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Abstract

Artificial neural networks (ANNs) are widely used in various applications such as recognition, se-
curity, computer learning and so on. To meet requirements of higher performance, hardware imple-
mentations have been widely researched and developed. The popular implementation methods are
FPGA, analog, digital and hybrid methods. The FPGA method is widely used due to the low cost
and short design time, but at the same time it is limited by the performance compared with other
hardware implementation methods. The digital method is also widely used due to high precision,
good expansibility and a good design support by EDA tools, but at the same time it is limited by
the higher design cost, heavy communication load and less reconfigurability. In this thesis, we for-
mulate and address problems in these two key hardware implementation methods, namely, FPGA
ANN and digital ANN.

The first problem is the performance problem limiting the development of FPGA ANN. We
presented a novel architecture for the FPGA ANN, which integrates both the layer-multiplexing
and pipeline architecture. This proposed architecture could achieve high performance by enhancing
the efficiency of resource usage of the same FPGA board. Our proposed architecture presents an
advantage in two basic respects over the traditional implementations. The first one is the hybrid of
layer multiplexing and pipeline, which can optimize both the resource requirement and speed. The
layer multiplexing guarantees the resource required by neural network under the constraint of an
adopted FPGA chip, and the pipelining between the layers can improve the speed. The second point
is the algorithm to determine the optimal hardware architecture according to the neural network
parameters such as the topology, data structure and so on. Furthermore, our method just meets
the resource limitation of a given FPGA, so that the FPGA board does not need to be changed for
another application.

The second is a problem in digital ANN which is limited by the higher design cost, heavy com-
munication load and less reconfigurability. Recently, Network on Chip (NoC) has attracted much
attention. The packet-based network with high level parallelism architecture of NoC was used to
solve complex on-chip interconnection problems for large system-on-chip (SoC). We presented a
digital ANN with NoC architecture to solve the existing problems of digital ANN, such as heavy
communication load and less reconfigurable. This digital ANN with NoC architecture is reconfig-
urable, because the weight values and activation functions can be changed as desired. We can also
change the topology and routing algorithms of the NoC by sending new data to meet different kinds
of ANN, so this system is easily extended. We can design this system in the style of cell-by-cell and
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can easily add or remove any cell to comply with different applications. The proposed NoC sys-
tem can reduce the communication load of total packet size and improve the system performance
of connection-per-second (CPS). This proposed NoC mapping method can make the digital ANN
more efficient.

The third is a discussion on general digital ANN with NoC architecture which is limited by
the design cost when implementing large size ANN. A multiple NoC model is developed for a
digital ANN, which can implement both a small size ANN and a large size one. Model-1 uses the
general NoC ANN, all the layers of ANN can be implemented with it in one time, thus it can be
suitable for ANN with small network size. Model-2 uses the same NoC architecture, whereas the
implementation method is different. In this model, different layers of ANN will be implemented
with NoC architecture one by one, so that it is appropriate for ANN with large network size. The
proposed multiple NoC models can reduce communication load, increase system performance of
CPS, and reduce system running time compared with the existing hardware ANN. Furthermore, this
architecture is reconfigurable and reparable. It can be used to implement different applications of
ANN.

As the fourth issue, routing is important in order to maximize effectiveness of NoC. The tra-
ditional routing strategy limits the communication load and performance of the NoC ANN. One
of popular routing strategies is Destination-Tag (DT) method which is used in the proposed NoC
ANN. The advantage is that each hop could be easily controlled and different routing algorithms
could be easily realized, whereas the disadvantage is that the total destination address stored in
header becomes larger and larger proportional to the network size. This drawback causes that the
NoC ANN could not achieve high performance and low communication load for large size ANN.
Thus, a new NoC architecture is needed to implement the ANN. The main improvement is a router
model with absolute address based routing strategy instead of the former router with DT method
based routing strategy. This absolute address based routing strategy could reduce the header size of
the packet compared with the DT method, and it can implement different routing algorithms with a
little hardware change. So that the absolute address based NoC architecture is effective in reducing
communication load and increasing performance.

Finally, an on-chip neural processor is implemented to get high performance. Based on our
study so far, the NoC architecture is described to structure a new type of neural processor named
NoCNN and designed using 90-nm CMOS technology. The NOCNN is composed of 20 tiles in
a 4x5 2-D array, and each tile includes a Process Element (PE) and a packet-switched router. It
can achieve over 3.1 Giga CPS of computing speed while power dissipation is 1.1317 W at 1.2
V supply, and its chip size is 25 mm2. It can work asynchronously in different tiles and work in
parallel in the same tile to make the system computing speed of CPS higher. It is reconfigurable,
because weight value, activation function and implementation information can be easily changed by
sending new packets. It is also expandable, because the tiles can be easily added or removed. The
packet transmission method of NoC is more efficient and smart than a general digital ANN, thus it
can reduce communication load.
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In conclusion, the performance problem of FPGA-based ANN is solved and it could suit for
the real applications which need high performance. Furthermore, NoC architecture is proposed to
instead of traditional bus-based P2P hardware ANN to solve the problems of performance, commu-
nication load and reconfigurability.
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Glossary

Some notations may have different meaning locally.

Notations

xi ith input
ωi weight in the ith connection
b bias
Ni bit length of output from the active function
xijk jth input of ith neuron in kth layer
yik output of ith neuron in kth layer
Nk total neuron number in kth layer

w
(k−1)k
ji weight between the jth neuron in layer (k − 1) and the ith neuron in layer k

T latency
BW link bandwidth in bits per cycle
R routing delay per hop
H number of hops from the source to the destination node

H
(s)
k a weighted sum of the kth neuron in the sth layer

o
(s−1)
j an output of the jth neuron in the (s− 1)th layer

Ns−1 the total number of neurons in the (s − 1)th layer which connect with this kth

neuron
f(H

(s)
k ) an activation function computed on the weighted sum H

(s)
k
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Chapter 1

Introduction

An Artificial Neural Network (ANN) is a computational model or mathematical model which at-

tempts to simulate the structure and functional aspects of biological nervous system [2]. A neural

network consists of an interconnected group of nodes which called artificial neurons, and it pro-

cesses information by computing with a connectionist approach [3]. An ANN is always an adaptive

system that changes its structure according to internal or external information during the learning

phase.

1.1 Historical review of ANN

ANN has been researched through four periods of extensive activity.

The first period of ANN is in the 1940s, when McCulloch and Walter Pitts began pioneering

work based on networks of binary switching [4]. Although the the neuron model is far simpler than

the real biological counterparts.

The second period appeared in the 1960s, when Rosenblatt and his group introduced the percep-

tron convergence theorem [5], and then Minsky and Papert’s work showed limitations of a simple

perceptron [6]. As a result, research and development of ANN were stagnant for almost 20 years.

In early 1980s, ANN’s research started a new period, due to Little’s research in 1974 [7], Hop-

field’s energy approach in 1982 [8] and the back-propagation learning algorithm for multilayer

perceptrons (multilayer feedforward networks) by Werbos [9, 10, 11], and then Rumelhart et al.

popularized in 1986 [12, 13].

Since the later 1980s the research has begun to focus in neural network VLSI chips, accelerator

boards and multi-board neurocomputers, because these hardware ANNs’ speed were higher than

the software ANNs. Many neural network applications, such as recognition programs, run well

1
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Table 1.1 Design target of FPGA-ANN
Content Target

Size of ANN ≤ 20 neurons in one layer of ANN a

Frequency 100 MHz
Increase 50% for ANN with 2 pipeline depth,

Performance of CPS 2 times for ANN with 3 pipeline depth
3 times for ANN with 4 pipeline depth

aThe total resource of used FPGA is 9280 LCB, and the resource of one neuron is about 392
LCB.

on conventional von Neumann processors, some applications with high energy physics, need the

high speed implementations [14]. For instance, implementation of Back Propagation (BP) neural

networks has been performed on the Connection Machine (Singer, 1990) [15], Warp (Pomerleau et

al., 1988) [16], MasPar (Chinn & Grasjki et al., 1990) [17], Hughes (Shams & Gaudiot, 1990) [18],

GF11 (Witbrock & Zagha, 1989) [19], AAP-2 (Watanabe et al., 1989) [20], transputer based ma-

chines (Vuurpijl, 1992) [21], and the CRAY YM-P supercomputer (Leung & Setiono, 1993) [22],

Hitachi WSI (Hitachi Central Research Laboratory, 1990) [23], Lneuro (Mauduit, 1992) [24]. To

build larger hardware networks, multi-chip boards and even mult-board systems can provide a few

thousand interconnected neurons but require at least some sequential chip and board communica-

tion. High cost made hardware ANN development slowly.

FPGA implementations of neural networks have a great develop in these years, because of its

reconcilability and short design time, such as FPGA neurocomputers (Omondi et al., 2006), Arith-

metic precision for implementing BP networks on FPGA (Moussa et al., 2004), FPGA Implemen-

tation of Very Large Associative Memories (Hammerstrom et al., 2006), and so on [25]. But there

remains a performance problem. If the problem could be solved, the FPGA approach will make

hardware ANN a bright future.

In this thesis, FPGA-based ANN are developed and applied to real applications. The work

presented here aims to improve the FPGA-based ANN to make it can suit for the high performance

applications. In our design, a common FPGA chip (Xilinx VirtexII XC2VP20) is used, thus the

design target is described as Tables 2.1.

Traditional bus-based P2P hardware ANN could not overcome the communication problem.

But NoC technology can overcome almost all the drawbacks in hardware ANN. In this thesis,

NoC-based ANN is proposed and applied to real applications, so that problems of performance,

communication load and reconfigurability will be solved. The design target of proposed NoC ANN
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Table 1.2 Design target of NoC-ANN
Content Target

Size of ANN ≤ 72 neurons of total layers for general NoC model
≤ 64 neurons in one layer of ANN with multiple NoC model

Frequency 100 MHz
Communication load Reduce 50% compared with P2P architecture
Performance of CPS > 1 G
Power consumption < 2 W
Chip area 25 mm2

is described as Tables ??.

1.2 Organization of This Thesis

This thesis presents two architecture to develop the hardware ANN. One architecture is based on

the existing FPGA-based ANN, and integrate layer-multiplexing and pipeline architecture together.

While the developings based on the existing architecture could not overcome all the drawbacks in

the existing ANN. Thus, a novel NoC architecture is newly proposed to improve the hardware ANN.

The NoC-based ANN shows advantages of high performance, low communication load and good

reconfigurability.

This thesis consists of eight chapters and depicted in Fig. 1.1. Chapter 1 gives a background

and motivation of our research.

Chapter 3 presents a novel architecture for an FPGA-based implementation of multilayer Artificial

Neural Network (ANN), which integrates both the layer-multiplexing and pipeline architec-

ture. Given a kind of FPGA to be used, the proposed method aims at enhancing the efficiency

of resource usage of the FPGA and improving the forward speed at the module level, so

that a larger ANN can be implemented on traditional FPGAs and also a high performance

is achieved. Usually FPGA board is not changed for every applications, thus, we need not

mind about the usage of it if the application can be implemented within the resource limi-

tation. We developed a new mapping method from ANN schematic to FPGA by using this

hybrid architecture, and also developed an algorithm to automatically determine the architec-

ture by optimizing the application specific neural network topology. The experimental results

show that the proposed architecture can produce a very compact circuit for multilayer ANN

to meet resource limitation of a given FPGA, and higher performance is obtained compared
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Chapter 3
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Figure 1.1 Flow diagram of our thesis

with conventional methods.

The main contributions in this chapter are as follows.

• The proposed architecture integrates both the layer-multiplexing and pipeline architec-

ture.

• The proposed architecture can relax resource limitation problem of a given FPGA, and

shows higher performance.

Chapter 4 proposes a new flexible hardware Network on Chip (NoC), a packet-based signal pro-

cessing architecture, for mapping the different applications of the feedforward artificial neural

network (FF-ANN). There are many problems in a traditional FF-ANN implementation. For

example, application is limited, interconnection is complex and data transmission is difficult

to be controlled. This NoC-based system can solve these problems, because it can be re-

configured and extended by sending the new packet. It can map the complex FF-ANN with

multiple layers and multiple neurons in one layer. The system is designed to achieve low
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latency, high throughout and low power. The simulation results obtained with the NIRGAM

NoC simulator, NOXIM NoC simulator and Quartus II show that the proposed architecture

can reduce communication load and increase connection per second (CPS) of system in real

applications of FF-ANN.

The main contributions in this chapter are as follows.

• A novel architecture is proposed to overcome the existing problems for hardware ANN.

• The proposed NoC-ANN can reduce communication load and increase CPS of system

in real applications of ANN.

• The proposed NoC-ANN is reconfigurable and extendable, and it can be used for differ-

ent applications.

Chapter 5 proposed a multiple NoC models for ANN, which can implement both a small size ANN

and a large size one. The simulation result shows that the proposed multiple NoC models

can reduce communication load, increase system performance of CPS and reduce system

running time compared with the existing hardware ANN. Furthermore, this architecture is

reconfigurable and reparable. It can be used to implement different applications of ANN.

The main contributions are as follows.

• The NoC-ANN with switch control can implement both a small size ANN and a large

size one.

• The performance and resource cost is balanced.

Chapter 6 proposed a new router model of NoC with absolute address based routing strategy in-

stead of a router with Destination-Tag to reduce the packet size of a header. The NOXIM

NoC simulator is used to evaluate the proposed router in term of average latency and max

latency. The experimental results indicate that the proposed NoC architecture with this new

router model is effective in reducing latency compared with the traditional one, and it brings

a mapped FF-ANN higher performance and lower communication load.

The main contributions related to this NoC-ANN with absolute address based routing strategy

are as follows.

• The proposed NoC architecture with absolute address based routing strategy is effective

in reducing latency compared with the traditional NoC-ANN.
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• Higher performance and lower communication load are achieved.

Chapter 7 describes a high-performance neural processor based on a novel Network on Chip

(NoC) architecture to increase the computing speed and solve the reconfigurability and inter-

connection problems of a general neural system. The proposed NoC-based neural processor

is composed of 20 tiles in a 4x5 2-D array, and each tile includes a Process Element (PE) and

a packet-switched router. In each PE, four neurons are aggregated to achieve low communica-

tion load. The network is 2-D torus topology, and it has a 32 G/s bandwidth and asynchronous

clocking system. Our proposed neural processor is designed using 90-nm CMOS technology

with one poly and nine metals. It can achieve over 3.1 Giga Connection Per Second (CPS)

of computing speed while power dissipation is 1.1317 W at 1.2 V supply, and its chip size is

25 mm2. Compared with the other existing digital neural networks, the proposed processor

is reconfigurable and extendable, and can achieve lower communication load, lower system

running time and higher computing speed.

The main contributions related to this NoC-based neural processor are as follows

• Based on the proposed NoC-ANN model, a high-performance neural processor with

NoC architecture is designed using 90-nm CMOS technology.

