accumulated in

the past. This characteristic can make reuse of the past better knowledge more flexibly

and efficiently than the direct memory scheme.

4.4 Simulations

GNP-RI can be also considered as an explicit memory scheme for GNP. The memory

organization of GNP-RI is very similar to GNP-RN and the main difference is in the

mechanisms of reusing memory information. Therefore in the simulation part, GNP-

RI and standard GNP are compared with the proposed method GNP-RN.
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4.4.1 Experimental Environments

We still use the tile-world to demonstrate the effectiveness of the proposed architecture.

Totally 3 simulations are conducted. In simulation 1, we trained the agents in 10 tile-

worlds. Each environment is a 2D space which contains 3 agents, 3 tiles and 3 holes.

And the performances of GNP-RN, GNP-RI and GNP are compared. In simulation

2, we trained the agents in another 6 tile-worlds which are much more complicated

for the agents and the performances of GNP-RN, GNP-RI and GNP are evaluated. In

simulation 3, we tested the trained agents in simulation 1 using 9 different tile-worlds

from the training.

As some research has demonstrated the significant superiority of GNP over some

classical evolutionary algorithms such as GA, GP and EP (33), so in this simulation,

we only compared the performance of GNP-RN, GNP-RI and standard GNP to demon-

strate whether the memory scheme can enhance the performance of GNP or not.

4.4.2 Programming Configuration

In our program, there are 8 kinds of Judgment Nodes: J-forward, J-left, J-right, J-

backward, J-near-tile, J-near-hole, J-near-tile-to-hole and J-second-near-tile. The first

4 kinds of nodes represent the judgement of what is in front of the agent, what is at

the left of the agent, what is at the right of the agent, and what is at the back of the

agent, respectively. Each agent has a sensor, which can help the agent to identify which

range the target objects are located in. Then, the last 4 kinds of nodes represent the

judgement on where the nearest tile is, where the nearest hole is, where the nearest

tile’s nearest hole is, and where the second nearest tile is, respectively.

And there are 4 kinds of Processing Nodes: to go forward, to turn left, to turn right

and to stay. Once the agent takes an action, it consumes one step. In our program,

totally, there are 60 allowable steps.

Each individual contains 60 nodes including 40 Judgement Nodes (5 for each kind

of Judgement Nodes) and 20 Processing Nodes (5 for each kind of Processing Nodes).

Each Judgement Node has 5 branches and each Processing Node has only one branch.

And for GNP-RN, each individuals has 5 route nodes, and in each generation the GNP

routes of the best 20% individuals are extracted.
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We used the population of 201 individuals in the experiments and the crossover

and mutation rate are predefined as Pc = 0.1 and Pm = 0.01. For GNP-RI, the re-

constructed size R% = 15% which is considered as the optimal setting for GNP-RI in

the previous chapter. All the predefined settings of parameters make these methods to

achieve the best result. And all the simulations are carried out for 30 random rounds

for average calculation. Table 4.1 shows the details about parameter configurations in

the simulations.

Table 4.1: Parameter Configuration

Parameter Value

Population Size 201

- Elite 1

- Crossover 80

- Mutation 120

Generation 500

Crossover Rate Pc 0.1

Mutation Rate Pm 0.01

Node

- Judgement Node 40

- Processing Node 20

- Start Node 1

- Route Node (for GNP-RN only) 5

Memory Size

- GNP-RN 40 routes

- GNP-RI 15% of the population

The fitness is calculated by accumulating the scores obtained from each tile-world.

The score function is closely related to the objective of the tile-world problem, repre-

sented by

Score = 100 · DT + 20 ·
P∑

p=1

d(p) + (Mt − Ut), (4.1)

where, DT is the number of tiles dropped into the holes, p is the ID of the relatively

nearest tile-hole pair at every time step in the trials, P is the maximum number of the

relatively nearest tile-hole pairs, d(p) is the decrease of the distance between the tile
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and hole in the relatively nearest pairs, Mt is the maximum time step, and Ut is the

used time step.

Then, the fitness function is defined by

Fitness =
W∑

w=1

Score(w), (4.2)

where, w is the ID of the tile-world, W is the maximum number of the training tile-

worlds, and Score(w) is the score obtained in the wth tile-world.

4.4.3 Simulation Results
4.4.3.1 Simulation 1

Figure 4.3 illustrates the 10 tile-worlds of the simulation environments. The tile posi-

tions are different and the initial positions of the agents are the same. World 1-6 have

the same distribution of obstacles and holes and World 7-10 have the same obstacle

distribution, but the hole positions are different. So, the last 4 worlds are more com-

plicated. Figure 4.4 shows the averaged best fitness curves over 30 random rounds

in the training of GNP-RN, GNP-RI and GNP, which shows that GNP-RN obtained

a better result than GNP-RI and GNP-RI performed better than GNP. The average of

the best fitness values of GNP-RN, GNP-RI and GNP are 4272.0, 4142.6 and 3632.1,

respectively in the last generation.

4.4.3.2 Simulation 2

In this simulation, we trained GNP-RN, GNP-RI and GNP in another 6 tile-worlds.

Figure 4.5 shows the experimental environments used in this simulation. We can see

the distributions of obstacles, tiles and hole are different from each other, which means

the environments are more complicated than the ones in simulation 1. So, it is dif-

ficult for agents to accomplish their tasks. Figure 4.6 shows the average best fitness

curves over 30 random rounds in the training of GNP-RN, GNP-RI and GNP in this

simulation. The average of the best fitness values of GNP-RN, GNP-RI and GNP are

1953.5, 1757.6 and 1570.4, respectively in the last generation. We can find that agents

failed to drop all the tiles into the holes in all environments. The performance of GNP

is poor because the agent can drop only 2 tiles on average over tile-worlds according
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Figure 4.3: Training environments in simulation 1
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Figure 4.4: Averaged best fitness curves over 30 random rounds in simulation 1

to the simulation result. GNP-RI performed better than GNP. It obtained the average

fitness of 293 over tile-worlds (failed to drop all the tiles in the 6 worlds). However,

GNP-RN achieved the average fitness of 325 over tile-worlds (drop 3 tiles in most

worlds) which means that it has a wider generality in more complicated environments.

Therefore GNP-RN performed better than GNP-RI and GNP when dealing with more

complicated problems.

The results of simulation 1 and 2 demonstrate that GNP-RN and GNP-RI can obtain

better training results than standard GNP. It is natural that better performances can be

gained when GNP is equipped with memory schemes because the past experiences are

used during the evolution. The reason why GNP-RN performed better than GNP-RI

coms form the following points:

• 1. In GNP-RI, the memory only records the information on the best solutions of

the current generation, but in GNP-RN, the memory records the information on

the best solutions of the whole history of the population, which means that the

agent in GNP-RN can learn better knowledge than GNP-RI.

• 2. In GNP-RI, the GNP routes stored in the memory are used to reconstruct only
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the gene structures of the worst individuals. So, only a part of the population are

benefited by the memorized information, while in GNP-RN, all the individuals

are guided by the stored information on the route nodes.