• The developed NoC neural processor can achieve lower communication load, lower

system running time and higher computing speed.

Chapter 8 concludes this research, summarizes the thesis and discusses the further work.



Chapter 2

Preliminaries

2.1 Basic Knowledge of ANN

Hardware ANN

Why a hardware designed ANN is needed. It is because of the performance of conventional von

Neuman processors. For example, the Intel Pentium series processor continues to be improved

dramatically, but we need higher performance. Then we may have another question that why such

a neural network algorithms need implement in special hardware. No doubt it is also because of the

speed. Clark S. Lindsey [26] gave three reasons in his speech: The first, even the fastest sequential

processor can’t provide real-time response and learning for networks with large numbers of neurons

and synapses. The second, parallel processing with multiple simple PEs can provide great speed

ups. The third, when the particular task at hand does not require very fast speed, we can find a

software implementation on a PC or workstation to obtain a satisfactory solution. Furthermore the

specialized applications can also motivate the use of hardware ANN.

Classify of implementation types of the hardware ANN

The classification of implementation types of the hardware ANN is always a controversial task.

One of the general classification was proposed by Heemskerk (1995) [27] and revised as shown

in Fig. 2.1. The global hardware implementation is called neurocomputers which can be divided

into standard chips or neurochips. The standard chips can be classified as sequential, accelerator

boards or processor. The FPGA is one of the common types of processor. The neurochips which

are constituted by ASIC can be classified as analog, digital or hybrid.

7
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Neurocomputers

Standard Chips Neurochips
(ASIC)

Analog Digital

Hybrid

Sequential
+Accelerator Processor

FPGA ... ...

Figure 2.1 Class of implementation types of the hardware ANN

Detail information of different types of hardware ANN

The detailed information of different types of hardware ANN includes architecture, learn type,

precision, number of available neurons, number of synapses and a measurement of speed or perfor-

mance. The performance which we are really concerned in is affected by other information.

The architecture information usually refers to the type of network to be implemented, sometimes

the additional information about the type of implementation will be also included. For example,

feedforward multilayer networks, matrix operation circuits, general purpose (GP), single instruction

multiple data (SIMD), floating point (FP), integer (Int), radial basis function (RBF), fully connected

and recurrent (FCR), systolic array devices, slice, and so on. Different architecture of hardware

ANN has different character which can be suitable for specific applications.

The learn information is described about the possibility of on-chip learning for the ANN. Some

types of on-chip learning are listed as follows: Program when the algorithm can be uesd, Hopfield,

Boltzmann, back propagation (BP), region of influence (ROI), restricted coulomb energy (RCE),

probabilistic neural networks (PNN), K-nearest neighbour (KNN). Since the on-chip learning is

always high cost, the off-chip are wildly used in these years.

The precision information indicates the format type of bits and the number of bits for input and

output. High precision results high cost.
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The neuron information denotes the number of neurons available in the system. In some cases

the system contains PEs instead of neurons, and each PE has all functions which a neuron has.

The synapse information denotes the number of connections or the amount of memory available

for storing the weights.

The performance information of the ANN system is always measured in many different ways.

The Connection-Per-Second (CPS) which suggested by Lindsey and Lindblad (1994) [28] is the

most common performance rating, and it is defined as the rate of multiplication and accumulation

operations. However, some systems could get a high CPS according to the large number of neurons.

So the value of CPS must be normalized by dividing it by the number of weights Nw, that is, the

connection per second per weight number (CPSPW) suggested by Holler (1991) [29] as shown in

Eq. (2.1.1). Connection update per second (CUPS) which rates the number of weight changes per

second is a measure for the learning phase, if the ANN system includes on-chip learning. Another

measure is connection primitives per second (CPPS), which can be calculated as Eq. (2.1.2) which

was proposed by Keulan (1994) [30], where bin is the number of bits used for the inputs and bw

is the number of bits used for the weights. This CPPS adds the precision into the performance

measure.

CPSPW = CPS/Nw . (2.1.1)

CPPS = bin × bw × CPS . (2.1.2)

Other major distinguishing features of ANN were as follows: the number of PE’s, maximum

network size, whether the chips could be chained together to increase network size, accumulator

size in bits, the whole system cost [26].

Comparison of existing hardware ANN

We will introduce analog, digital, DSP (Digital Signal Processors) and FPGA ANN in this subsec-

tion, because they are most commonly used.

Tables 2.1-2.3 show the characteristics of the analog ANN, digital ANN and hybrid ANN,

and each table includes the features of architecture, learn, precision, the number of neurons, and

synapses, speed respectively.

Many analog ANN have been realized. They are very fast, low-area and low-power, but the

problems are also exist, such as low precision, difficult for designing data storage and on-chip



10

Table 2.1 The characteristics of analog ANN
Name Architecture Learn Precision Neurons Synapses Speed

Intel
Feedforward, ML No 6x6 bits 64 10280 2 GCPS

ETANN [31]
Synaptics

Neuromorphic No N.A. 48x48
Resistive

N.A.
silicon retina [26] net

Table 2.2 The characteristics of digital ANN
Name Architecture Learn Precision Neurons Synapses Speed

Micro devices Slice, ML
No 1x16 bits 8 8 1.9MCPS

MD-1220 [1] Feedforward
NeuraLogix Slice, ML

No 1-16 bits 16 Off chip 300CPS
NLX-420 [1] Feedforward
Philips Slice, ML

No 1-16 bits 16PE 64 26MCPS
Lneuro-1 [24] Feedforward
Philips Slice, ML

No 16-32 bits 12PE N.A. 720MCPS
Lneuro-2.3 [32] Feedforward
Inova SIMD

Program 1-16 bits 64PE 256k 870MCPS
N64000 [28] GP, Int
Hecht-Nielson SIMD

Program 32 bits 4 PE 512k 250MCPS
HNC 100-NAP [33] GP, FP
Hitachi SIMD

Program 9x8 bits 576 32k 138MCPS
WSI Wafer[34] Hopfield
Hitachi SIMD

Program 9x8 bits 144 N.A. 300MCPS
WSI Wafer[35] BP
Neuricam SIMD, ML

No 32 bits 1-32 32k 1GCPS
NC3001 [36] Feedforward
Neuricam SIMD, ML

No 32 bits 1-32 64k 750MCPS
NC3003 [37] Feedforward
RC Module SIMD, ML

Program 1-4096bits 1-64 1-64 1.2GCPS
NM6403 [38] Feedforward
Siemens Systolic array

No 16 bits 16PE 16x16 400MCPS
MA-16 [39] Matrix ops
Nestor/Intel

RBF
RCE, PNN

5 bits 1PE 256x1024 40kpat/s
NI1000 [28] Program
IBM ZISC

RBF ROI 8 bits 36 64x36 250kpat/s
ZISC036 [40]
IBM ZISC

RBF
KNN, L1

N.A. 78 N.A. 1Mpat/s
ZISC78 [41] LSUP
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Table 2.3 The characteristics of hybrid ANN
Name Architecture Learn Precision Neurons Synapses Speed

AT&T Feedforward
No 3x6 bits 16-256 4096 2.1GCPS

ANNA [42] ML
Bellcore

FCR Bolt. 6x5 bits 32 992 100 CPS
CLNN-32 [43]
Mesa Research Feedforward

No 6x5 bits 6 426 21GCPS
Neuralclassifier [44] ML
Ricoh Feedforward

BP N.A. 16 256 3GCPS
RN-200 [45] ML

learning, and so on [46, 47]. Furthermore, it is expensive and not flexible, and their development

work is very tricky so that designer has to be familiar with analog technology.

Many digital ANNs have also been designed. Compared to analog ANN, they provide high

precision, weights storage in RAM, easy to integrate with other applications. Learning algorithms

could be implemented, and digital ANNs are easily embedded into most applications. On the other

hand, digital ANNs are always slow, and the implementation of activation functions is difficult

compare with analog one. The digital ANN includes many sub-Class including slice architectures,

SIMD and systolic array devices and RBF architectures. The Micro Devices MD1220 [1] was

the first commercial digital ANN with slice architecture. The slice ANN also includes Neuralogix

NLX-420 [1], Philips Lneuro 1.0 chip [24] and Philips Lneuro 2.3 chip [32]. SIMD chips include

the Inova N64000 [28], the HNC 100 NAP [33], Hitachi WSI with Hopfield or BP on-chip learning

[34, 35], Neuricam NC3001 TOTEM [36], Neuricam NC3003 TOTEM [37], RC module NM6403

[38] and so on. Some hardware ANNs have systolic array architecture. For example, the Siemens

MA-16 is used by Beichter et al. [39], and other design groups use this architecture to design their

ANN system [48, 49, 50]. The IBM ZISC036 chip [40], the Nestor Ni1000 chip [28] and Silicon

recognition (also called IBM ZISC) ZISC78 chip [41] are designed by RBF architecture.

Some design groups try to obtain the advantages of analog and digital systems, and then the

hybrid ANN appeared. Commonly the external inputs and outputs are digital, while most of internal

processing parts are analog. The typical hybrid ANN are AT&T ANNA [42], Bellcore CLNN-32

[43], Mesa research neuroclassifier [44], Ricoh RN-200 [45], and son on.

There are also some DSP ANN design as in [51, 52, 53, 54]. These designs suffer from cost and

development time.

FPGA ANN developed quickly due to easy reconcilability and short design time make, therefore
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Table 2.4 Comparison of ASIC, FPGA and DSP method for designing hardware ANNs
ASIC(analog) ASIC(digital) FPGA DSP

speed +++1 ++2 +3 +
area +++ ++ + - -

design cost - -4 - - ++ - -
design time - - - - ++ +
reliability - - + ++ ++

1 +++: Excellent; 2 ++: very good; 3 +: good; 4 - -: very bad.

it is widely used these years [55, 56, 57]. While the speed of FPGA ANN should be improved

to suit some applications which require high speed, the FPGA ANN has several advantages for

implementation of ANN, that is, reprogrammable FPGA ANN permit prototyping, on-chip learning

is difficult and not used in FPGA ANN, FPGA ANN could be used for embedded applications,

FPGA ANN may be mapped onto new improved FPGAs to get high performance [58].

As described above, different kinds of hardware ANN are roughly summarized and compared

with speed, area, design cost, design time and reliability in Table 2.4.

In general, there is no perfect architecture to implement the ANN, thus, a novel architecture for

ANN is required.

2.2 Basic Knowledge of Network on Chip (NoC)

2.2.1 System on Chip (SoC) Challenges

During the 1990s, a lot of researchers began to integrate more and more IP-cores and application

components on one single silicon die, such as so-called System on Chip (SoC). A lot of complex

applications are integrated onto single chip, not only functionally aggregated. The real products

such as mobile phones, notebook-computers and personal digital assistant are becoming lower-in-

power, higher-in-performance, smaller-in-size, lighter-in-weight, larger-in-capacity and cheaper-in-

price. And this trend will continue indubitably. Designers expect to integrate much more complex

applications and even systems onto a single chip. However, the current methodologies for SoC

design are not well enough due to the big design challenges. For example global synchrony [59,

60, 61], communication architecture [62, 63], deep submicron effects [64, 65, 66, 67], interface

standardization [68], Power management [69, 70], verification [71, 72], design productivity gap

[73, 74] and so on. Some of these challenges are described in detail as follows:

• Global synchrony. Current systems are generally designed following a globally synchronous
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design style. A global clock tree is distributed on the chip and logic blocks function syn-

chronously. However, this style seems to be not suitable for the future wire interconnect.

Because the technology scaling does not treat gate delay and wire delay equally. Gate delay

has been getting smaller to suit for the gate length, but the reduction of wire delay is slowed

down [59, 60]. Furthermore, Chip design is to be constrained by communication rather than

capacity. Thus, a future chip is likely to be partly local regions synchronous and global asyn-

chronous, such as GALS (Globally Asynchronous Locally Synchronous) [61].

• Communication architecture. Almost all the components use the buses or p2p (point to

point) method to connect with each other. Buses are widely used because they can provide

high performance interconnections while they can still be shared by several communication

partners. But buses do not scale well with the system size in terms of bandwidth, clocking

frequency, power and so on [62]. Disadvantages of bus are 1. Communication capability of

the bus system is very limited which only one device can drive a bus segment at a time, 2.

The speed of bus speed is difficult to scale up when the number of clients grows, because

the intrinsic resistance and capacitance of the bus also increase, 3. The entire bus wire has to

be switched on at the data transmission process, because the data transfer is broadcast. The

energy cost is wasteful, 4. Buses can efficiently connect a few communication partners but

they can not connect higher numbers [75]. A bus architecture will become critical in perfor-

mance and has energy bottleneck in the future chip design. A novel on-chip communication

architectures are required [63].

• Deep submicron effects. In early days of VLSI design, interconnect of chip was reliable

and robust. When the scale below than 250 nm with aluminum and 180 nm with copper,

interconnect started to become a dominating factor for chip performance and robustness, and

when the transistor density is increased, wires are becoming slower and unreliable [66]. Long,

global wires and buses become undesirable due to their low and unpredictable performance,

high power consumption and noise phenomenon [64, 65].

2.2.2 Network on Chip (NoC) Platform

According to these challenges of SoC design, the Network on Chip (NoC) idea was proposed by

some research groups to solve these problem in around year 2001 [76, 77, 78, 79, 80, 62]. Soon they

found that it had to be addressed at all levels from the physical to the architectural to the operating

system and application level. That’s why a lot of NoC research groups focus on different levels
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Figure 2.2 Micro-network stack of NoC.

which include software level, architecture and control level and physical level as shown in Fig. 2.2.

All this together can be called an NoC platform. The features of NoC are reuse and predictability

[81].

• Reuse. Reuse has always been the primary means to bridge the technology gap [82, 83,

84]. The reuse of processor cores has been developed during the last ten years by defining

bus interfaces. With NoC platform, the general components could also be reused, such as

processor cores, DSP cores, memory banks, graphics processors, FPGA blocks, and so on.

The special application of NoC is reuse in communication services.

• Predictability. Due to its regular geometry architecture and communication network, the
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communication performance becomes much more predictable. The regular and known geom-

etry leads to the accurate analysis of electrical properties. Reuse will decrease uncertainties

and risk in particular for the verification tasks. This naturally makes design and verification

time more predictable.

Furthermore, NoC research not only deal with SoC design but also creates a new area [81]. The

NoC method are widely used in the hardware communication infra-structure, the middleware and

operating system, application programming interfaces and so on [68, 85].

All these advantages do not come for free. Essentially we must pay for loosing optimality. We

know that the NoC has the feature of reusing, but the reusing components always mean that we use

something more general, and then less optimal for a particular task. As refer from [81], we known

that using a fixed and inflexible network topology means that all the other topologies can not be

used which may be more suitable for this application at hand.