• 3. When the memorized GNP routes in GNP-RN are used, the agent will con-

sider whether the rules contained in the GNP route satisfy the situation of the

current environment. But in GNP-RI, no such consideration is adopted by the

agent.

• 4. In GNP-RI, the accumulated GNP routes will modify the gene structures

of the worst individual, which decreases the population diversity. On the other

hand, the individuals in GNP-RN can learn the past experiences and meanwhile,

their own gene structures are not destroyed, so the population diversity is main-

tained.

Figure 4.5: Training environments in simulation 2
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4.4.3.3 Simulation 3

Although the main objective of this research is to study the search ability of GNP in

the solution space, the generalization ability should be checked. To this end, after the

training in simulation 1, we tested GNP-RN, GNP-RI and GNP in 9 different worlds

to compare their performances in untrained environments. Figure 4.7 shows the ex-

perimental environments. World 17-20 have the same obstacle distribution to the ones

in simulation 1, but tile and hole positions are different. World 21-25 have different

obstacle, tile and hole distributions. So, the new testing environment is very difficult

for agents to achieve the task. Table 4.2 shows the average of the testing results over

30 random rounds using the best trained individual in the cases of GNP-RN, GNP-

RI and GNP. We can see that in new unexperienced environments, in most cases, the

trained GNP-RN can obtain better testing results than GNP-RI and GNP-RI performed

better than standard GNP in most of the environments. However, we can still see that

GNP-RN, GNP-RI and GNP failed to perform well in the testing worlds. Although the

agents are trained to fit the training environments, they can gain some general knowl-

edge from the training phase. But, when experiencing a totally new environment, the
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learned general knowledge is not enough for guiding the agents in the new environ-

ments. So, there should be more work to improve the testing results.

Figure 4.7: Testing environments in simulation 2

4.5 Summary

The proposed explicit memory scheme for GNP: GNP-RN is also inspired by the stud-

ies of the memory schemes which enhanced traditional EAs. It is a novel approach

designed to solve the problems in dynamic environments effectively and efficiently.
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Table 4.2: Testing results of GNP-RN, GNP-RI and GNP

No. GNP-RN GNP-RI GNP

World 17 168.3 133.3 106.7

World 18 171.0 156.7 173.3

World 19 184.3 121.3 113.3

World 20 204.7 188.7 161.3

World 21 103.0 89.3 24.7

World 22 48.7 68.7 16.0

World 23 138.3 146.7 103.3

World 24 102.3 75.3 87.3

World 25 157.7 41.3 36.0

Average 142.0 113.5 91.3

The performance of GNP is enhanced by the proposed explicit memory scheme which

stores the best solutions represented by the GNP routes. The agents can utilize the

knowledge from the memory when dealing with the dynamic environments. The sim-

ulation results show that the proposed architecture can obtain better results than GNP

with reconstructed individuals (GNP-RI) and conventional GNP in normal and com-

plex environments demonstrating the effectiveness of the memory scheme. However,

there are still some to be improved in the further research. Although the stored GNP

routes in the memory contain some information of the environments, a better mecha-

nism is still needed to bring much more generalization ability to GNP in different new

environments.
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Chapter 5

Adaptive Mutation in SARSA
Learning of Genetic Network
Programming

5.1 Introduction

We have introduced 3 memory schemes for GNP in the previous chapters: GNP with

rules, GNP-RI and GNP-RN which are inspired by the research in traditional EA with

explicit memory scheme. These three schemes focus on storing information of best

solutions which are represented in the form of GNP routes. In GNP with rules, the

memory stores the rules on the GNP routes and their importance values and reuses

them to construct new individuals. In GNP-RI and GNP-RN, the memory stores the

whole GNP routes of the best individuals, while they employ different mechanisms to

reuse the stored informations.

In this chapter, a new architecture named adaptive mutation in SARSA learning

of GNP (GNP-SLAM) is studied, which uses SARSA learning(52) to evaluate the

branches of nodes and records the information of the evaluation during the evolution.

According to the stored learning information on each branch of node, an adaptive mu-

tation which determines the flexible and proper mutation rates for every branch and

its mutation direction is adopted instead of the common uniform mutation with a fixed

mutation rate and random mutation directions.

GNP-SLAM records the Q values measured by SARSA learning of each branch

of node instead of the direct information of the best solutions and the information
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affects on the mutation phase instead of changing the individuals. So, the GNP-SLAM

can cooperate with the direct memory scheme, e.g., GNP-RI, to balance the degrees

between exploitation and exploration. The performance of GNP-SLAM is evaluated

in tile-world problems in the simulations.

5.2 Motivation

In GNP-RI, in every generation, before the genetic operators, i.e., crossover and muta-

tion, are conducted, the GNP routes of the elite individuals with the best fitness values

are extracted to reconstruct the worst individuals. And then, the rest part of the pop-

ulation is recombined by genetic operators. But, apparently, this approach, i.e., the

worst individuals use the elites’ gene information to imitate the better individuals, will

result in the loss in balance between exploitation and exploration. One simple method

to handle this consequence and improve the performance of GNP-RI is to raise the

mutation rate in order to bring more population diversity during the evolution. How-

ever, it is very difficult to find such an appropriate mutation rate by setting the rate at

a constant and reckless value. So, a more scientific and reasonable method is to seek

a flexible mechanism to guide the adaptive mutation according to a certain quantum

model during the evolution.

Back to the conventional GNP, the connections between nodes are traditionally

treated uniformly by the genetic operations. Not only selection is conducted based on

the fitness values of the individuals, but also crossover and mutation are performed

at constant crossover rate and mutation rate, which means different branches have the

same chance to change. It is the same case in GNP with rules that each used node

branch is assigned an importance value which is equal to the fitness value. So, the

branches in the same individual shares the same importance value. However, it has

been noticed that even the high fitness individuals might possess some logically inap-

propriate branches, i.e., the nodes that they point to are incorrect, which might cause

severe consequences. If the inappropriate branches are not used, they temporarily do

not influence the performance of the individuals. However, in other circumstances

where these branches are used, the performance could become undesirable, thus jeop-

ardizing the generalization ability of the obtained solution. Besides, in the training
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phase, there exists a possibility of these branches being passed generation to genera-

tion, which could make genetic weaknesses spread over the population.

To remedy this situation, in this research, we propose a SARSA learning model(52)

to measure the utilities of different branches, i.e., the Q values. The general idea

is that the branches and nodes are defined as states and actions as in reinforcement

learning(53; 54), where different runs of the individuals are viewed as different trials.

This way, the fitness values and observable rewards could be utilized to update the Q

values of the branches that appear during the execution. As the evolution proceeds, the

giant number of trials provides the learning model with a plenty of experiences and

knowledge to approximate the true utilities of the branches. Meanwhile, the obtained

Q values are applied to the mutation operation, herein we call it adaptive mutation,

on the premise that the low Q value indicates a possibly inappropriate branch. The

mutation rates of different branches are adjusted based on the Q values at the end of

each generation, where the branch with low Q value will be mutated at the probability

above the average. On the other hand, when a branch is being mutated, the node to

which it potentially points is also decided by the probability model based on the Q

values. As a result, the inappropriate branches have a larger chance to mutate to better

ones, and genetic weaknesses could be gradually reduced, even partially eliminated as

the evolution goes on.

5.3 Architecture of GNP-SLAM

5.3.1 Outline

Many research has been done in term of applying reinforcement in GP(55; 56). The

states and actions in reinforcement learning can be represented by the nodes and the

transitions in the tree structures of GP. The agents should make a decision to choose

the next node to move. The consequent of the move will get rewards or punishments to

update the Q values of agents. The case of GNP is very similar to that of GP. In GNP,

since a branch is connected to the node where it comes from and the node to which it

points, a Q value actually shows the evaluation about that a particular branch points to

a particular node. In GNP-SLAM, the genetic operators will be conducted and specif-

ically, the traditional uniform mutation is replaced with an adaptive mutation, where
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the branches with low Q values have higher mutation rates. Moreover, when deciding

the potential node for a mutated branch to connect, the corresponding Q values are

also considered in a way that the branches with lower Q values are less likely to be

connected to the potential node. The framework of GNP-SLAM is illustrated in Figure

5.1.

Initialization of population

Evaluate fitness function of each individual 

 Elite selection

Crossover

Adaptive mutation

Terminal condition satisfied?

Yes

No

Start

End

Initialization of Q table

Update Q value by 

SARSA learning

Figure 5.1: Framework of the proposed method

As a reinforcement learning approach, SARSA learning aims to learn a state-action

policy in a Markov decision process. The reason we adopt reinforcement learning is

that it is a kind of unsupervised learning technique, and GNP are mostly applied to

unsupervised learning problems. Moreover, we adopt SARSA learning over Q learning

because our main target is to locate the inappropriate branches. In another word, we
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require the evaluation of the branches to be objective. As an off-policy approach, the

value update function in Q learning always seeks the potentially highest rewarding

actions instead of the true ones taken in a trial. Although it works well for finding the

best rewarding policy, the greediness of Q learning will show the negative aspects for

a branch in GNP. SARSA learning, in contrast, is an on-policy approach, and updates

the Q values based on the true experience, by which we are able to learn the average

utilities of the branches.

5.3.2 Definitions

For further explanation, some definitions are given as follows.

Trial: A trial refers to the process for an agent to execute a task being supervised

by GNP. For instance, if GNP is supervising an agent in the maze problem, a trial is

defined by the agent’s behaviors from the moment when the agent enters the maze to

the moment when it reaches the destination or when time is out. Note that if a GNP

individual is used to supervise more than one agent or more than one maze, then we

have multiple trials for one individual.

Route: A route refers to the sequence of nodes and branches occurring in a trial. It

starts with the branch of the start node, and ends at the last node visited.

State: A state refers to a branch of a node. Since the number of the branches of each

node is predefined, there is a fixed number of branches in total, i.e., the number of

states is finite.

Action: An action refers to a node. The number of nodes in GNP is also predefined,

so there is a finite number of actions.

Figure 5.2 shows an example of these definitions. In the phenotype representation

of GNP, we use bold lines to mark the nodes and branches visited during a trial, then

we record these information in the route, and finally turn it into a sequence of states

and actions. In Figure 5.2, Ni denotes the ith node, Bj
i denotes the jth branch of the

ith node. sj
i is the state corresponding to Bj

i , and ai is the action corresponding to Ni.
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Figure 5.2: Route, State and Action

5.3.3 SARSA Learning Model

Based on the above definitions, a trial could be substituted by a route, and a route could

be further represented by a sequence of states and actions as shown in Figure 5.2. This

way, we build a bridge between the dynamic execution of GNP and its static structure,

which makes it possible to utilize SARSA learning to study the structure of GNP. Note

that we do not have to consider the action selection policy which takes a significant

part in the conventional reinforcement learning, because the possible actions for each

state are already generated by GNP, and the real action taken at each state could be

obtained from the route simply.
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The proposed learning approach mainly includes four steps, summarized as fol-

lows:

• 1. Establish a Q table that contains all the possible state-action pairs at the be-

ginning of the evolution. Initialize all the Q values as 0.

• 2. After each trial, obtain a route, a score and some instant rewards. The score

could be the fitness or a part of the fitness, which is application specific. The

rewards are given to some actions for them to be encouraged or punished.

• 3. Use the score and rewards to update the Q value for each state-action pair in

the route with the following update equation, following a backwards order.

Q(s, a) = Q(s, a) + α · (r + γ · Q(s′, a′) − Q(s, a)), (5.1)

where, Q(s, a) is the Q value of the current state-action pair, Q(s′, a′) is the Q

value of the next state-action pair. r is the reward if the current state is not the

terminal state, otherwise would be the score assigned to this trial. α denotes the

learning rate, while γ denotes the discount factor.

• 4. For different trials, repeat step 2 and step 3 to update the Q table iteratively

until the end of the evolution.

Note that the SARSA learning approach described here is a little different from the

traditional one. Since different trials of GNP may end at different states, the learning

process is considered as reinforcement learning without an explicit terminal state(57),

where the Q values has been proved to converge.

This approach works well for finding the inappropriate branches of the individuals.

Still take the maze problem for example. Assume node N1 judges the object in front of

the agent, and its branches indicate the possible objects, among which branch e means

obstacle, and also assume node N2 encodes the function that makes the agent move

forward. Therefore, if branch e of N1 is connected to N2, the control sequence could
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be translated as if facing an obstacle, then move forward, which is apparently

illegal and should fail every time it is executed. In the proposed SARSA learning

approach, if we give a proper negative reward value as a punishment to such failure

actions by updating the Q values iteratively during a great number of trials, the Q

values of the aforementioned illegal actions have a large chance to be negative, or a

very small positive value. Since the trials containing illegal actions are not able to get

a high score, but a lot of punishments in most cases, we earn a confidence to think that

the branches with low-Q-values are inappropriate.

5.3.4 Adaptive mutation

In GNP or other evolutionary algorithms, one of the ways to explore in the solution

search space is by mutation. Traditionally, the mutation rate is a predefined constant

value so that every genetic unit mutates at the same probability, which we herein call

uniform mutation. There is no bias in uniform mutation, due to the fact that the only

thing that concerns us is the fitness, i.e., we neither care about nor know the differences

between the micro structures of an individual. After SARSA learning, however, we are

indeed able to locate a number of branches which have extremely low Q values, so it

is no longer necessary to do mutation uniformly. Instead, if we know that a branch is

dangerously unreliable, we are supposed to decrease the possibility of it appearing in

the gene strings, which is the reason we propose the adaptive mutation approach.