2.2.3 Network on Chip (NoC) Architecture

NoC is designed using principles that were investigated for multiprocessor computers as well as for

local and wide area networks. Conceptual realization of NoC is shown in Fig. 2.3.

The elements of a network are the processing elements (PEs) and storage units, which called

nodes, switches and physical links. To meet the performance specifications of a particular applica-

tion, the network designers must implement the topology, routing and flow control of the network

by technology constraints. We will explain the topology, switching, routing and flow control in

more detail.

Topology

Network topology has been studied deeply in the context of high performance networks and parallel

computers architectures [86]. We know that NoC differs from general networks because they are

realized on a plane, links between routers can travel only in X or Y direction, in a limited number

of planes (the number of metal layers of the IC process). As a result, many NoC have topologies

that can be easily mapped to a plane, such as low-dimensional meshes, torus (shown in Fig. 2.4),

crossbar, N-dimensional k-ary mesh, K-ary n-cube, express cube, D-dimensional K-ary (fat) trees

(shown in Fig. 2.5), butterfly (shown in Fig. 2.6) and irregular [87, 88, 78, 89, 90, 91, 92].
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Figure 2.3 Conceptual realization of NoC

Switching

Once the topology of NoC is decided, the switching technique which include data flows control need

be determined. Data is transferred on a link with a fixed width, and the bits are used to measure

it. Always, the unit of data transferred in a single cycle on a link is called the phit. The unit of

synchronization is flit, and the size of it is equal or larger than a phit. Several flits constitute a

packet and several of packets make up message. Fig. 2.7 shows the structures of phits, flits, packet

and messages. To increase the efficiency of the message packetization,the boundaries of packet

need not to be aligned [93]. Different NoC designs have different phit, flit, packet and message

sizes. The sizes of phit and flit always reflect different design choices, such as speed of link and

router arbitration. For example, Nostrum [94] uses phits and flits of 128 bits which flits equal to

phit. SPIN [95] uses phits and flits of 36 bits, and packets are unbounded in length.



17

Figure 2.4 Mesh and Torus topologies

Figure 2.5 Fat tree topology
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Routing

The routing data in NoC is introduced and particularly emphasize the planar mesh topology, which

is popular for NoC and will be used in this thesis. The NoC routing is responsible for correct and

efficient routing of packets that are transmitted in the network from sources to destinations. The

routing protocol should deal with routing decision made at every router. NoC need not follow rigid

networking standards as the traditional communication or interconnection networks. A multiple

routing schemes can be evaluated and compared for each NoC implementation. When we design

the routing for NoC, the following potentially conflicting metrics should be balanced:

• Power. The power required to route packets should be minimized. It means that packets or

messages may follow the minimal power path as traditional shortest distance routing [90, 96].

For example, when dynamic voltage scaling (DVS) is applied in a uncommon way, each

router and link will offer a different power consumption for packet switching [97].

• Performance. The metrics of performance should be balance which reduces the delay or

maximize the traffic utilization of the network.
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Figure 2.8 Scope of the congestion control and the flow control

• Area and VLSI resources. The hardware implement of routing and even the software imple-

ment of routing will consumes hardware resources like state machines, addresses tables and

so on. And the routing may also uses the bandwidth if routers change information with each

other.

Routing can be classified into several different categories such as static or dynamic, distributed

or source, hardware or software implemented, and minimal or non-minimal. The hardware imple-

mented routing will be described in our thesis in detail.

Congestion control and flow control

Packets are transmitted through the router network which always uses the same resources which

include buffers, allocators and links at the same time. This may result contention, and contention

can proliferate. At last, the contention will reduce the network performance.

Here we assume there are two communicating parties where a master and a slave are not bal-

anced with data injection and consumption rates. As we know, a slow slave can cause a backlog of

packets inside the router network.

Fig. 2.8 shows the scope of the congestion control and the flow control. We can find that,

congestion control keeps the router network free of traffic jam-up. At the same time, flow control

makes sure that no sender is overwhelming even one of its receivers.



Chapter 3

A Hybrid Layer-multiplexing and
Pipeline Architecture for Efficient
FPGA-based Multilayer Neural Network

This chapter presents a novel architecture for an FPGA-based implementation of multilayer Artifi-

cial Neural Network (ANN), which integrates both the layer-multiplexing and pipeline architecture.

Given a kind of FPGA to be used, the proposed method aims at enhancing the efficiency of resource

usage of the FPGA and improving the forward speed at the module level, so that a larger ANN

can be implemented on traditional FPGAs and also a high performance is achieved. Usually FPGA

board is not changed for every applications, thus, we need not mind about the usage of it if the ap-

plication can be implemented within the resource limitation. We developed a new mapping method

from ANN schematic to FPGA by using this hybrid architecture, and also developed an algorithm

to automatically determine the architecture by optimizing the application specific neural network

topology. The experimental results show that the proposed architecture can produce a very compact

circuit for multilayer ANN to meet resource limitation of a given FPGA, and higher performance is

obtained compared with conventional methods.

3.1 Introduction

Artificial neural networks (ANNs) are characterized as an adaptive, robust and parallel computing

model, which has the capability to learn by using examples and to approximate any given functions

[2]. It has been widely applied to the fields of signal processing, speech synthesis, pattern recogni-

tion, and so on [98, 99, 100]. Most of these applications require high-speed computation to meet the

performance requirements. The traditional methods are executed by the general processors based
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on Von-Neumann architecture, and it cannot meet the speed requirement when the network size

becomes large. And the area and design cost are also high by using the general processor which

makes the commercial application of neural network impossible [26]. So it is necessary to develop

such a custom high performance, and small sized hardware architecture that can exploit the inherent

parallelism of neural network models.

The general hardware platforms for implementing ANNs are DSP, ASIC, FPGA and so on

[101, 102, 58]. Compared with DSP or ASIC platforms, FPGA is the most suitable for ANN

implementation as it offers the parallel computation and re-configurability [103]. A lot of research

groups rely their applications on an FPGA method [104, 105, 106].

The challenges of FPGA-based ANNs research fall into two categories, one is to increase the

performance and another is to reduce the resource usage. Architectural efforts to improve the per-

formance of FPGA-based ANNs are reported in [107, 108], while the resource reduction is highly

required. As we know, the FPGA resource spent on one neuron is so high that it’s hard to imple-

ment a whole ANN on a single FPGA chip. There are several solutions to overcome the problem

of limited FPGA resource, such as the optimization of co-design [109], stochastic model [110] and

multiplexing [111, 112]. All these approaches focus on reducing the resource required the neural

network at the expense of processing speed. Consequently, those approach makes the FPGA-based

ANN architecture not used for a lot of applications of ANN which require high performance.

By the development of semiconductor technology, available resources in a current FPGA chip

become much higher, so that the resource constraints are relaxed. Therefore it is necessary to

take the processing speed problem becomes critical when designing the architecture for the ANN

implementation on FPGA.

The purpose of this chapter is to design a novel architecture for high speed implementation

of FPGA-based ANN by enhancing the efficiency of resource usage of the same FPGA board.

Our proposed architecture presents an advantage in two basic respects over the previous reported

implementations. The first one is the hybrid of layer multiplexing and pipeline, which can optimize

both the resource requirement and speed. The layer multiplexing guarantees the resource required

by neural network under the constraint of an adopted FPGA chip, and the pipelining between the

layers can improve the speed. The second point is the algorithm to determine the optimal hardware

architecture according to the neural network parameters such as the topology, data structure and so

on. Furthermore, our method just meet the resource limitation of a given FPGA, so that the FPGA

board is not changed for another application.

The rest of this chapter is organized as follows: Sect. 3.2 describes the circuit design of the
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single neuron and Sect. 3.3 presents the network design and the details of the proposed architecture.

Sect. 3.4 describes experiments to validate the advantages of the proposed method. Finally, Sect. 3.5

concludes the chapter.

3.2 Neuron Design

3.2.1 Mathematical Model

A multilayer neural network is composed of one input layer, several hidden layers for computation

and one output layer. Each layer consists of a set of processing elements called neurons and the

main task of each neuron is processing the following function [113]:

y = f(x) = f(

n∑
i=1

ωixi + b) . (3.2.1)

where xi stands for the ith input, and ωi is the weight in the ith connection and b is the bias. The

function f(x) is the nonlinear active function used in the neuron. Here we select the log-sigmoid as

the active function due to its popularity [1], and it is described by the following:

f(x) =
1

1 + e−x
. (3.2.2)

Because RAM is usually used to store the weights, we did not use the online learning in our

proposed architecture, so that the hardware resource is saved.

3.2.2 Neuron Circuit Design

Most of hardware implementation of ANNs focus on the forward computing work and leave the

learning work to computer as an off-chip learning, so does the FPGA based ANNs. As shown in the

above mathematical model and ref. [3], the computational resources required by a single neuron are

a multiplication block, an accumulation block and an active function block.

Fig. 3.1 shows a block diagram of the neuron circuit, where En is an enable signal that controls

the neuron’s state, that is, the neuron is working or not. The selection of word length, that is, bit

precision is important for the output resolution, where longer bits mean a higher resolution but also

it takes a larger resource cost. And in actually ANNs design, these parameters are set according

to the application in order to achieve the efficient hardware implementation. In this chapter, we

consider the parameters as variables, which can be modified by users in the compilation step.
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Figure 3.1 Neuron circuit block diagram

The active function is realized by using LUT(look up table) [112] according to the fact that the

modern FPGA chip has a large number of built-in RAMs. As the active function is highly nonlinear,

a general procedure to obtain an LUT of the minimum size for a given resolution is as follows.

As mentioned above, the bit length of output from the active function (Eq.(3.2.2)) is Ni.

1) The actual output of the active function is the value between 2−Ni and 1 − 2−Ni for the bit

length Ni. Let x1 and x2 be the upper and the lower limits of the input range respectively, that is:

1

1 + e−x1
= 2−Ni ,

1

1 + e−x2
= 1− 2−Ni . (3.2.3)

By solving Eq.(3.2.4):

x1 = −ln(2Ni − 1) , x2 = +ln(2Ni − 1) . (3.2.4)

2) Consider the fact that the step change in the output (Δy) is equal to 2−Ni , and the corre-

sponding minimum change in input is at the point of maximum slope, x = 0 in this case. So the

minimum change value of input for the output change of 2−Ni can be obtained from

Δx = ln(
0.5 + 2−Ni

0.5 − 2−Ni
) . (3.2.5)

3) The minimum number of LUT values is given by

(LUT )min =
x1 − x2
Δx

. (3.2.6)

3.3 Network Design

Network connects all the neurons and all the layers together, so the data can be forwarded through

the connections from the former layer to the latter layer. Fig. 3.2 gives an example of a multilayer
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Figure 3.2 Multilayer neural network

neural network.

Assume the symbol xijk and yik stand for the input and output of neurons, where the subscript

of k is the layer number and the superscript of i is the neuron number in this layer and j is the jth

input of this neuron. Suppose the ID for input layer is 0, then the forward process can be described

as follows:

yi1 =

N0∑
j=1

w01
ji · xj , i ∈ [1, N1], j ∈ [1, N0] . (3.3.1)

xijk = yjk−1 , yik =

Nk−1∑
j=1

w
(k−1)k
ji · xij , k ∈ [2, N ], i ∈ [1, Nk], j ∈ [1, Nk−1] . (3.3.2)

where Nk is the total neuron number in layer k, and w
(k−1)k
ji stands for the weight between the

jth neuron in layer (k − 1) and the ith neuron in layer k, respectively.

There are two concept used in our proposed network architecture, including pipeline design and

layer multiplexing design.

3.3.1 Pipeline Design

The multilayer neural network has a characteristic that the neuron in the layer depends on the neu-

rons in the previous layer and there is no communication among neurons in the same layer. Fig. 3.3
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(a) (b) (c) (d)

Figure 3.3 Non-pipeline (a), (b), (c) vs pipeline (d)

(a, b, c) shows an example of in the conventional non-pipeline forward phase, where only one layer

is working while the other layers are just waiting for the data coming from the previous layer. In

order to save the cost, we integrate the pipeline manner in the layer architecture when forwarding.

The fundamental pipeline algorithm is described as follows, where t is the time factor given by a

clock cycle.

yi1(t) =

N0∑
j=1

w01
ji · xj(t) , i ∈ [1, N1], j ∈ [1, N0] . (3.3.3)

yi2(t) =

N1∑
j=1

w12
ji · yj1(t− 1) =

N1∑
j=1

w12
ji ·

N0∑
k=1

w01
kj · xk(t− 1) . (3.3.4)

yi3(t) =

N2∑
j=1

w23
ji · yj2(t− 1) =

N2∑
j=1

w23
ji ·

N1∑
k=1

w12
kj

N0∑
m=1

w01
mk · xm(t− 2) . (3.3.5)

As shown in Fig. 3.3(d) and Eq.(3.3.3)-(3.3.5), when the first layer is under computing for the

input pattern at time t, the second layer is busy calculating the result which is transmitted from the

first layer in the previous cycle (t− 1).

It doesn’t need to wait for the end of some input pattern forwarding, but all the neurons in

different layers are working simultaneously with different input pattern. By using the pipeline,

the global forwarding speed would be much faster and there would not be much incidental cost or

changes in the architecture, compared with a non-pipeline method. But just some modifications are

needed, such as:
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1) Enhance the clock rate for input memory module according to the pipeline depth.

2) Allocate a dependant memory for each neuron to store the weights.

3) Add a register to store the output of each neuron.

Unfortunately, it is hard to perform a whole neural network in pipeline manner by a popular

FPGA chip due to limited FPGA resource. To solve this problem, we introduce the layer multiplex-

ing into our pipeline method.

3.3.2 Layer Multiplexing with Partly Pipeline

Layer multiplexing was first proposed by S. Himavathi in 2007 [112], which aimed at reducing the

resource requirement in a multilayer neural network. Instead of realizing a complete network, only

the single largest layer with each neuron having maximum number of input is implemented. The

layer plays a role of different layers with the help of a control block. The control block ensures

proper functioning by assigning the enable signal, appropriate inputs and weights for each neuron.

This method presents an advantage that it can substantially save the resource so that a larger

network could be implemented in a single FPGA chip. But this is achieved at the expense of

the forwarding speed, because there is only one layer being working and it has to reconfigure the

network before performing neural computing in the next layer.

According to the experimental synthesis report of implementing ANNs by layer multiplexing,

the utilization rate of slices in an FPGA is not always so high, that is, we still have enough slice

resource to do some improvement to make the forwarding speed higher. The main idea in this

chapter is adding the partly pipeline manner to the layer multiplexing method.