The basic idea is that we define a threshold T to determine whether a branch-node

pair is viewed as normal or not in advance. If the Q value of the branch-node pair

passes the threshold, we still adopt the predefined mutation rate to perform mutation,

otherwise a monotonically decreasing function is utilized to calculate the probability

for the corresponding branch-node pair to mutate. Of course, the newly calculated

mutation rate is always higher than the predefined one. In addition, we also adjust the

probabilities of the nodes the mutated branch will point to, according to the Q value

based monotonically increasing function. These two steps ensure that the branches

with lower Q values have less frequency of occurrence in the population. To be spe-

cific, the proposed adaptive mutation approach is summed up as follows:
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• 1. Calculate the average Q value for each branch with the following equation:

Qavg(s) =
1

n

N∑

n=1

Q(s, an), (5.2)

where, s is the current state, i.e., a branch. Qavg(s) is the average Q value over

all the possible actions at state s. Actually, an is the action that has occurred at

state s before, so if an action has not appeared so far at state s, its count is not

considered. N is the total number of actions occurred at state s.

• 2. Multiply the average Q value by scalar t to obtain the threshold for the corre-

sponding branch:

T (s) = t · Qavg(s), (5.3)

where, T (s) is the threshold for the given branch s, and t is a scalar.

• 3. Compare the current Q value of the branch-node pair, i.e., (s, a) with its

threshold. If the Q value fails to pass the threshold, calculate the nonuniform

mutation rate as follows:

Pam(s, a) = Pm + (1 − Pm) · σ(Q(s, a)), (5.4)

and,

σ(y) =
1

1 + ek·y , (5.5)

where, Pam(s, a) is the adaptive mutation rate of branch s and action a, Pm is the

predefined mutation rate and k is a possitive coefficient. Q(s, a) is the Q value

of the current state-action pair (s, a), i.e., the Q value of the current branch and

node. σ(y) is a logistic function which guarantees the decreasing monotonicity.

The property of the logistic function perfectly satisfies our requirement: it shows

a linear decrease when y is near 0, but becomes saturated when y is negatively or

positively large enough. When the Q values are too small, their corresponding

branches will be assigned to very high mutation rates anyway.
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• 4. Perform mutation branch by branch. If a branch is considered as inappropri-

ate, let it mutate at probability of Pam(s, a), otherwise at probability Pm. If a

branch is determined to to be mutated, calculate the probabilities of the nodes

that the branch will potentially point to as follows:

Ptb(s, a) =
σ(−Q(s, a))∑

a∈A(s)

σ(−Q(s, a))
, (5.6)

where, Ptb(s, a) is the probability that node a is selected as the next node to con-

nect at branch s. A(s) is the set of all the possible actions for the current state

s. Note that Eq. (6) also employs the logistic function for the aforementioned

reasons.

In this step, not only the mutation rate is determined by the Q values as demon-

strated in the above step, but also to which node the current branch is to be mutated

is guided by the probabilistic model. The guiding mutation mechanism is somehow

similar to the Estimation of Distribution Algorithm(EDA)(58) and Population Based

Incremental Learning (PHIL)(59; 60), which analyzes the distribution and linkage in-

formation of each bit from sampling elite individuals and build a probabilistic model

to generate new individuals. The proposed method in this reserach also utilizes the Q

value information to build the probabilistic model and guides the mutation to generate

new individuals.

The whole idea is inspired by the evolution of human race. The development of our

intelligence relies not only on the natural selection, but also on the self-learning and

self-enhancement through our entire life. Besides, we accumulate the knowledge by

recording it in a variety of media in order to enlighten the future generations. In GNP-

SLAM, the SARSA learning model mimics the self-learning and knowledge accumu-

lation of human beings, and the adaptive mutation is a way to utilize the knowledge.

We believe GNP combined with learning algorithms has a better chance to evolve to-

wards the correct direction.

Usually, reinforcement learning incrementally change the program using the cur-

rent information of state and reward, i.e., online learning. In (33), Mabu also combines
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SARSA learning with GNP, but in a quite different form. In his method, each GNP

node has several functions, but in standard GNP, each node has only one function. So,

Mabu considers each node as a state, and the plural functions inside it are considered

as the optional actions. The agent will select the function according to a ε-greedy pol-

icy. That is, the node function with the maximum Q value will be selected with the

probability of 1-ε or a random one is selected with the probability of ε. So, we can

see that Mabu’s method uses the online learning ability of SARSA learning to imme-

diately make decisions on selecting the next action during the agent task execution.

However, the method proposed in this reserach uses SARSA learning in a different

way. Here, the node structure is the same as that of standard GNP, i.e., each node has

only one function. So, each branch of the node is consider as a state and each node is

considered as an action. The SARSA learning maintains a Q value table and the table

information is used in the mutation phase. The branch with a smaller Q value will have

a higher mutation rate and the Q table also makes the branch to mutate to a node with

a larger Q value more frequently. So, we can see that instead of using the reward in-

formation immediately, in this research, SARSA learning accumulates the information

and make use of them in the mutation phase after the task execution.

Besides, SARSA learning is conducted during the task execution of agents and

adaptive mutation is conducted at the genetic recombination stage. So GNP-SLAM

can be easily cooperate with other direct memory scheme, e.g., GNP-RI. In that case,

GNP-RI strengthens the exploitation ability in search and adaptive mutation also can

adjust the mutation rate for each branch to balance the exploitation and exploration.

Figure 5.3 illustrates the framework of adaptive mutation combining individual re-

construction. In each generation, after all the fitness values of all the individuals are

calculated, the top R% of the best-performing ones are regarded as elites. All the GNP

routes of the elites are used to reconstruct the worst R% of individuals. Then, the rest

(100 − R)% individuals minus one elite individual are generated by genetic operators

for the next generation.
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Figure 5.3: Framework of adaptive mutation combing individual reconstruction

5.4 Simulations

5.4.1 Experimental Environments

The simulations utilized the excellent benchmark for agent control problems: tile-

world. To demonstrate the effectiveness of the proposed architecture, we conducted

4 simulations. In simulation 1, we make different experimental trials changing the

learning rate α in Equation 5.1 and t parameter in Equation 5.3 for GNP-SLAM. The

purpose of this simulation is to find the optimal configuration of α and t setting so as

to use them in the later simulations. The experimental environments are 10 tile-worlds.

Each world is a 2D space which contains 3 agents, 3 tiles and 3 holes. GNP-SLAM

with different α and t settings are trained in the environments. In simulation 2, we

trained the agents in the same environments as the ones in simulation 1 and compared

the performances of adaptive mutation combining individuals reconstruction (GNP-

RISLAM), GNP-RI, GNP-SLAM and GNP. The performance of GNP-SLAM is eval-
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uated. Furthermore, by comparing the performance of GNP-RISLAM and GNP-RI

shows whether the performance of GNP-RI is enhanced by employing adaptive muta-

tion. The parameters α and t are configured as the optimal one obtained in simulation

1 and the individuals reconstruction size R% of GNP-RI is also set as the optimal one

obtained in simulation 2 of Chapter 2. In simulation 3, we trained the agents in another

6 tile-worlds which are much more complicated for the agents and the performances

of GNP-RISLAM, GNP-RI, GNP-SLAM and GNP are evaluated. In simulation 4, we

tested the trained agents in simulation 2 using 9 different tile-worlds from the training.

As some research has demonstrated the significant superiority of GNP over some

classical evolutionary algorithms such as GA, GP and EP (33), so in this simulation,

we only compared the performance of GNP-RISLAM, GNP-RI, GNP-SLAM and stan-

dard GNP.

5.4.2 Programming Configuration

In our program, there are 8 kinds of Judgment Nodes: J-forward, J-left, J-right, J-

backward, J-near-tile, J-near-hole, J-near-tile-to-hole and J-second-near-tile and 4 kinds

of Processing Nodes: to go forward, to turn left, to turn right and to stay. Once the

agent takes an action, it consumes one step. In our program, totally, there are 60 al-

lowable steps. Each individual contains 60 nodes including 1 start node, 40 Judgement

Nodes (5 for each kind of Judgement Nodes) and 20 Processing Nodes (5 for each

kind of Processing Nodes). Each Judgement Node has 5 branches and each Processing

Node has only one branch. The detail settings of node functions are given in Table 5.1.

We used the population of 201 individuals in the experiments for GNP-RISLAM,

GNP-RI, GNP-SLAM and GNP. The crossover and mutation rate are predefined as

Pc = 0.1 and Pm = 0.01 which are empirical settings for GNP. For SARSA learning

phase, a negative reward r1 = -10 is given to each failure action as a punishment.

Also, two positive rewards r2 = 7 and r3 = 20 are given as reinforcement when the

agent successfully pushes a tile forward, or drops it into a hole, respectively. The

details of the specifications of parameter settings could be found in Table 5.2. And all

simulations are carried out for 30 random rounds.

The fitness is calculated by accumulating the scores obtained from each tile-world.

The score function is closely related to the objective of the tile-world problem, repre-
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Table 5.1: Node Functions

Function ID Description

J1 Identify the grid in front of the agent

J2 Identify the grid behind the agent

J3 Identify the left grid of the agent

J4 Identify the right grid of the agent

J5 Judge the direction of the closest tile

J6 Judge the direction of the second closest tile

J7 Judge the direction of the closest hole

J8 Judge the direction of the closest

hole to the closest tile

P1 Move one grid forward

P2 Turn left

P3 Turn right

P4 Stay still

sented by

Score = 100 · DT + 20 ·
P∑

p=1

d(p) + (Mt − Ut), (5.7)

where, DT is the number of tiles dropped into the holes, p is the ID of the relatively

nearest tile-hole pair at every time step in the trials, P is the maximum number of the

relatively nearest tile-hole pairs, d(p) is the decrease of the distances between the tiles

and holes in the pairs, Mt is the maximum time step, and Ut is the used time step.

Then, the fitness function is defined by

Fitness =
W∑

w=1

Score(w), (5.8)

where, w is the ID of the tile-world, W is the maximum number of the training tile-

worlds, and Score(w) is the score obtained in the wth tile-world.

5.4.3 Simulation Results
5.4.3.1 Simulation 1

In this simulation, we studied the best learning rate α for GNP-SLAM and the effects

of different settings of parameter t.
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Table 5.2: Parameter Configuration

Parameter Value

Population Size 201

-GNP

– Elite 1

– Crossover 80

– Mutation 120

-GNP-RI and GNP-RISLAM

– Elite 1

– Reconstruction R% · 201
– Crossover (1−R%) · 80
– Mutation (1−R%) · 120
– R% 0.15

Generation 500

Crossover Rate Pc 0.1

Mutation Rate Pm 0.01

Node

- Judgement Node 40

- Processing Node 20

- Start Node 1

Discount Factor γ 0.8

t, k 0.2, 1

We use the same environments of simulation 1 in Chapter 4. Figure 4.3 illustrates

the 10 tile-worlds of the simulation environments. The tile positions are different and

the initial positions of the agents are the same. World 1-6 have the same distribution of

obstacles and holes and World 7-10 have the same obstacle distribution, but the hole

positions are different. So, the last 4 worlds are more complicated.

Figure 5.4 shows the average of the best fitness values of GNP-SLAM with differ-

ent learning rates in the last generation. It seems that when α is set at 0.6, the best

result is obtained. So, in simulation 2 and 3, α is set at 0.6 based on the experimental

results of Simulation 1.

In GNP-SLAM, the parameter t is very important to determine the degree of ex-

ploitation and exploration. If t is large, the node branch will undergo the adaptive

mutation with a higher probability. That means more exploitation ability is brought to
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Figure 5.4: Fitness of GNP-SLAM using different learning rates

the program and vice versa. So, we studied the performance of GNP-SLAM with dif-

ferent settings of parameter t. When t = 0, the threshold will also be 0 leading that all

the branches are mutated with the conventional mutation rate Pm and no adaptive mu-

tation rate is used. If t is set at a very large number, the mutation of too many branches

will be guided by the Q value information, which heavily strengthens the degree of

exploitation. Figure 5.5 shows the average of the best fitness values of GNP-SLAM

in the last generation with different t settings. And Figure 5.6 shows the average best

fitness curves of GNP-SLAM with different t settings comparing with standard GNP.

We can find that when t is set at around 0.2, the best result will be obtained. When t

is set as a large value, e.g., 1.0, the performance of GNP-SLAM becomes even worse

than that of standard GNP. Please notice that when t = 0, still a good result is obtained

which means that only using Q value information to guide the mutation direction of

node branches can bring significant improvement to GNP.

So, in simulation 2 and 3, t = 0.2 is used based on the above study.
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5.4.3.2 Simulation 2

In this simulation, we trained agents in 10 tile-worlds. The experimental environments

are the same as the ones in simulation 1 which are shown in Figure 4.3. Figure 5.7

shows the average best fitness curves over 30 random rounds in the training of GNP-

RISLAM, GNP-RI, GNP-SLAM and GNP, which shows that GNP-RISLAM obtained

the best results among 4 methods. Table 5.3 shows the p-values of t-test for the data

shown in Figure 5.7. among the 4 methods. The test result shows that there are signif-

icant differences between GNP-RISLAM and standard GNP. However, GNP-RI and

GNP-SLAM also perform better than standard GNP. The result suggests both GNP-RI

and GNP-SLAM can enhance the architecture of GNP and the combination of these

two approaches can make the performance of it even better.