In our proposed method, we first calculate the maximum number of neuron modules to fit an

adopted FPGA chip. And then taking this value and the neural network topology into consideration,

we can get an optimal solution by assigning the appropriate mapping method, pipeline depth and

layer multiplexing. The optimal target is increasing the usage of chosen FPGA board to mapping

more layers of ANN application to get high depth of pipeline, and then the high depth of pipeline

will result high performance.

Fig. 3.4 gives an example of our method.

In this example, we suppose that the network topology is 3-4-2-3-1 and the maximum number

of neuron modules in the FPGA is six. Numbers in the nodes in Fig. 3.4 mean the layer number. It

performs the neural computing of adjacent two layers at a time with the pipeline manner between

them. In Step1, the first two layers are under working, where the layer 1 is computing for the input

pattern am+1 and the layer 2 is serving for input pattern am, respectively. And in Step2, the 2nd
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Figure 3.4 Schematic of our mapping method

and 3rd layers are configured by the layer multiplexing mechanism, where the 2nd layer is busy

with input pattern am+1 from the layer 1 in the previous step while the 3rd layer is computing for

input pattern am from layer 2 by layer multiplexing. And the total number of neurons in the 2nd

and 3rd layers is five, so there are disabled neuron modules to save the power. The succeeding steps

are almost the same as the first two steps, including enable the proper number of neuron modules,

get the corresponding input from previous step, perform neural computing for the incoming data

and then send the result to the next step by layer multiplexing. When the computation in Step4 is

completed, it would turn to the Step1, forming a loop. In this example, there are always two layers

mapping the neuron modules in pipeline, which means the pipeline depth is two. By assigning

different FPGA chip and neural network topology, the pipeline depth may be different.

3.3.3 The Control Block Design

The operation of layer multiplexing and the partly pipeline are guaranteed by a control block, which

is realized by the finite state machine (FSM). Fig. 3.5 shows the whole circuit of neural network

using our proposed method. The details of the block named Nn of the nth neuron is already pre-

sented in Fig. 3.1 in Sect. 3.2, so we will introduce the control block design here. The main task
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of the control block is assigning proper signals for the input and weight RAMs, the multiplexer and

demultiplexer, and performing the logical data transmission. The pseudo code of the FSM is given

in Fig. 3.6(a).

We also developed MATLAB program to determine the optimal architecture for a given neural

network and a designated FPGA chip. Firstly, it estimates the number of slices used by a neuron

module, given the data structure of the neuron. Secondly, the maximum amount of neuron modules

allowed in the adopted FPGA chip can be figured out because we have integrated the information

of several popular FPGA chip into the procedure. Then a searching function will be invoked to

determine the optimal pipeline depth for the neural network. This procedure also provides the

function that configures the parameters in the FSM. The pseudo code of the procedure is shown in

Fig. 3.6(b).

3.4 Experiments

We use the Verilog HDL and Xilinx ISE 9.1i for design and synthesis. The simulation tool is

performed by Modelsim XE II 7.3a. The FPGA chip we selected here is Xilinx VirtexII XC2VP20.

The basic block of the VirtexII is the Logic Cell Block (LCB), which is composed of eight LUTs

with four inputs, four slices, eight Flip-Flops, and so on [114].
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FSM (reset, clk, flag1~S, en1~N,con0~N, mux, demux)
// input signal:  reset, clk, flag1~S

     // flag1~S:  the finish signal of computation in Step s
     // en1~N: the enable signal for each neuron module
     // con0~N: the address signals for each RAM
     // mux: the selection signal for the multiplexer

// demux: the selection signal for the demultiplexer
  always (current_state or flag1~S)
     case (current_state)
              IDLE:
                      Do {…}
              Step1:
                     Do { set en1~N, con0~N,mux,demux
                               next_state=Step2}

              StepS:
                    Do { set en1~N, con0~N,mux,demux
                               next_state=Step1}
             default: next_step=IDLE
     endcase

Solve(topology, chiptype, datapath)
        // the topology information includes the number  
        // of layers, the number of inputs, the number of 
       // neurons in each layer
       // the data path contains the data representation
       //  of input, weight that mentioned in section II.B.

1. begin
2. initial pipe_depth=layer_num
3. size=est_neuron_size( datapath)
4. max_num=cal_max_num(chiptype,size )
5. searching(pipe_depth, max_num, topology)

 6. { stop_condition()
7. if (stop_condition())
 8.   searching(pipe_depth-1,max_num, topology)
9. else

  10.   return pipe_depth
11.  endif}

  12. config_FSM(pipe_depth, topology, data_path)
13. end

Figure 3.6 Control block (a) Pseudo code for the control block (b) Procedure of topology
generation

Table 3.1 Resource and performance of a neuron with different weight precisions
No. of bits 10 11 12 13 14 15 16

Slices 292 312 328 344 360 372 392
Max clk (MHz) 105.3 104.2 103.6 103.0 102.5 102.1 101.7

Table 3.1 gives the synthesis report for a single neuron module by varying the data path in

weights. From the table we can see that with the increase of data precision, the maximum frequency

comes down a little. And 16 bits are chosen in our simulation.

Table 3.2 shows the synthesis reports for two examples of neural network which mentioned in

Sect. 3.3.2 and a pattern recognition application of ANN with topology of 5-7-3-7-5 [115]. The

value of pipeline depth in the left column means the number of layers under execution at a time.

Our proposed architecture is compact due to the simple module architecture and the effective control

block, and also provides a flexible solution for a neural network to be implemented. Compared with

other blocks, the neurons blocks take much more resource. This FPGA board used in this simulation

could implement at most 20 neurons. Implementing the ANN with topology of 5-7-3-7-5 with 4

pipeline depth needs 22 neurons, so that this ANN could not be implemented with 4 pipeline depth.

That is, the pipeline depth is decided by the selected FPGA board and the network topology.

Table 3.3 shows a comparison between the traditional layer multiplexing method (LM) and our
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Table 3.2 Synthesis report for ANNs

Pipe Depth
Network architecture 3-4-2-3-1 5-7-3-7-5

Features Resources Utilized % Utilized %

2
Slices 9280 2764 29.8 5399 58.2

Flip Flops 18560 2148 11.6 4195 22.6

LUTs with 4 input 18560 5128 27.6 10011 53.9

3
Slices 9280 4084 44.0 8375 90.2

Flip Flops 18560 3400 18.3 6971 37.6

LUTs with 4 input 18560 8036 43.3 16472 88.8

4
Slices 9280 4525 48.8 /a /

Flip Flops 18560 3819 20.6 / /

LUTs with 4 input 18560 9008 48.5 / /

a/: not enough slice for mapping 4 pipe depth. The FPGA chip we selected here is Xilinx VirtexII
XC2VP20

proposed method with different applications of ANNs [115, 112, 116, 117, 118, 119]. We have

integrated the partly pipeline manner into the layer multiplexing (the number in ‘proposed/’ means

the pipeline depth). There are several layers mapping the neuron modules by pipeline manner while

LM maps only one layer at a time. The forwarding speed is measured by the interval starting from

one input pattern imported to get the result at the output layer. The Connection-Per-Second (CPS)

is the most common performance measurement, which is defined as the rate of multiplication and

accumulation operations [26].

As a result, the forwarding speed of our proposed method is faster than that of LM with respect to

the pipeline depth. Due to the pipeline manner, our method has much more neurons under working

than LM, so it also shows an advantage in performance of CPS compared with LM method. The

resource usage of the proposed method is increased compared with LM method, but the FPGA

board need not be changed. It means that our method could provide high performance for the given

FPGA board. We also observed that high pipeline depth will result higher benefit rate.

3.5 Conclusion

A general architecture for the implementation of a multilayer ANN was proposed. The circuit for

each application can be easily generated by setting the parameter values to match the particular
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Table 3.3 Performance comparison between layer-multiplexing and our method

Network Implement method/
Slicesa Utilization Forward CPS Performance

Architecture Pipeline Depth Rate (%) speed(us) (M) Benefit Ratio

3-4-2-3-1
LM 1726 18.6 1.84 15.8

3.278
proposed / 4 4525 48.8 0.56 51.8

5-7-3-7-5 [115]
LM 2979 32.1 2.84 39.4

2.472
proposed / 3 8375 90.2 1.15 97.4

8-5-5-3 [112]
LM 2142 23.1 2.28 35.1

2.373
proposed / 3 5832 62.8 0.96 83.3

8-5-5-5-5-3 [112]
LM 2171 23.4 3.7 35.2

4.014
proposed / 4 8802 94.8 0.93 141.3

4-12-1 [116]
LM 5051 54.4 1.92 31.3

2.521
proposed / 2 5821 62.7 0.76 78.9

5-12-8-4-1 [117]
LM 5051 54.4 3.56 53.9

1.130
proposed / 2 8790 94.7 2.17 60.9

4-10-1-10-4 [118]
LM 3870 41.7 3.14 31.8

1.368
proposed / 2 6262 94.7 2.3 43.5

4-7-13-1 [119]
LM 5464 58.9 2.88 45.8

1.747
proposed / 2 8775 94.5 2.3 80

aThe FPGA chip we selected here is Xilinx VirtexII XC2VP20

network size and running the synthesis. Similarly to a particular network, the best solution of

the architecture design of pipeline and layer multiplexing is calculated by MATLAB procedure,

by returning the optimal pipeline depth and the control signal value in each state of the control

block (FSM). We exploited the capability of a given FPGA board by assigning the proper pipeline

depth, so that a higher resource utilization rate, global forwarding speed and high performance were

achieved.

Our proposed architecture makes an FPGA implementation easy for a given ANN at a short

time by varying the data path. It also provides the feasibility to perform a larger neural network

in a popular FPGA board at a relatively higher speed by using the partly pipeline method. So it is

possible to develop a neural device for commercial or industrial application by our method.



Chapter 4

A New Flexible Network on Chip
Architecture for Mapping Complex
Feedforward Neural Network

We propose a new flexible hardware Network on Chip (NoC), a packet-based signal processing

architecture, for mapping the different applications of the feedforward artificial neural network (FF-

ANN). There are many problems in a traditional FF-ANN implementation. For example, application

is limited, interconnection is complex and data transmission is difficult to be controlled. This pro-

posed NoC-based system can solve these problems, because it can be reconfigured and extended by

sending the new packet. It can map the complex FF-ANN with multiple layers and multiple neurons

in one layer. The system is designed to achieve low latency, high throughout and low power. The

simulation results show that the proposed architecture can reduce communication load and increase

connection per second (CPS) of system in real applications of FF-ANN.

4.1 Introduction

Feedforward artificial neural networks (FF-ANN) are widely used in numerous applications such as

signal processing [120], anomalous detection [121], machine learning [122], system control [123],

and various forecasts [124]. Software mapping methods of ANN have been researched for a long

time, but they lack good performance. Hardware mapping methods using digital or analog architec-

tures can achieve higher performance [26]. Furthermore, hardware ANNs are not always equipped

with on-chip learning, because on-chip learning makes the circuit much more complex, increases

power consumption and lowers performance. The analog mapping method is hard to be expansible

for the neural network and has a low precision [125], whereas the digital mapping method is applied
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widely due to high precision, good expansibility and plentiful electronic design automation (EDA)

tools. There are many modern digital mapping architectures such as systolic array [48], single in-

struction multiple data (SIMD) [126], and FPGA [58]. However, they also have drawbacks such

as no reconfigurability, high cost [127], low performance, heavy communication load, and limited

applications. To overcome those drawbacks, a new digital mapping method is required.

In the last few years, a network on chip (NoC) appeared due to the continuous progress of the

integrity of IC chip, where packet based network connections are adopted instead of point-to-point

connections, and it is widely used in numerous applications afflicted by interconnection problems

[128].

An NoC architecture is also discussed individually for mapping ANN to solve the existing prob-

lem. In previous paper [129], an NoC architecture was proposed for mapping the ANN with many

layers and few neurons in each layer. In another paper [130], another NoC architecture was pro-

posed for mapping a 2-hidden-layer ANN. However, their applicability is still limited. Therefore, a

new NoC architecture was proposed [131]. In this chapter, this architecture is discussed for mapping

the different applications of complex FF-ANN. To attain high performance and low power, our pro-

posed NoC mapping method will also make sure of off-chip learning. Compared with other digital

mapping method of ANN, the NoC mapping method makes ANN reconfigurable, extendable and

flexible. The system has low communication load and high CPS performance of the system. Fur-

thermore, it enables wide applicability at ANN. These advantages are due to high-level parallelism

in NoC mapping, where wires in the links of the NoC are shared by many signals and all links in

the NoC can operate simultaneously on different data packets [78]. NoC links can also reduce the

complexity of wire design [68].

The rest of this chapter is organized as follows. The proposed mapping system is described in

Sect. 4.2. In Sect. 4.3, experiments are explained, and the system is evaluated in Sect. 4.4. Finally,

this chapter is concluded in Sect. 4.5.

4.2 Proposed NoC Mapping System

The neurons of general FF-ANN have the same architecture [132] as shown in Fig. 4.1. The

purpose of hardware FF-ANN is to complete the computing work, and the off-chip learning is

performed by software. The neurons of our proposed NoC FF-ANN have the same architectures and

structures. Therefore, different applications of FF-ANNs can be implemented by the proposed NoC

FF-ANN if every neuron executes the same task. However, if the neuron tasks are different in every



35

x0

x1

xn-1

xn

yn

y1

y0

Figure 4.1 Structure of FF-ANN

layer such as in the RBF (Radial Basis Function) network, our proposed system cannot be applied.

Design progresses in the following four steps: (1) design one neuron (Sect. 4.2.1); (2) aggregate

four neurons in one processing element (PE) (Sect. 4.2.2); (3) design one router (Sect. 4.2.3); (4)

design the system with PEs and routers (Sect. 4.2.4).

4.2.1 One neuron architecture

In FF-ANN, one neuron must transmit the computation result to every neuron in the next layer. The

output yj of neuron j is defined by [2]:

yj = f(

n∑
i=0

wijxi) (4.2.1)

where wij is the weight value of the connection between neurons i and j, xi is the input, n means

the input number, and f(·) is an activation function. Well-known classical activation functions are

used as follows:

Hyperbolic tangent sigmoid : f(x) =
ex − e−x

ex + e−x
(4.2.2)

Logarithmic sigmoid : f(x) =
1

1 + e−x
(4.2.3)
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Figure 4.3 Structure of PE

Thus one neuron must contain four operations: +, ·,∑ · and f(·) [3]. Hence the MUX (mul-

tiplexer), MAC (multiply accumulate circuit), RAM (random access memory) and LUT (look-up

table) are used to compose one neuron as shown in Fig. 4.2.

MUX is used to choose input, MAC is for multiplication and accumulation, RAM is used to

store weight values, and LUT is for the expression of the activation function. We know that FF-

ANN requires at least a 16-bit fixed point representation [133]. Therefore the data in our design for

computation is SIII.FFFFFFFFFFFF , where S is a sign bit, I is an integer bit and F is a

fraction bit. The 16-bit fixed point can cover the range of [-8.0, 8.0) with a quantization error of

2.44140625E-4.