An example of an elite individual from one of the early generations is given in

Figure 5.8 to demonstrate the effectiveness of individual reconstruction. This example

shows the part of the GNP route of the elite individual which control the agent to

execute the task in World 1 in Figure 4.3. Please notice the node function indexes such

as J1, J3, P1, etc. as shown in Table 5.1, are used instead of the node numbers for
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Table 5.3: The t-test result for the average of the best fitness results over 30 random

rounds in the last generation in simulation 2

t-test (p-value) GNP-RISLAM GNP-RI GNP-SLAM

GNP-RI 5.70 × 10−5 - -

GNP-SLAM 2.34 × 10−5 4.97 × 10−7 -

GNP 3.68 × 10−7 8.42 × 10−5 7.10 × 10−6

better understanding. We can see at first the agent makes several judgments to identify

what is in front of it, at its left, at its right, etc. and according to the judgment results,

it turns right which is described in the function of P3. When moving in the world, the

agent is looking for the tiles, for example, in J5, the agent identify the direction of the

closet tile and then move forward which is described in the function of P1. In Figure

5.8, the solid branches come from the GNP routes used by individual reconstruction

in the previous generation. So, we can see that individual reconstruction can bring

worst individuals the experiences of the best individuals and make improvements in the

fitness evaluation. The individual shown in Fig. 17 is very typical because it is one of

the worst individuals (ranked 192) in the previous generation, but after being enhanced
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by the proposed method, it becomes the elite individual in the next generation.
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Figure 5.8: A typical example of an elite individual

Another example of the worst individual from one of the early generations is given

in Figure 5.9 to show the details of adaptive mutation of the branches. In this indi-

vidual, 6 branches were changed by the adaptive mutation. The solid branches show

that the branches were changed to connect to other nodes with higher Q values. For

example, the second branch of Node 7 which originally connected to Node 28 with the
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Q value of 2.5 was adjusted to connect to Node 42 with the higher Q value of 24.7.

And the mutation of other nodes was also guided by the Q information based mutation.
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Figure 5.9: An example showing the mutation of a worst individual

5.4.3.3 Simulation 3

In this simulation, we trained GNP-RISLAM, GNP-RI, GNP-SLAM and GNP in an-

other 6 tile-worlds which are the same environments as the ones in simulation 2 in

Chapter 4 shown in Figure 4.5. We can see the distributions of obstacles, tiles and

holes are different from each other which means the environments are more complex

than the ones in simulation 2. So, it is difficult for agents to accomplish their tasks in

all environments. Figure 5.10 shows the average best fitness curves over 30 random

rounds in the training of the four architectures. The experimental result also shows

that GNP-RISLAM obtained the best results among 4 methods. We can find that in

more complicated environments, GNP-SLAM can perform better than GNP-RI which

is different from Simulation 2. To discuss this interesting phenomenon, let’s review

the architectures of GNP-SLAM and GNP-RI. GNP-SLAM maintains a Q table and
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utilizes it to update the mutation rate and guide the mutation direction. The Q ta-

ble contains the Q value information of all the individuals during the whole evolution

process. So, the evaluation criterion for the adaptive mutation of the branches and

adaptive selection of the nodes are reasonable. On the other hand, GNP-RI utilizes

the elites’ experience to reconstruct the worst individuals which will significantly en-

hance the whole population. However, individual reconstruction causes the loss in the

population diversity leading the worse performance of GNP-RI than GNP-SLAM in

more complicated dynamic environments. Table 5.4 shows the p-values of t-test for

the data shown in Fig 5.10. Comparing the 4 methods demonstrates that there are great

differences between GNP-RISLAM and GNP.
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Figure 5.10: Average best fitness curves over 30 random rounds in simulation 3

5.4.3.4 Simulation 4

Although the main objective of this research is to strengthen the search ability of GNP

in the solution space, the generalization ability should be checked. To this end, after

the training in simulation 2, we tested GNP-RISLAM, GNP-RI, GNP-SLAM and GNP

in 9 totally different worlds to compare their performances in untrained environments.
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Table 5.4: The t-test result for the average of the best fitness results over 30 random

rounds in the last generation in simulation 3

t-test (p-value) GNP-RISLAM GNP-SLAM GNP-RI

GNP-SLAM 1.47 × 10−5 - -

GNP-RI 7.64 × 10−5 4.20 × 10−3 -

GNP 4.09 × 10−4 2.51 × 10−5 2.84 × 10−5

The purpose of Simulation 2 and Simulation 3 is to check the performances of all

the methods in normal and complex problems, respectively. And we found GNP-

SLAM has more adaptiveness than GNP-RI in more complex problems. The worlds

in Simulation 3 are very difficult for agents to execute tasks because the locations

of obstacles, tiles and holes are totally different. So, we can see all these methods

failed to solve the complex problems in Simulation 3 perfectly. This means that the

agents trained in these environments didn’t achieve the optimal solutions. That is why

we used the training results in Simulation 2 instead of the ones in Simulation 3 for

the testing phase. The experimental environments in this simulation are the same as

the ones in simulation 3 of Chapter 4 shown in Figure 4.7. World 17-20 have the

same obstacle distributions as the ones in simulation 1, but tile and hole positions are

different. World 21-25 have different obstacle, tile and hole distributions. So, the

new testing environment is very difficult for agents to deal with. Table 5.5 shows

the average of the best testing results of the 4 architectures. We can see that in new

unexperienced environments, the 4 methods failed to drop all the tiles in most cases.

However, the trained GNP-RISLAM still performs an overall superior score comparing

with the other 3 architectures. Furthermore GNP-SLAM and GNP-RI also can obtain

better testing results than conventional GNP.

5.4.4 Analysis and Discussion

According the simulation results, we can confirm the following several points: First,

it has been noticed that GNP-RI performs better than standard GNP because the worst

individuals learn experiences from the best ones in GNP-RI, which is an exploitation

of the knowledge obtained. Since the goal of GNP is to search for the global optimum

in the solution space, appropriate exploitation means as if making a short cut to the

70



5.4 Simulations

Table 5.5: Testing results of GNP-RISLAM, GNP-SLAM, GNP-RI and GNP with

population of 201

No. GNP-RISLAM GNP-SLAM GNP-RI GNP

World 17 152.0 182.7 133.3 106.7

World 18 232.7 103.3 156.7 173.3

World 19 186.7 148.0 121.3 113.3

World 20 264.7 80.7 188.7 161.3

World 21 181.3 157.3 89.3 24.7

World 22 77.3 94.0 68.7 16.0

World 23 108.0 128.7 146.7 103.3

World 24 175.3 61.3 75.3 87.3

World 25 146.7 109.3 41.3 36.0

Average 169.4 118.4 113.5 91.3

destination, and eventually accelerates the search. Second, GNP-SLAM also performs

better than GNP because it employs SARSA learning to evaluate the branches, then use

the learned Q values to guide the mutation. It is well known that a significant role of

mutation is to jump out of the local minimum, but the traditional uniform mutation is

totally stochastic and unpredictable. With SARSA learning based mutations, however,

the low-Q-value branches are assigned to higher mutation rates, so the inappropriate

branches might probably appear less frequently than usual, which earns a better oppor-

tunity of avoiding local minimum. Third, as mentioned above, the behavior of worst

individuals’ learning from the best ones is a kind of exploitation of the social knowl-

edge. While GNP-SLAM utilizes the past knowledge to guide the mutation. So, it is

very natural to consider to combine GNP-RI and GNP-SLAM to employ both of their

advantages. GNP-RISLAM maintains the mutation probability distribution based on Q

values. Generally speaking, the smaller the Q value is, the less likely the correspond-

ing node will be chosen. Therefore, it adds the bias into the candidate nodes instead of

the uniform distribution in GNP and GNP-RI. Provided most of the Q values stand for

the true utilities of the branches, the occurrence of the inappropriate ones will be grad-

ually reduced generation by generation. Moreover, the probability distribution offers

a more flexible way to determine the candidate nodes than GNP and GNP-RI. To sum

up, GNP-SLAM is capable of gradually and smoothly reducing the genetic weakness

through evolution and GNP-RI can be enhanced combining adaptive mutation.
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5.5 Summary