37

Neuron 1

Neuron 2

Neuron 3

Neuron 4

D: decode state; C: calculation state; L: LUT state; CE: code state

Figure 4.4 four-stages pipeline design of PE

4.2.2 Four neurons in one PE

To attain higher performance and to reduce both communication load and cost, four neurons in one

PE work in parallel. The neuron number in one PE is decided by the area and speed. We knew that

the area of 4 neurons is equal to 1 LUT and for the pipeline working, one neuron needs 4 cycles,

and two neurons need 5 cycle, and so on. We assume the size of one neuron is 1, and there are x

neurons in one PE. Implement y neurons need area of (y/x ∗ 4+ y) and time is (4+x− 1). So that

the area ∗ time = (x+ 7 + 12/x)y. Thus, when the x equal to 3 or 4, the value of area ∗ time is

best.

A PE architecture is shown in Fig. 4.3.A PE also requires a decoder, an encoder, a control

logic, and LUT. PE decodes the neuron address to decide how many neurons (max is four, min is

one) in this PE are used by a decoder. It requires two bits of the header packet as an indicator to

distinguish the number of neurons used in PE. When one neuron is used, ”00” is assigned to the

two bits. Similarly, ”01” is assigned when two neurons, ”10” when three neurons, and ”11” when

four neurons are used. If no neuron is used in this PE, the packet does not transmit to this PE. The

states of neurons are controlled by a control logic. The four-stage pipeline design is shown in Fig.

4.4. The states are the decode state (D), calculation state (C), LUT state (L), and code state (CE)

In D, the whole system must be configured to satisfy a real application, that is, the number of PEs

and neurons, weight values, activation function, and routing paths are decided for the application,

which includes the following work: load the weight value into the RAM, load the Look-Up-Table

of activation function to the ROM, and load the head packet for selected PEs. This state does not
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Figure 4.5 A single packet and outputs

appear anymore until the application will be changed. Then the chosen neurons begin calculations

in C. When each neuron completes its look-up-table in L, the outputs of these neurons hold their

output data as one single packet in CE. In CE, the packet that is loaded in C is used as part of the

routed packet. The header phit is not changed, the payloads of this packet is used as the output of

LUT, and each output corresponds to one payload, as shown in Fig. 4.5. Finally, the packet is sent

to a router. The router is used to manage the transmission mechanism. Then the packet will be

transmitted to all the neurons in the next layer via the router. This structure with 4 neurons in one

PE can reduce the total number of transmit packets, communication load and cost, as described in

Sect. 3.4.

4.2.3 Router design and packet architecture

The architecture of the proposed router for managing the transmission mechanism is shown in Fig.

4.6. This router has 5 input ports and 5 output ports that are connected to one PE and four routers.

The proposed router consists of a buffer, MUX, an allocator, a shifter and a register. i0, i1, i2 and

i3 in Fig. 4.6 mean input phits from four directions to the router. ii means input from PE. When

phits arrive at this router, the virtual channel that has 5 First-In First-Out (FIFO) buffers is chosen,

and then it is transmitted to four 5-1 MUXs to choose the output port decided by the allocator. The

selected phits are then transmitted to a shifter. The shifter shifts 3 bits of header phits which are

controlled by the allocator, while payload phits are not shifted.

Channels of our system transport are 18-bit-width phits of data per cycle. A 2-bit field is added
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18-bit Header contains the control 
information, routing information, 
physical and virtual addresses

VCC (Virtual Channel Choice) [17]
      0: channel 0
      1: channel 1 

PT (Phit Type) [16:15]
      00: dummy
      10: Header
      11: Payload

DA (Destination Address) 
    [14:3]
      000: Port North
      001: Port West
      010: Port South
      011: Port East
      100: Port PE

phit 1      phit 2     phit 3 phit 4      phit 5

18-bit Payload contains PT, and 
Data

PT (Phit Type) [17:16]
      00: dummy
      10: Header
      11: Payload

Data [15:0]

SIII.FFFFFFFFFFFF
1 signal bit

3 signal bits 12 fraction bits

Figure 4.7 NoC packet format

to each channel to decode the type of phits (00 for dummy instruction, 10 for header and 11 for

payload). The packet format is shown in Fig. 4.7. One packet contains one header and some

payloads, and the payload number is decided by the neurons used in the former-layer PE. The

header contains 2 bits for VCC (Virtual Channel Choice), 2 bits for PT (Phit Type), and 3 bits for

each DA (Destination Address). The payload contains 2 bits for PT and 16 bits for data.

4.2.4 System design

The complex FF-ANN with 9 layers and 8 neurons in each layer will be used as an example to

explain the proposed NoC mapping system shown in Fig. 4.8. This system does not include the

on-chip learning circuit; it is used only for data computation and transmission.

In this figure, R is a router connected to a PE. The rectangle in the top left corner composed

of two PEs is an input layer, and in this part, 8 input-layer neurons are connected with two routers.

The rectangle in the center composed of two PEs is an output layer, and in this part, 8 output-layer

neurons are connected with 2 routers. The remaining rectangles in the network correspond to hidden

layers, and in every hidden layer, 8 hidden-layer neurons are connected with two routers.

The transmission order in this network is shown in the top right of Fig. 4.8. Data transmission

from the input layer to the output layer via hidden layers is processed in clockwise order. By this
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Transmit order 
in the system

Figure 4.8 NoC architecture for mapping complex FF-ANN

order, we can reduce the number of hops in backward computation.

Two-dimensional (2-D) mesh topology is used in this chapter. It is a well-known topology.

There are many routing algorithms for this topology. The XY routing algorithm is chosen in this

chapter, because it suits our system well, and in the general case, the XY routing algorithm has low

latency and high performance (details in Sect. 4.3.) When the system is larger and more complex

(more layers and more neurons in one layer), we should extend the size of the network and use more

advanced topology.

Some real applications of FF-ANN, such as pattern recognition [115], neural control [117] and

nonlinear principal component analysis (NPCA) for image processing [118] are used as examples

to introduce more detail to the mapping method with NoC architecture. The resultant systems are

shown in Fig. 4.9.

The application of pattern recognition is mapped as shown in Fig. 4.9(a). This FF-ANN has

5-7-3-7-5 neurons in each layer. To map the input layer with 5 neurons, 4 neurons of one PE and 1

neuron of another PE are needed, and 2 routers are connected to these 2 PEs to compose the input

layer. To map the first hidden layer with 7 neurons, 4 neurons of one PE and 3 neurons of another PE

are needed, and 2 routers are connected to these 2 PEs to compose the first hidden layer. The second

hidden layer, third hidden layer and output layer are also used in this mapping method. When each
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Figure 4.9 NoC architectures for mapping 3 applications of FF-ANN

PE of the input layer completes its calculation task, the packet is transmitted to two PEs of the first

hidden layer via routers. The PEs of the first hidden layer, the second hidden layer and the third

hidden layer must transmit the packet, similarly to the PEs of the input layer. This mapping method

is flexible owing to the NoC architecture, for example, the input layer can be mapped in the first

line with 2 routers. It also can be mapped in the first column with 2 routers, and can be mapped in

any place of this network. In contrast, a different mapping may result in a different performance.

We require mapping of the neighbor layers as close as possible, so that the communication load and

system running time can be reduced.

4.3 Examination of Proposed System

When designing the NoC, a good routing algorithm results in a good performance. Modern routing

algorithms such as dyad T (DT), Fully-Adaptive (FA), Negative-First (NF), North-Last (NL), Odd-

Even (OE), West-First (WF), and XY are compared for suitability to the NoC mapping system

design using the NOXIM NoC simulator [134]. The results of total delay, energy, average delay and
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Figure 4.10 Comparison of total delay, energy, average delay and throughput

throughput are compared in Fig. 5.10.

From Fig. 5.10, the XY routing algorithm shows the lowest total energy and average delay,

whereas its max delay and throughput is almost the same as those of other routing algorithms. On

the basis of its low latency, high throughput and low power consumption, the XY routing algorithm

is suitable for the NoC mapping system.

4.4 Evaluation

In this section, the features of the proposed NoC mapping system are introduced. Then the system

is evaluated in terms of communication load, performance of CPS (connection-per-second), latency,

throughput, and power consumption.
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4.4.1 System reconfigurability

This system is reconfigurable, because the weight values and activation function values are stored

in RAM; they can be changed as desired. The topology and routing algorithm can be also changed

by sending new packets.

4.4.2 System extensibility

This system can be easily extended. Because one neuron is first designed and then extended to

one layer, when we design the neural network. All neurons are the same. In the same way as

that one, when we design the NoC architecture, one router is designed first and then connected

to PEs to compose the whole system, where all routers are the same. Hence, every part of this

system is designed in the style of cell by cell. Cells can be easily added or removed for different

applications. This system can be used for not only a complex system but also a simple one. In

particular, different FF-ANNs have different layer numbers, neuron numbers and algorithms. All

of them can be easily changed. Thus, we simply use a different number of routers to connect with

PEs, in order to implement the whole system.

4.4.3 Reduced communication load

Our system shows a great reduction in communication load. The three applications shown in Fig.

4.9 are used to introduce the difference between the traditional point-to-point (P2P) neural network

and our NoC neural network. In the traditional P2P neural network system [2], one neuron must

transmit n packets to all neurons in the next layer. In our NoC neural network, after a neuron finishes

its computation, it executes the activation function from the LUT. The 4 neurons in one PE of the

input layer assemble their output into a single packet, and communicate it to the router. Then data

is transmitted from this router to other routers in the next layer. Thus the number of packets of the

proposed NoC architecture is less than that of the P2P neural network system. The packet size of

NoC is larger than that of the traditional P2P neural network system. The comparison between P2P

and NoC for three applications are shown in Table 4.1, supposing that one neuron must transmit

one packet to the next layer. From the result, the communication load of the total packet size of the

proposed NoC neural network is 1.9∼2.59 times less than that of the traditional P2P neural network.
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Table 4.1 Comparison of communication load
Application Architecture Packet number Packet size (bit) Total (bit)

1. Pattern P2P 112 16 1792
recognition NoC 12 36/72/90 882
2. Neural P2P 192 16 3072

control NoC 15 36/90 1188
3. NPCA P2P 100 16 1600

NoC 12 36/54/90 842

Table 4.2 Simulation environment for NIRGAM
OS Fedora 12. Linnux 2.6.31.5-i686

CPU Intel Core i7 @3.33GHz
RAM 3G

4.4.4 Performance measured by connections per second (CPS)

The NIRGAM NoC simulator [135] is used to evaluate the latency and throughput of the proposed

system. Table 4.3 shows parameters of NIRGAM used in our experiments. The average latency

per flit and the average throughput are shown in Fig. 4.11. In this figure, the red bar means the

amount of communication on the southward channel of the router, the blue bar means that on the

northward channel, the green bar means that on the eastward channel and the yellow bar means that

on the westward channel. Experimental results show that the total latency of the system is 62.00

per flit (clock cycles), the system time is 0.563us and throughput is 47.82Gbps. The simulation

environment is shown in Table 4.2. The CPU time of using NIRGAM NoC simulator for three

applications are 8.6s, 8.7s, 8.6s, respectively.

The proposed NoC mapping system is compared with other digital ANNs [1], which are mapped

by the VLSI techniques. Table 4.4 shows a speed performance measured in terms of the value of

Connection-Per-Second (CPS), which is the most common performance rating. The proposed NoC

mapping system has the best CPS. And compare with a newest world’s best software based ANN

[136] which running with Pentium II, the CPS is just 42M.

Compared with the other bus controlled digital FF-ANN, the proposed NoC architecture can

achieve high level parallelism in which the wires in the links of the NoC are shared by many signals

and all links in the NoC can operate simultaneously on different data packets.

The average latency per flit of three real applications is shown in Fig. 4.12. Their CPS values are

shown in Table 4.5. Compared with some available high-performance digital ANNs, the proposed
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Table 4.3 NIRGAM parameters in our experiments
Parameter Value or type

TOPOLOGY MESH
NUM-ROWS (row number) 6
NUM-COLS (column number) 3
RT-ALGO (routing algorithm) XY
NUM-BUFS (buffer number) 5
FLITSIZE (flit size in byte) 11.25
HEAD-PAYLOAD (head size in byte) 2.25
DATA-PAYLOAD (payload size in byte) 9
WARMUP (traffic begin) 10
SIM-NUM (simulation running) 800
TG-NUM (traffic end) 300
CLK-FREQ (clock frequency) 0.1GHZ

Table 4.4 Comparison of CPS [1]
Name Structure Precision Neurons CPS

MD-1220 FF 1-16b 8 9M
NLX-420 FF 1-16b 16 300
Lneuro-1 FF 1-16b 16PE 26M
N6400 SIMD 1-16b 64PE 870M
HNC 100 SIMD 32b 100PE 250M
MA-16 Matrix 16b 16PE 400M
MT19003 FF 12b 8 32M
WSI NAP SIMD 9b×8b 576 138M
NoC ANN NoC 1-16b 18PE,72 1351M

NoC architecture has higher CPS. On average, NoC CPS values are 3.68, 2.76 and 3.68 times better

than those of N6400, HNC100 and MA-16, respectively.

4.4.5 Power consumption

Our NoC neural network was designed by Verilog and implemented on FPGA using Alter Quartus

II to evaluate power consumption. The clock frequency was set to 0.1GHZ, similar to the NIRGAM

NoC simulator. This system was implemented on StratixII EP2S60F1020C3 [137]. The results are

reported in Table 4.6. Power consumption data of other existing hardware ANNs in Table 4.4 was

not available.
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Figure 4.11 Average latency per flit and average throughput

Table 4.5 Comparison of CPS with existing systems and proposed system
Pattern recognition Neural control NPCA

MD1200 / a / /
N6400 367M 408M 394M
HNC100 67.5M 75M 72.5M
MA-16 135M 150M 145M
NoC ANN 1350M 1125M 1450M

a / means ‘not available’

4.5 Conclusions and Future Work

A sophisticated NoC architecture with off-chip learning was proposed to satisfy various applications

of the complex feedforward neural network. We designed this system aiming at low latency, high

throughput and low power consumption. This system is reconfigurable, because the weight values

and activation functions can be changed as desired. We can also change the topology and routing

algorithms of the NoCs by sending new data to meet different kinds of feedforward neural networks,

so this system is easily extended. We can design this system in the style of cell by cell and can easily

add or remove any cell to comply with different applications. The proposed NoC system can reduce

the communication load of total packet size and improve the system performance of CPS. This

proposed NoC mapping method can make the digital ANN more efficient.