This research introduces an approach to improve Genetic Network Programming (GNP)

named adaptive mutation in SARSA learning of GNP(GNP). GNP-SLAM possesses

two innovative features. Firstly, it integrates SARSA learning into GNPs evolutionary

framework, thus making it possible to study the structure of GNP. Secondly, based on

the learned knowledge, it replaces the traditional uniform mutation with adaptive mu-

tation, which aims to gradually reduce the genetic weakness through evolution. The

experiments conducted on the tile-world problem reveal several advantages of GNP-

SALM. For one thing, GNP-SLAM is able to find a better solution in a limited training

period compared with other GNP. For another, it manifests a better performance in

the testing tile-worlds, which accounts for a relatively reliable adaptiveness and ro-

bustness. Furthermore, the adaptive mutation can easily combine with other explicit

memory schemes and enhance the performance. The simulation results of adaptive

mutation combing individual reconstruction have confirmed that point. Admittedly,

we could see from the testing result that different memory schemes for GNP are still

imperfect, and leave several issues to be concerned with as future work. The most im-

portant one is the insufficient inductive learning ability. Although GNP-SLAM works

better than the conventional GNP in the test, it does not show desirable performances.

Therefore, the inductive learning of GNP-SLAM still requires a complete and utter

focus.
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Chapter 6

Conclusions

In this research, some studies on the memory schemes for Genetic Network Program-

ming are done and 4 memory schemes are designed in term of multiple objectives.

Inspired by the research of other scholars in the evolutionary community on mem-

ory schemes for traditional evolutionary algorithms (EAs), the aim of the proposed

memory schemes is to enhance the performance of GNP for dealing with dynamical

problems and balance the exploitation and exploration degrees.

The general concepts of the proposed memory schemes are recording the histori-

cal informations of the population in the memory and reusing them later to guide the

evolution process. Four different schemes are studied.

In the GNP with rules, the GNP rules and their importance values evaluated by

individual fitness values are stored. The reuse of the memory is in the way that the

worst individuals are replaced by the ones constructed by the selected GNP rules in

each generation.

Another scheme, GNP with reconstructed individuals (GNP-RI) extends GNP with

rules to a new form which stores the best solutions represented by GNP routes that in-

dicate the successive regulations of judgements and actions for the agents. The gene

structures of the worst individuals are modified by the stored GNP routes in each gen-

eration. So, the worst individuals can learn experiences from the elite ones during the

evolution.

Then, GNP with route nodes (GNP-RN) further strengthens the learning ability of

GNP-RI. In GNP-RN, each individual can learn knowledge from the memory. Further-

more, when the agents reuse the recorded regulations, they simultaneously consider
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the current environment conditions and make decisions on whether or not adopting the

regulations.

All the above three memory schemes strengthen the exploitation ability of GNP

while the adaptive mutation in SARSA learning of GNP (GNP-SLAM) can balance the

exploration and exploitation degrees of evolution. GNP-SLAM evaluates the branches

of nodes with Q values updated by SARSA learning and uses the Q information to

adjust the mutation rate flexibly and guide the mutation direction. GNP-SLAM can

easily combine other GNP memory schemes to improve the algorithms.

The simulations compare the proposed architectures and the standard GNP. The re-

sults show the superiorities of these architectures over GNP. Furthermore, these mem-

ory schemes are compared with each other in different environments.

But there is still a lot of work to do to improve. From the simulation results on

testing phases, it is found that GNP and its memory schemes mostly failed to solve the

dynamical problems in new environments perfectly.
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Appendix A

Genetic Network Programming

Genetic Network Programming (GNP) is an extended approach of GA and GP to deal

with dynamical environments efficiently. GA with a string structure is able to search

the global optimal solutions of the problems, which is mainly applied to numerical

optimization problems. So GA usually fails to solve complicated problem in dynamical

environments where the the agents should handle varying situations. On the other hand,

GP proposed later expands the expression ability of GA by using tree structures. This

structural change of solutions brought significant progresses and made GP applicable

to more fields and problems. But, it is generally said that GP is sometimes difficult

to search for an optimal solution because the searching space of solutions becomes

tremendous due to the difficulty to control the size of the tree. When the problem is

complex, the tree size may bloat excessively. Genetic Network Programming (GNP)

with a directed graph structure, is proposed to overcome the disadvantages of GP. The

graph based structure of GNP has more general representation ability than that of trees,

and the inherently equipped functions in it. Each node of GNP executes the judgment

or processing operation for the agents, and the transition rule of GNP expresses the

behavior sequences by transiting those nodes. GNP aims to be more applicable to

many problems by separating the judgment nodes and processing nodes structurally so

that the network can be easily evolved. Hence, it is the unique directed graph structure

that brings GNP several advantages over GA and GP when dealing with problems in

dynamical environments.
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The gene of GNP is directed graph structure where several nodes are connected

by directed branches like Parallel Algorithm Discovery and Orchestration (PADO)

and Evolutionary Programming (EP). The fundamental differences between GNP and

PADO or EP are as follows. PADO is originally designed to construct the static pro-

grams as GP, which can be seen from the fact that PADO has external memories. In

PADO, the process boots from the initial boot node and terminates at the terminal node

using the explicit indexed memory. So after the processing, it must return to the initial

boot node again and update the indexed memory. EP is a Markov Decision Process,

therefore, every input and output for all states have to be prepared in the structure of

EP, so EP is likely to expand its size for complicated problems.

On the other hand, GNP boots from the start node and never returns to it, during the

execution a series of node transitions generate the solutions of GNP. Therefore, these

node transitions act like an implicit memory function in GNP. In other words, GNP is a

new evolutionary method to construct generalized discrete event systems by combining

program modules. GNP aims to be more applicable to many problems by separating

the judgment nodes and processing nodes structurally so that the network can be eas-

ily evolved. Hence it is the unique directed graph structure that brings GNP several

advantages over GA and GP when dealing with problems in dynamic environments.

A.1 Directed Graph Structure of GNP

An individual of GNP contains a fixed number of nodes which are classified into 2

categories in terms of their functions. These nodes are named Judgment Node and

Processing Node, respectively. The numbers of 2 kinds of nodes are both fixed. Judg-

ment Node judges the current state on the environments, and according to the judge-

ment result, the agent selects the following node. In the concrete, Judgment Node has

multiple branches connecting to different nodes, respectively, and after judgement, a

decision should be made to select one branch and move to the next node. Accordingly,

if there are a lot of judgement results, the number of branches increase, the network

structure become complicated. Processing Node takes some actions (or implements

some functions) and changes the current state according to some regulations. Differ-

ent processing nodes take different actions. Therefore, Processing Node has only one
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branch connecting to the following node. If there are a lot of different kinds of actions,

the number of processing nodes also increase, and the network structure become com-

plicated. The number of each kinds of nodes, concrete functions of nodes, states and

regulations are defined by GNP designer and stored in its own dictionary. Figure A.1

shows a simple example of an conventional GNP’s individual. We can see that in the

example, the GNP individual has totally 5 nodes including 1 start node, 2 judgement

nodes and 2 processing nodes. And each judgement node has 2 branches connecting

to 2 nodes, respectively.