Our future works are to design an on-chip learning circuit on the NoC-based FF-ANN and to

design a sleep-detection model for the NoC system to reduce power consumption.
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Figure 4.12 Average latency per flit in pattern recognition application, Neural control application
and NPCA application

Table 4.6 Results of FPGA
Family Stratix II
Device EP2S60F1020C3
Frequency 100M
Register 2863
ALUT 4563
Static power dissipation 612.95mw
Dynamic power dissipation 623.70mw



Chapter 5

Multiple Network-on-Chip Model for
High Performance Neural Network

We have proposed a Network on Chip (NoC) for ANN, and this architecture can reduce commu-

nication load and increase performance when an implemented ANN is small. In this chapter, a

multiple NoC models are proposed for ANN, which can implement both a small size ANN and a

large size one. The simulation result shows that the proposed multiple NoC models can reduce com-

munication load, increase system performance of connection-per-second (CPS), and reduce system

running time compared with the existing hardware ANN. Furthermore, this architecture is reconfig-

urable and reparable. It can be used to implement different applications of ANN.

5.1 Introduction

Hardware implementation methods for high performance Artificial Neural Network (ANN) have

been an active field of research since 1990 [1]. Feedforward Neural Network (FF-ANN) is one

of widely used ANN to solve a lot of real problems, such as pattern recognition, prediction, opti-

mization, and so on [115, 2, 113]. The existing hardware implementation method is widely used

for mapping FF-ANN. The hardware implementation method could be classified into digital one

and analog one. The digital hardware implementation method was discussed deeply due to high

precision, good expansibility and a good design support by EDA tools [26]. The common digital

implementation architectures include systolic array architecture, slice architecture, Single Instruc-

tion Multiple Data (SIMD), and so on [50, 138, 139]. A Point-To-Point (P2P) data transmission is

usually used by the digital implementation method. Whereas, some drawbacks exist as follows. (1).

It is not reconfigurable, that is, only one application can be implemented by the special hardware
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architecture. (2). Higher performance is required (real time control and other high performance

applications are required). (3). Complex interconnection problem should be solved (communica-

tion load with P2P data transmission method is too heavy) (4). Not flexible (when one of neurons

or one of link is wrong, the whole network may be useless). Thus, a new architecture with data

transmission method is required to solve or relieve these problems.

The Network on Chip (NoC) architecture with a packet based data transmission method [78,

68] could be expected as a good way out. NoC is a new approach to design the communication

subsystem of System-on-Chip (SoC). It is always considered by researchers to solve communication

and performance problem for the P2P bus connection based MPSoC [140, 128].

In this chapter, a multiple NoC Model with 5-port 2-virtual channel wormhole-switched router

is proposed for high performance Neural Network. The multiple NoC Models include two models:

model-1 is based on the former work [141, 142], all the layers of ANN can be implemented with it in

one time, thus it can be suitable for ANN with small network size. Model-2 will use the same NoC

architecture, whereas the implementation method is different. In this model, different layers of ANN

will be implemented with NoC architecture one by one, so that it is appropriate for ANN with large

network size. We forecast that the following drawbacks can be overcame by the proposed system.

(1). Complex interconnection problem could be relieved by replacing P2P connection method by

packet based data transmission method. (2). Performance could by increased by the proposed new

NoC implementation method. (3). Limited application problem could be solved by the proposed

multiple NoC Models (model-1 for ANN with small network size and model-2 for ANN with large

network size). Furthermore, both of two models are reconfigurable. (4). Not flexible problem could

be solved due to reconfigurable NoC architecture which the placement of neurons and links are

not fixed, so that the faulty one can be replaced by others. These improvements of hardware ANN

are owed to high level parallelism of the NoC architecture and the packet based data transmission

method [75].

The rest of this chapter is organized as follows. Section 5.2 shows the architecture of multiple

NoC models and a switch control in this work. Section 5.3 shows the measurement results for

supporting the low power design method of NoC. Section 5.4 shows the measurement results which

compared with existing hardware FF-ANN. Section 5.5 shows the conclusion.
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Figure 5.1 General structure of FF-ANN

5.2 Architecture of Multiple NoC models Implement for FF-ANN

Fig. 5.1 shows the general structure of FF-ANN. As shown in Fig. 5.1, neurons in different layers

have the same architecture. Therefore, different applications of FF-ANNs consist of different num-

bers of layers and neurons. For implementing FF-ANN, the design steps of proposed multiple NoC

models are as follows: 1. one neuron is designed; 2. four neurons are aggregated as one PE; 3. one

router is designed; 4. proposed multiple NoC models are designed by connecting PEs and routers.

The step one and the step two are almost same as our previous work [141, 142], and they will be

described briefly, while the step 3 and the step 4 will be described in details.

5.2.1 Structure of a single neuron

Neuron computing need to contain four operations: addition, multiplication, multiplier-accumulator,

and function [129]. Thus one single neuron consists of MUX (Multiplexer), MAC (Multiply Ac-

cumulate Circuit), RAM (Random Access Memory) and LUT (Look-up Table) as shown in Fig.

5.2.

In Fig. 5.2, inputs were chosen by MUX; multiplication and accumulation were realized by

MAC; weight values were stored in RAM; activation function was expressed by LUT. At least, 16

bits fixed point representation was required by FF-ANN [58], therefore the 16 bits data for neuron

computing in this work consists of one sign bit, three integer bits and twelve fraction bits. It can
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Figure 5.2 Single neuron architecture

cover the range of [-8.0, 8.0) with a quantization error of 2.44140625E-4.

5.2.2 Four neurons aggregated in one Processing Element (PE)

Each of 4 neurons in the same layer are aggregated in one Processing Element (PE) and connected

to one router for reducing total transmission packet, communication load and cost. A decoder and

a control logic are also required to be consisted of the PE. When the data is transmitted from a

router, a decoder decodes the 4-bit neuron address for choosing the neurons which will be used. For

example, ”1100” means the fourth neuron and the third neuron will be used. This design can make

system flexible, and it is easy for users to choose the neuron which they want. Control logic consists

of counters and flag registers for controlling the RAM using virtual address. Weights are stored in

RAM. When each neuron in the same PE completes its calculation task, the outputs of them hold

output data as one single packet, and then the packet is sent to a router.

5.2.3 5-port 2-virtual channel router architecture

One packet consists of two 18-bit header flits and some 18-bit payloads flits for data transmission.

The first two bits of each flit are used for decoding the type of flits which ”00” for header, ”01” for

payload and ”11” for null. Header contains the control information, routing information, physical

and virtual addresses. Payload contains the computing result of each neuron.

For implementing the architecture of FF-ANN and managing the data transmission of the FF-

ANN, a new 1GHz 5-port 2-virtual channel wormhole switched router with 18GB/s bandwidth is

designed for our proposed system. For reducing the time management of data in the router, a ”multi-

port chosen” design idea is proposed. The ”multi-port chosen” means multiple output ports can be
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chosen at the same time by just one input header packet. The router architecture is shown in Fig.

5.3, where five input ports and five output ports are connected with routers of four directions and

one PE. This proposed router consists of buffers, MUXs, allocators, shifters and registers. i0, i1, i2

and i3 mean input ports of four directions which are connected with this router. i4 means input port

for PE. The virtual channel consists by 5 First-In First-Out (FIFO) buffers. When packets arrive

at this router via one of five input ports, it is transmitted via the selected virtual channel, and then

it is transmitted to 5-1 MUX to decide the proper output port by Switch Allocator (SA). Each SA

checks three bits of input packet which will be introduced later in detail. The selected packets are

then transmitted to a shifter. The shifter shifts 5 bits of header which is controlled by SA, while

payload is not shifted.

The architecture of SA0 is shown in Fig. 5.4. Each SA will check three bits of input phits. The

first two bits come from upper two bits (the seventeenth bit and the sixteenth bit) of input phits,

and then control the shifter. It is used for deciding the type of phits. The last one bit of different

SAs are different which SA0 checks the fifteenth bit, SA1 checks the fourteenth bit, SA2 checks

the thirteenth bit, SA3 checks the twelfth bit, and SA4 checks the eleventh bit. In Fig. 5.4, the SA

consists of three parts: decoder, arbiter and hold logic. In the decoder part, three bits of each input

phit is decoded. Two bits are used for partition the phits type, and one bit for choosing output port.

The hold logic part is designed to hold the selected port for the payload.

5.2.4 Design for multiple NoC models

The architecture of multiple NoC model is shown in Fig. 5.5. It consists of routers and PEs. One

router is attached to one PE, and routers are connected with each other. PEs are communicated

via routers. In the NoC design, topology is very important. Different topology can be suitable for

different applications which make the system lower latency and higher bandwidth requirement [68].

At the same time, the power consumption may also be reduced. The torus topology has one more

direct communication channel between the first router and the last router in each line. It is proper

for the complex communication applications, such as FF-ANN. (The comparison will be discussed

later.) According to [1], at most 64 neurons in one layer are used by common hardware ANN. Thus

a 4x4 2D torus topology is proposed for our system design.

The multiple NoC models are listed as follows:

• Model-1: the whole FF-ANN (all the layers) will be implemented by the proposed 4x4 2D

torus NoC architecture in one time.
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Figure 5.5 Block diagram of a multiple NoC models for FF-ANN

• Model-2: the FF-ANN will be implemented by the proposed 4x4 2D torus NoC architecture

layer by layer.

Assumed that ai is the total neurons in layer i, thus n layers FF-ANN can be implemented by

the proposed multiple NoC models as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Error : Max{a1, a2, ..., an} ≤ 64

Model − 1 : a1 + a2 + ...+ an ≤ 64

Model − 2 : a1 + a2 + ...+ an > 64 ∩ Max{a1, a2, ..., an} ≤ 64

(5.2.1)

It means that if the number of total neurons is not larger than 64 (decided by the structure in

Fig. 5.5), the model-1 is used. While the total number of neurons is larger than 64, the model-2 is

used. Whereas, the proposed multiple NoC model can not suit for the case which one of the layers

has the number of neuron larger than 64. One general application of FF-ANN (n layers and each

layer has neuron number of ai) is implemented by Multiple NoC models as shown in the flow chart

of Fig. 5.6.



57

Application of 
FF-ANN

Max{a1,a2, ,an}

a1+a2+ +an

64

64
configure (load weight 

value, activation 
function and packet 

hearder )

implement all layers
of FF-ANN by NoC 
and compute result

result

configure (load weight 
value, activation 

function and packet 
hearder )

Implement first layer
of FF-ANN and 
compute result

Implement n   layer
of FF-ANN and 
compute result

error

Model-1 Model-2

th

Figure 5.6 Flow chart of FF-ANN implemented by multiple NoC models
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Figure 5.7 Application of FF-ANN to prediction by model-1

Two real applications, prediction and pattern recognition problems, are introduced to discuss

these two models in detail. The first application is a prediction problem with the topology of 4-12-1

[143]. It has four input neurons, twelve hidden neurons and one output neuron. The number of

total neurons is 17 and less than 64, so the model-1 is used. The real application is implemented by

multiple NoC models as shown in Fig. 5.7. For model-1 this system is configured one time which

contains the following work:

• Each neuron of each layer need to be implemented to the proposed system.

• Load weight value of each neuron to RAM.

• Load activation function to ROM for each PE.

• Load packet header for each PE to RAM.

In Fig. 5.7 the first layer of FF-ANN consists of one PE which is connected with one router; the

second layer of FF-ANN consist of three PEs which is connected with three routers; the third layer

of FF-ANN consists of one PE which is connected with one router, and just one neuron in this PE

is used. Then, this implemented system can be used for computing.
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Table 5.1 The comparison of power dissipation between mesh topology and torus topology
Mesh (mw) Torus (mw)

Dynamic power dissipation 1220.25 871.04
Static power dissipation 612.89 620.49
Total power dissipation 1833.14 1491.53

The second application is a pattern recognition problem with the topology of 20-50-1 [115]. It

has twenty input neurons, fifty hidden neurons and one output neuron. The total number of neurons

is 71 and bigger than 64, so the model-2 is used. The real application will be implemented by

multiple NoC models as shown in Fig. 5.8. The whole process is as follows:

• 1. Load weight value, activation function and packet header of each layer of FF-ANN.

• 2. The first layer of FF-ANN is implemented by NoC as Fig. 5.8(a), do the computing work

and store these results to RAMs of each PE.

• 3. The second layer of FF-ANN is implemented by NoC as Fig. 5.8(b), input of this layer is

the output of former layer, thus read the data from the RAMs which store the results of first

layer. Then do the computing work and store these results to RAMs of each PE.

• 4. The third layer of FF-ANN is implemented by NoC as Fig. 5.8(c), and read the data from

the RAMs which store the results of second layer. Then do the computing work and this result

is final result of FF-ANN.

5.3 Experiment for Support Low Power NoC Design Method

The proposed Multiple NoC models with mesh topology and torus topology are designed by Ver-

ilogHDL and implemented on FPGA Stratix II EP2S60F1020C3 [137] using Alter Quartus II to

get the performance metrics of power consumption. The comparison between mesh topology and

torus topology is shown in Table 5.1. The proposed NoC architecture with torus topology can re-

duce 28.6% of the dynamic power dissipation compared with the NoC with mesh topology. The

static power dissipation of NoC with torus topology is a little larger than that with mesh topology,

because of the additional hardware for routers. While the total power dissipation of NoC with torus

topology is less than the mesh one, so that the total power dissipation is reduced while static powers

are almost same.
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As shown in Fig. 5.7 and Fig. 5.8, when different applications are implemented by the proposed

architecture, only the work neurons are changed, while the rests are not. As a result this design will

not consume the redundant power.

5.4 Evaluation and Discussion

The proposed Multiple NoC models is evaluated and discussed from the following point of view:

reconfigurability, reparability, communication load, and system performance of CPS.

5.4.1 Reconfigurability of the proposed system

The proposed system is reconfigurable. Different applications of FF-ANNs just have difference in

weight value of each neuron, activation function of each layer, the number of neurons and layers,

and so on. These differences can be easily implemented in the proposed multiple NoC models.

Because those values are stored in RAM. Furthermore, the topology and routing algorithm of NoC

can be changed easily.

5.4.2 Reparability of the proposed system

The reparability of the proposed system in this work is shown as follows:

• Neurons are reparable: each neuron has the same architecture, thus the faulty neurons can be

replaced by others.

• Channels or routers are reparable: the routing paths of the data transmit from layer to layer is

not fixed, and it can be changed by sending new packets. The cases are shown in Fig. 5.9.

5.4.3 Communication load reduction

The communication load of the proposed NoC data transmission architecture is reduced compared

with existing Point to Point (P2P) data transmission architecture. Point to Point (P2P) architecture

is always used by existing digital FF-ANNs for their data transmission, while the proposed NoC

data transmission architecture is packet based.