2

3

1

4

Start 

d31

d1

d3

Processing Node

Judgment Node

d1, d3 and d31 Delay Time

Figure A.1: The directed graph structure of GNP

Figure A.2 shows the genotype expression of the conventional GNP which provides

the chromosomes encoded into bit-strings. In the conventional GNP, usually, each in-

dividual contains a start node, a set of m Judgment Nodes and n Processing Nodes. An

matrix is used to express the directed graph structure of GNP. Each row of the matrix

represents the information of a node. The first column NTi in the node part represents

the node type {0 : Start Node, 1 : Judgment Node, 2 : Processing Node}. For

example, if NTi = 1, it means Node i is a Judgment Node. The second column IDi

represents the node functions like judgment functions and processing functions. The

third column di stores the delay time on the node. On the other hand, the connection

part of the matrix represents the connected nodes from node i: Ci1, Ci2, ... and its

connection delay time: di1, di2, ..., respectively. GNP has two kinds of time delays:

one spends on judgment node or processing node, and the other one spends on node
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transition. In Figure 2.1 d1 and d3 is the required time of executing the process and

judgement of node 1 and node 3, respectively. And d31 is the one spent on the tran-

sition from node 3 via its 1st branch. They have been introduced to model GNP like

human brain needs time for thinking. The structure of GNP can become more realistic

by setting two kinds of time delays. Since GNP has a directed network structure, it is

very likely that loops are formed in GNP individuals. Delay time is accumulated dur-

ing the transit from node to node. Once the accumulated delay time exceeds a certain

criterion, it could be considered as an infinite circle. Hence, the delay time could be

used as a controller to prevent the agents from being trapped in the infinite circle.

NT1 ID1 d1 C11 d11 C12 d12Node 1

Node Gene Connection Gene

NT2 ID2 d2 C21 d21 C22 d22Node 2

NTi IDi di Ci1 di1 Ci2 di2Node i

Figure A.2: The genotype expression of GNP

Once GNP is booted up, the execution starts from the start node, then the next

node to be executed is determined according to the connection from the current acti-

vated node. If the activated node is judgement node, the next node is determined by

the judgement results. When processing node is executed, the next node is uniquely

determined by the single connection from Processing nodes.

A.2 Genetic Operators of GNP

Genetic variation is a necessity for the process of evolution. Genetic operators are

the process to maintain genetic diversity, and they are found in the natural world. GNP
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Figure A.3: Different kinds of selections of GNP

also have its own genetic operators which are similar to that of GA: selection, mutation

and crossover. Selection is to select an individual randomly or according to a certain

probability policy. Mutation is to change the gene of the selected individual. And

crossover is to exchange the corresponding part of 2 selected parent individuals and

obtain 2 offspring having new genes.

A.2.1 Selection

Figure A.3 shows examples of different kinds of selections in GNP.

As the roulette selection of GNP, the selection is carried out by the probability in

proportion to the relative value of the fitness of the individual. Individuals with higher

fitness have higher probabilities to be selected and vice versa. As a result, the roulette

selection has not been used in conventional research because it could not be applied to

the case where lower fitness is dominant.

In tournament selection, after comparing with N individuals selected from the pop-

ulation randomly, the individual having the highest fitness is selected among them. N

is the tournament size and N = 2 is generally used. The tournament selection is mainly

used in conventional GNP research, because the tournament selection is available in

the case where lower fitness is dominant.

After comparing with the fitness of all individuals of the population, elite selection

moves M individuals having higher fitness to the next generation. M is the number of
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elite individual, and the solution converges quickly if M is high. In this thesis, elite

selection is used and M=1.

A.2.2 Mutation

Mutation operator affects only one individual. All the gene information of each node

are changed randomly by mutation rate of Pm, and one offspring is generated. There

are 2 kinds of mutations: mutation of connections and mutation of nodes.

In mutation of connections, the connection between nodes is modified. The mu-

tation refers to the change of genetic information Cij of each node in GNP by the

predefined probability Pmc, and decides the connection for the mutation. Therefore

the genetic information Cij is modified in the range of the node number randomly. The

example of the mutation is shown in Figure A.4. In the case of just carrying out this

mutation, the kinds of nodes having the same node number are not modified because

NTi and IDi are not modified.
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Figure A.4: Mutation of connections

In mutation of nodes, the kinds of node are changed. The mutation refers to the

change of genetic information NTi and IDi of each node in GNP by the predefined

probability Pmn, and decides the node and the genetic information for the mutation.

Therefore, the genetic information on the NTi and IDi is modified randomly. If the
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number of the connections are increased by modifying the node function (e.g., modi-

fying the Processing node to the Judgement node), added connections are defined

randomly. On the other hand, if the number of the connections are decreased, they are

deleted. The example of the mutation is shown in Figure A.5.
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Figure A.5: Mutation of nodes

We can combine these 2 kinds of mutations or just use one of them in some prob-

lems. In this thesis, we use mutation of connections only.

A.2.3 Crossover

Crossover is executed between two parents and produces two offspring. The connec-

tions of the uniformly selected corresponding nodes in two parents are swapped with

each other by crossover rate of Pc, and two offspring are generated. In GNP, there

are 3 kinds of crossover: one point crossover, several points crossover and uniform

crossover.

One point crossover selects one node as the crossover point randomly, the whole

genetic information separated by its node is exchanged. The example of one point

crossover is shown in Figure A.6 where the performance of the generated offspring

individual is influenced by the position of the crossover point.

Several points crossover selects several nodes (generally two) as the crossover point

randomly, the whole genetic information separated by their nodes is exchanged. The
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Figure A.6: One point crossover

example of several points crossover is shown in Figure A.7. Exchanging more small

sub networks is available by dividing the network into more blocks.

In uniform crossover, the crossover nodes in the offspring is decided by the prede-

fined crossover probability Pc for each node of the parent individual, the whole genetic

information corresponding to the crossover node is exchanged between the parents.

The example of uniform crossover is shown in Figure A.8.
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Figure A.7: Several points crossover

A.3 Evolutionary Algorithm of GNP

Basically, GNP finds adaptive solutions by carrying out the evolution in the population.

Figure A.9 shows the flow of GNP algorithm, and we can see this process is similar to

GA’s algorithm. The individuals moving to the next generation are selected with the

fitness. After all, the result to be executed by the program could be obtained, and the

fitness of solution is calculated for each individual.
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Figure A.8: Uniform crossover
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