Three applications of ANN with topology of 4-12-1, 4-5-5-1 and 20-50-1 [143, 144, 115] are

simulated to compare these two types of data transmission architectures. Let’s suppose that the

ANN with topology of 4-12-1 is implemented by P2P data transmission architecture, and assume

one packet will be transmitted to all neurons of next layer by each neuron. As a result, 60 packets
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Figure 5.9 Reparability of the proposed system

are transmitted and each packet size is 16 bits. Thus the total packet size is 960 bits. When the

same ANN is implemented by the proposed NoC packet based data transmission architecture, it

includes one PE with 4 neurons for input layer; hidden layer consists of three PEs and each with

four neurons; and one PE with one neuron for output layer. Each PE will transmit one packet to the

next layer’s PE. The packet size of PE is decided by the number of attached neurons. When four

neurons are attached to PE, the packet size is 90 bits which includes one 18 bits header and four 18

bits payloads. When three neurons are attached to PE, the packet size is 72 bits which includes one

18 bits header and three 18 bits payloads. When two neurons are attached to PE, the packet size is

54 bits which includes one 18 bits header and two 18 bits payloads. When one neuron is attached

to PE, the packet size is 36 bits which includes one 18 bits header and one 18 bits payload. Thus, in

total, 6 packets are transmitted and total packet size is 540 bits. Other two applications of FF-ANNs

are also compared between P2P data transmission method and NoC data transmission method as
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Table 5.2 Comparison of communication load
Topology Method Packet number Packet size (bit) Total size (bit)

4-12-1
P2P 60 16 960

NoC 6 90 540

4-5-5-1
P2P 50 16 800

NoC 8 36/90 558

20-50-1
P2P 1050 16 16800

NoC 78 54/90 6984

shown in Table 5.2. Consequently the proposed NoC method can reduce the communication load

of total packet size about 30.25%-58.4%.

5.4.4 High performance of connection-per-second (CPS)

Three real applications of FF-ANN [143, 144, 115] are implemented by the proposed multiple NoC

models and simulated by NIRGAM NoC simulator [135]. The first one is a prediction problem

[143], and the topology of it is 4-12-1. The second one is an optimization problem [144], and the

topology of it is 4-5-5-1. The third one is a pattern recognition problem [115], and the topology of it

is 20-50-1. The input of them is one thousand 16-bit data. We call them application-1, application-

2, and application-3 respectively. The simulation result is shown in Fig. 5.10. The frequency of

proposed system is 100MHz, thus the worst latency of first two applications is 20ns, and the worst

latency of each stage of third application is 56ns and 56.6ns. The CPU time of using NOXIM NoC

simulator for two applications are 7.7s, 20.2s, respectively.

The most common measure of performance is the Connection-Per-Second (CPS), which is de-

fined as the rate of multiplication and accumulates operations. For the fixed type of hardware

ANN, the value of CPS is different when implementing different applications. For fair comparison

between the existing hardware ANN and the proposed one, we need to implement the same appli-

cation and then compare the CPS of different hardware ANN. Three real applications of FF-ANN

are also implemented by existing hardware ANN [1, 28] to get the CPS. Experimental results are

shown in Table 5.3. In this table, the symbol ”N.A.” means this type of hardware neural network

can not execute the application due to the limitation of the hardware architecture. This table shows

that the proposed multiple NoC models can increase CPS about 47.1%, 25%, and 44.9% for the

application-1, application-2 and application-3 respectively.

How to get a good balance between performance and cost has been researched for a long time.
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Figure 5.10 Average latency per flit of three applications
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Table 5.3 Comparison of CPS and CPSPW

Name Architecture Learn Precision Neurons
CPS

or PE App1a App2 App3

NeuraLogix
Slice Off-chip 1-16b 16 N.A. 300 N.A.

NLX-420

Philips
Slice Off-chip 16,32b 12PE 340M 225M N.A.

Lneuro-2.3

Siemens
Systolic array Off-chip 16b 16PE N.A. 400M N.A.

MA-16

Hitachi
SIMD BP 9x8b 144 N.A. 300 N.A.

WSI

Inova
SIMD Program 1-16b 64PE 76.9M 50.9M 127M

N64000

Waseda
NoC Off-chip 1-16b 64,16PE 500M 500M 184M

Multiple NoC

aApp1: Application1

The slice architecture and systolic array architecture show the high performance and good balance

when implement the ANN with small size; SIMD architecture has a good reconfigurability, low cost

and high performance when implement the ANN with large size. Model-1 of the proposed NoC

architecture has a similar implement method as slice architecture, thus it is appropriate for the ANN

with small size; while model-2 of the proposed NoC architecture has a similar implement method as

SIMD architecture, so that, it is fit for the ANN with large size. Furthermore, the NoC architecture

has a smart packet based data transmission method. These advantages make NoC architecture much

more suitable for hardware ANN.

5.5 Conclusions

A multiple NoC models are designed based on low power and implemented for hardware ANN. This

NoC architecture can implement both the small size ANN and the large size ANN. The proposed

architecture is reconfigurable to suit for different applications of FF-ANN, by changing the weight

value, activation function, and the number of neurons and layers. The hardware of it is reparable

which the faulty neurons and channels can be replaced by good one. Compared to the traditional

P2P data transmission method, it can reduce the communication load about 30.25%-58.4%, and it
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can increase system performance of CPS about 25%-47.1% compared with the existing hardware

ANN. The number of PEs in the proposed multiple NoC model is 16. But it is not fixed and could

be changed, such as 9, 25, 36 and so on.



Chapter 6

High Performance Feedforward Neural
Network Mapped by NoC architecture
with a new Routing Strategy
Implementation Method

In this chapter, Networks on Chip (NoC) architecture is proposed for mapping Feedforward Artifi-

cial Neural Network (FF-ANN). A new router model of NoC with absolute address based routing

strategy is developed to replace a router with Destination-Tag to reduce the packet size of header.

The NOXIM NoC simulator is used to evaluate the proposed router in term of average latency and

max latency. The experimental results indicate that the proposed NoC architecture with this new

router model is effective in reducing latency compared with the traditional one, and it brings a

mapped FF-ANN higher performance and lower communication load.

6.1 Introduction

Artificial neural network (ANN) is a computational model or mathematical model that is inspired

by the way biological nervous systems, such as the human brain. It consists of an interconnected

group of neurons to computation or model complex relationships between inputs and outputs [2].

As the most common ANN, the Feedforward ANN (FF-ANN) is widely used to solve a variety

of problems, such as prediction, anomalous detection, optimization, pattern recognition and so on

[121][113][99].

In the last few years, a network on chip (NoC) has attracted more and more attention according

67
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to its smart structure. It uses a general-purpose on-chip interconnection network to replace design-

specific global shard buses [78]. It has been used by a lot of research groups to solve complex

on-chip interconnection problems for large system-on-chip (SoC) [68][145].

In chapter 4, we proposed a Networks on Chip (NoC) architecture to implement the FF-ANN,

called NoC-ANN, to achieve low communication load and high performance of Connection-Per-

Second (CPS) [141]. It will be described more detail in Sect. 6.3.1.

In this chapter, the NoC architecture is improved to implement the FF-ANN, named iNoC-

ANN, which has lower communication load and higher performance. The most improvement is

that using a proposed router model with absolute address based routing strategy [146] to replace

the former router with Destination-Tag (DT) method based routing strategy. This absolute address

based routing strategy could reduce the header size of the packet for NoC compared with the DT

method, so that the latency will be reduced. We evaluate the new NoC architecture, and the results

indicate that the proposed method is very effective. We also evaluate the communication load and

performance of iNoC-ANN system. Resultantly it could achieve lower communication load and

higher performance compared with the former NoC-ANN.

This chapter is organized as follows. First, we introduce the background of the former work and

motivation of this work in Sect. 6.2. In Sect. 6.3, improved NoC architecture with new router model

for iNoC-ANN, and it is evaluated in Sect. 6.4. Section 6.5 concludes this chapter.

6.2 Related Works

The well-known digital implementation methods of an FF-ANN are slice architecture [48], sin-

gle instruction multiple data (SIMD) [147], systolic array devices [49], and multi-processor chips

[148]. The drawbacks of these implementation methods are high cost, low performance, no recon-

figurability, and heavy communication load [26] [28]. For overcoming these drawbacks, we already

proposed the NoC architecture to implement an FF-ANN [141]. But, lower communication load

and higher performance are continuously required, and they are decided by the latency of NoC,

which is affected by the packet size and router architecture [68].

One of popular routing strategies is DT method [149], which is used in many NoC applications,

such as 80-Tile Intel TFLOPS NoC [150] and 18-Tile NN (Neural Network) NoC [141]. The des-

tination addresses of DT method are used to select the output port at each router. The bit number

of the destination address is decided by the combination of the port number of the router and the

hop number from the source to the destination node. The advantage is that each hop could be easily
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controlled and different routing algorithms could be easily realized, whereas the disadvantage is that

the total destination address stored in header becomes larger and larger proportional to the network

size.

Another routing strategy is an absolute address method [151]. With this method, a router decides

the next move based on the absolute address of the final destination node. This method could

reduce the bit number of the address which is stored in header, compared with DT method. But, the

drawback is also exist: different router models have different method to realize this routing strategy

and the routers should be redesigned when different routing algorithms are implemented.

We consider that a new router model must be effective if it uses absolute address and can meet

different routing algorithms with a little hardware change. With this router model, the packet size

could be reduced. Thus the NoC architecture could achieve lower latency and ANN based on this

NoC could achieve lower communication load and higher performance. Therefore, our work focuses

on reducing packet size to improve the ANN with NoC implementation method.

6.3 Proposed iNoC-ANN System

In this section, the former NoC-ANN system [141] is introduced at first, and then the design steps

of the proposed iNoC-ANN system with absolute address based routing strategy is introduced.

6.3.1 Former NoC-ANN System with DT Based Routing Strategy

For the former NoC-ANN design, the following five steps are processed in this order: design one

neuron, 4 neuron aggregated as one PE, router design, and finally a 4x5 NoC-ANN system is de-

signed by a set of routers and PEs as shown in Fig. 6.1. When the input neurons finish its computing

work, the computing results will then transmit to the all the neurons in first hidden layer via routers

which connect with them. Also the neurons in first hidden layer will transmit their results to the

neurons in second hidden layer and then transmit to the neurons in the output layer via routers.

The routing strategy is based on DT method. The transmission of the packets is controlled by

the destination address part of the header. The destination addresses are used to select the output

port of each router. The bit number of the destination address is decided by the port number of the

router and the hop number from the source to the destination node. For example, one 5-port router

needs 3 bits destination address to select its output port. If there are 8 hops from the source to the

destination node, it needs 3x8=24 bits in total. The bits of addresses are stored in the header of the

packet. The header grows with increasing NoC size as shown in Table 6.1. One header consists of
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Figure 6.1 NoC-ANN with 4x5 2D mesh topology.

one bit for virtual channel, two bits for flit type and the rest for address. We use probability theory

to calculate the average length of the address. We assume that each Processing Element (PE) has

the same probability to sent a packet to all the PE of this NoC via routers. We calculate the average

bit number of each PE in the NoC one by one, and then get the average bit number of the whole

NoC.

6.3.2 Proposed System

The proposed iNoC-ANN system is designed similarly to the former five steps, except the router

design step. The absolute address method is introduced at first and then applied to router.

Packet Format of Absolute Address Based Method

The absolute address based method is different in a header from DT method. The destination address

of the header of absolute address based method is described by x-axis address and y-axis address of

the final destination node.

It is obvious that the lengths of the absolute address and the destination tag are O(log n) and

O(n), respectively, for n*n NoC. The header size of absolute address based method grows with
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Table 6.1 Header of DT method increases with NoC size
NoC size Bits in the header

Tot.No.of bits
nxn VCa FTb Ave. Addr.c

n=2 1 2 6 9
n=3 1 2 8.49 11.49
n=4 1 2 10.5 13.5
n=5 1 2 12.72 15.72
n=6 1 2 14.2 17.2
n=7 1 2 17.2 20.2
n=8 1 2 19.75 22.75

avirtual channel
bflit type
caverage address

Table 6.2 Header of absolute address based method increases with NoC size
NoC size Bits in the header

Tot.No.of bits
nxn VC FT xa y

n=2 1 2 1 1 5
3≤n≤4 1 2 2 2 7
5≤n≤8 1 2 3 3 9
9≤n≤16 1 2 4 4 11
17≤n≤25 1 2 5 5 13

ax-axis

increasing NoC size as shown in Table 6.2 and is compared with that of DT method as shown in

Fig. 6.2. So the absolute address based method is effective in reducing header size of the packet.

Router Model with Absolute Address Based Method

As described in Sect.6.2, the NoC architecture with absolute address based routing strategy could

reduce the bit size of header, whereas the routers of NoC should be redesigned for implementing

different routing algorithms. In this section, a new router model is introduced to implement the

absolute address based routing strategy.

Block diagram of the proposed router with absolute address based method is shown in Fig. 6.3.

This router has 5 input ports and 5 output ports that are connected to one process element (PE) and

four neighbor routers. It consists of buffers, virtual-channel allocators (VA), switch allocators (SA),

and crossbar switch. VA controls the input flits to choose one of the channels, then it is transmitted
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to crossbar switch. Each SA will check part of input flits and these bits are consisted by 2-bit

flit type (FT) and absolute destination address (ADA). Different sizes of NoC have different size

of absolute address. Under control of the SAs, input flits are selected to transmit to output ports.

Switch allocator0 chooses the input flits for output port PE, and switch allocator1, 2, 3, 4 for output

port East, North, West, South, respectively. Compared with the original router model in the former

NoC-ANN, SAs are redesigned and the redundant shifters are removed.

Each SA selects input flits for one output port. It consists of three parts: decoder, arbiter and

hold logic as shown in Fig. 6.4. Except the function part, each SA has the same architecture. In

decoder part, FT and ADA of each input flit are decoded. FT is used for partition the flits type (10

for header and 11 for payload) and ADA is used for choosing output port. ADA compared with a

function of each SA, where fij means a function in SA j for flit form port i. And ports 0, 1, 2, 3

and 4 denote input ports for PE, East, North, West and South, respectively. Different function of

each SA will be described below in detail. The routers need not be redesigned when we implement

different routing algorithms, just function blocks of SAs will be changed.

As described above, ADA need to be compared with the function blocks to select the output

port. The x-axis address and the y-axis address of ADA are compared with those of a local router

and also . ADA of input flit from input port i need to be compared with five functions of fij in five

SAs. If this ADA is satisfied with one of functions in SAj , this input flit is selected by the output

port j. For example, one input flit from input port 1 has ADA, it is compared with five functions of

f10 in SA0, f11 in SA1, f12 in SA2, f13 in SA3, and f14 in SA4. If this is satisfied with f12 in SA2,

this flit from input port 1 is selected by output port 2. Five well-known routing algorithms are used

as example to show the proposed implementing method for iNoC-ANN. And they are also used

as benchmark to compare between the former DT method and the proposed method in Sect. 4.1.

When we set the logical conditions for function blocks of SAs, we list all existing cases of logical

conditions between current addresses and destination addresses, and then set them one by one to

function blocks according to the routing algorithm. This method could avoid undefined cases and

multiple-defined cases. Common pseudocode of X-Y routing algorithm is shown first, and then all

the functions in different SAs are listed for hardware implementation as follows:

xdes and ydes denote x-axis and y-axis of ADA, respectively, and xlocal and ylocal denote x-axis

and y-axis address of local router, respectively. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

X-Y routing algorithm

(1) pseudocode
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Figure 6.4 Architecture of SA for absolute address based method

if (xdes > xlocal) {To East;}
else if (xdes < xlocal) {To West;}
else if (ydes > ylocal) {To South;}
else if (ydes < ylocal) {To North;}
else {To PE;}
(2) logical conditions in Functions of SAs

• Allocator0=⇒ PE (Allocator0 will select input phits for output port of PE)

fi0: (xdes = xlocal) ∧ (ydes = ylocal), i = 0, 1, ...4;

• Allocator1=⇒ East

fi1: (xdes > xlocal), i = 0, 1, ...4;

• Allocator2=⇒ North

fi2: (xdes = xlocal) ∧ (ydes < ylocal), i = 0, 1, ...4;
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• Allocator3=⇒ West

fi3: (xdes < xlocal), i = 0, 1, ...4;

• Allocator4=⇒ South

fi4: (xdes = xlocal) ∧ (ydes > ylocal), i = 0, 1, ...4.

For different routing algorithms, such as West-First (W-F), North-Last (N-L), Negative-First

(N-F), Full-Adaptive (F-A) and so on, the implementation methods are almost the same. We just

need to change the logical conditions in the functions of SAs for different routing algorithms. From

ref. [86], the pseudocode of W-F, N-L, N-F and F-A routing algorithms are shown first, and then all

the functions in different SAs are listed for hardware implementation as follows:

W-F routing algorithm

(1) pseudocode

if (xdes <= xlocal || ydes == ylocal)

return routing XY;

## if (xdes <= xlocal or ydes = ylocal) packets will transmit ## follow XY routing.

else if (ydes < ylocal) {To North; To East;}
##packets transmit to North and then to East in next hop.

else {To South; To East;}
##packets transmit to South and then to East in next hop.

(2) logical conditions in Functions of SAs

• Allocator0=⇒ PE

fi0: (xdes = xlocal) ∧ (ydes = ylocal), i = 0, 1, ...4;

• Allocator1=⇒ East

f01, f11 and f31 : (xdes > xlocal) ∧ (ydes = ylocal);

f21: (xdes > xlocal) ∧ (ydes >= ylocal)

f41: (xdes > xlocal) ∧ (ydes <= ylocal).

• Allocator2=⇒ North

f02, f12, f22 and f32: (xdes >= xlocal) ∧ (ydes < ylocal);

f42: (xdes = xlocal) ∧ (ydes < ylocal);

• Allocator3=⇒ West

fi3: (xdes < xlocal);

• Allocator4=⇒ South
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f04, f14, f34 and f44: (xdes >= xlocal) ∧ (ydes > ylocal);

f24: (xdes = xlocal) ∧ (ydes > ylocal).

N-L routing algorithm

(1) pseudocode

if (xdes == xlocal || ydes <= ylocal)

return routing XY;

## if (xdes = xlocal or ydes <= ylocal) packets will transmit ## follow XY routing.

else if (xdes < xlocal) {To South; To West;}
##packets transmit to South and then to West in next hop.

else {To South; To East;}
##packets transmit to South and then to East in next hop.

(2) logical conditions in Functions of SAs

• Allocator0=⇒ PE

fi0: (xdes = xlocal) ∧ (ydes = ylocal), i = 0, 1, ...4;

• Allocator1=⇒ East

f21: xdes > xlocal;

f01, f11, f31 and f41 : (xdes > xlocal) ∧ (ydes <= ylocal);

• Allocator2=⇒ North

fi2: (xdes = xlocal) ∧ (ydes < ylocal);

• Allocator3=⇒ West

f23: xdes < xlocal;

f03, f13, f33 and f43 : (xdes < xlocal) ∧ (ydes <= ylocal);

• Allocator4=⇒ South

f04, f12, f34 and f44: ydes > ylocal;

f24: (xdes = xlocal) ∧ (ydes > ylocal).

N-F routing algorithm

(1) pseudocode

if ((xdes <= xlocal && ydes <= ylocal) ||
(xdes >= xlocal && ydes >= ylocal))

return routing XY;
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## if address is satisfied with the condition, packets will ## transmit follow XY routing.

else if (xdes > xlocal && ydes < ylocal)

{To North; To East;}
##packets transmit to North and then to East in next hop.

else {To South; To West;}
##packets transmit to South and then to West in next hop.

(2) logical conditions in Functions of SAs

• Allocator0=⇒ PE

fi0: (xdes = xlocal) ∧ (ydes = ylocal), i = 0, 1, ...4;

• Allocator1=⇒ East

f01, f11, f21 and f31 : (xdes > xlocal) ∧ (ydes >= ylocal);

f41: xdes > xlocal;

• Allocator2=⇒ North

f42: (xdes = xlocal) ∧ (ydes < ylocal);

f02, f12, f22 and f32 : (xdes >= xlocal) ∧ (ydes < ylocal);

• Allocator3=⇒ West

f23: xdes < xlocal;

f03, f13, f33 and f43 : (xdes < xlocal) ∧ (ydes <= ylocal);

• Allocator4=⇒ South

f04, f12, f34 and f44: (xdes <= xlocal) ∧ (ydes > ylocal);

f24: (xdes = xlocal) ∧ (ydes > ylocal).

F-A routing algorithm

(1) pseudocode

if (xdes == xlocal || ydes == ylocal)

return routing XY;

## if address is satisfied with the condition, packets will ## transmit follow XY routing.

else if (xdes > xlocal && ydes < ylocal)

{To North; To East;}
##packets transmit to North and then to East in next hop.

else if (xdes > xlocal && ydes > ylocal)

{To South; To East;}
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##packets transmit to South and then to East in next hop.

else if (xdes < xlocal && ydes > ylocal)

{To South; To West;}
##packets transmit to South and then to West in next hop.

else {To North; To West;}
##packets transmit to North and then to West in next hop.

(2) logical conditions in Functions of SAs

• Allocator0=⇒ PE

fi0: (xdes = xlocal) ∧ (ydes = ylocal), i = 0, 1, ...4;

• Allocator1=⇒ East

f41: (xdes > xlocal) ∧ (ydes <= ylocal);

f01, f11 and f31 : (xdes > xlocal) ∧ (ydes = ylocal);

f21 : (xdes > xlocal) ∧ (ydes >= ylocal);

• Allocator2=⇒ North

f02, f12, f22 and f32 : ydes < ylocal;

f42: (xdes = xlocal) ∧ (ydes < ylocal);

• Allocator3=⇒ West

f43: (xdes < xlocal) ∧ (ydes <= ylocal);

f03, f13 and f33 : (xdes < xlocal) ∧ (ydes = ylocal);

f23 : (xdes < xlocal) ∧ (ydes >= ylocal);

• Allocator4=⇒ South

f04, f14, f34 and f44 : ydes > ylocal;

f24: (xdes = xlocal) ∧ (ydes > ylocal).

6.4 Evaluation of the proposed iNoC-ANN

In this section, both the proposed absolute address based router model and the former DT method

based router model are implemented for different routing algorithms and compared in term of hard-

ware resource, average latency, max latency, average throughput and power consumption. And then

the iNoC-ANN with proposed absolute address based router is compared with the former NoC-ANN

and other existing ANN architecture in term of communication load and performance.



79

Table 6.3 Comparisons of FPGA resource (number of ALUTs)

Router type and network size Conventional
Proposed Ratios(Pro./Conv.)

X-Y W-F X-Y W-F

3-port router 130 86 89,87,87,86a 0.66 0.66-0.68
4-port router 235 147 145,144,148b 0.63 0.61-0.63
5-port router 445 197 198 0.44 0.44

3x3 NoC 1937 1108 1101 0.57 0.57
4x4 NoC 4079 2236 2237 0.55 0.55
8x8 NoC 21858 10498 10579 0.48 0.48

a3-port routers in four corners of NoC for W-F routing algorithm have different architecture according to the differ-
ent function blocks

b4-port routers in four edges of NoC for W-F routing algorithm have different architecture according to the different
function blocks

6.4.1 Evaluation of NoC architecture with absolute address based router model

As described in Sect. 6.3, different routing algorithms could be implemented into the conventional

router by sending the different packets with the DT method, where the router architecture need not

be changed. With the absolute address based method, different routing algorithms could be imple-

mented into the developed router by revising the function part of the switch allocators. The proposed

routers with X-Y or W-F routing algorithm are used as examples. They are both designed by Verilog

HDL language and implemented on Altera Stratix II EP2S30F672C3. The FPGA resource compar-

ison of router architecture is shown in Table 6.3. These two methods are also compared in different

sizes of NoCs as shown in Table 6.3.

From Table 6.3, the proposed router model with absolute address based method could reduce

the number of ALUTs, especially when the router has more ports and the NoC size is larger.

NOXIM NoC simulator [134] is used to evaluate the latency of NoC, which is an extensible and

modular simulator based on system C.

The proposed router model is evaluated by using two different-sized NoC, 4x4 and 8x8. Each

size of NoC is used to run ten experiments with three different routing algorithms (X-Y, W-F and

N-L routing algorithm) each for proposed router model with absolute address based method and the

former router model with DT method. 10000 random packets are transmitted at random in different

packet injection rate, and the buffer size is set as 5. Parameters are set for different methods. The

noticeable difference between these two methods is header size which has described in 6.3.2. The

payload size in this experiment is set as 1∼4 flit. Higher injection rate will result in higher latency,
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Figure 6.5 Comparison of latency in 4x4 NoC of different routing algorithms. (blue: the former
router model)(red: the proposed router model)

but high latency is not be used in real applications. For example, 200-500 clock cycles are used

in Ref. [152]. Thus the injection rate will set to a small value to keep the latency under 1000

cycles. The results of average latency and max latency in 4x4 NoC and 8x8 NoC are shown in Fig.

6.5 and Fig. 6.6 respectively, each of which contains twelve small figures, where the latency both

methods are compared for each routing algorithm. To clarify the difference in latency and to make

the comparison easy, we used an appropriate range suitable for each, that is, x-axis range is 0-0.08

for 4x4 NoC in Fig. 6.5, and 0-0.04 for 8x8 NoC in Fig. 6.6.

The performance of the routing by the DT method greatly depends on the algorithm to produce

the sequence of tags, and it is controlled by the parameter of injection rate which is the speed with

which a routing algorithm generates a packet to routers. If the injection rate is same, packets are
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Figure 6.6 Comparison of latency in 8x8 NoC of different routing algorithms. (blue: the former
router model)(red: the proposed router model)

randomly sent in the same speed, thus a sequence of tags is transmitted. Thus, these two methods

are fairly compared by using three routing algorithms provided by the NOXIM NoC simulator under

the same injection rate as a parameter. The results are mapped on the curves in Fig. 6.5 and Fig.

6.6.

From Fig. 6.5 and Fig. 6.6, the proposed router model could achieve low average latency and

low max latency in different routing algorithms and different NoC sizes. Some special inflexion

point of the injection rate is chosen to evaluate these methods in average latency consumption. The

inflexion point may be a fair value to compare the proposed method and former method, where the

reduction rate in this point could be thought as an average value. The reduction is smaller in the

left of the inflexion point and it is larger in the right. When the injection rates of these three routing
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algorithms X-Y, W-F, and N-L are 0.05 in 4x4 NoC, the average latency with the proposed router

are reduced by 49.56%, 57.01% and 54.88%, respectively. When the injection rates in 8x8 NoC

are 0.025, 0.022 and 0.022 for X-Y, W-F and N-L, respectively, the average latency are reduced by

69.17%, 60.03% and 61.50%, respectively.

When using DT method, the CPU time of using NOXIM NoC simulator for 4x4 NoC with XY,

WF, NL routing algorithms are 20.7s, 20.8s, 21.3s, respectively. The CPU time of using NOXIM

NoC simulator for 8x8 NoC with XY, WF, NL routing algorithms are 80.0s, 80.2s, 82.5s, respec-

tively.

When using proposed method, the CPU time of using NOXIM NoC simulator for 4x4 NoC

with XY, WF, NL routing algorithms are 18.2s, 18.8s, 19.0s, respectively. The CPU time of using

NOXIM NoC simulator for 8x8 NoC with XY, WF, NL routing algorithms are 74.2s, 75.1s, 76.7s,

respectively.

The latency T for transmitting L bits packet from the source to the destination in NoC with

wormhole routers is expressed by T = (L/BW +R) ∗H , where BW is the link bandwidth in bits

per cycle; R is the routing delay per hop; H is the number of hops from the source to the destination

node [153] [154]. In our work, NoC architecture with the proposed router model can really reduce

the packet size, and the packet size directly affects the latency. The bigger the NoC size is, the more

the proposed method could reduce the packet size. Therefore, the reduction of latency becomes

remarkable.

In our NoC-ANN design, the absolute address is more suitable. For example, Fig. 4.9 is NoC-

ANN for implementing ANN with 5-7-3-7-5. With DT method, the neuron in left-top PE need

transmit 3 hops to left hidden layer 1 (header size is 3 bits x 3 hops + 3 bits = 12 bits) and 4 hops

to right hidden layer 1 (header size is 3 bits x 4 hops + 3 bits = 15 bits). With the absolute address

method, the network size is 3x6, thus 2 bits for x-axis and 3 bits for y-axis. The header size is 2 bits

+ 3 bits + 3 bits = 8 bits. The header size with absolute address method is smaller than header size

with DT method. The absolute address method is efficient then DT method.

6.4.2 Evaluation of proposed iNoC-ANN and other architecture of ANNs

In this subsection, three real applications of FF-ANNs are implemented with the proposed iNoC-

ANN system to evaluate communication load and performance. These applications are pattern

recognition with topology of 5-7-3-7-5 [115], neural control with topology of 5-12-8-4-1 [117] and

nonlinear principal component analysis (NPCA) for image processing with topology of 4-10-1-10-4

[118].
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Table 6.4 Comparison of communication load
Application Architecture Packet number Packet size (bit) Total (bit)

1. Pattern P2P 112 16 1792

recognition NoC 12 36/72/90 882

iNoCa 12 26/62/80 762

2. Neural P2P 192 16 3072

control NoC 15 36/90 1188

iNoC 15 26/80 1038

P2P 100 16 1600

3. NPCA NoC 12 36/54/90 842

iNoC 12 26/44/80 726

aiNoC: the proposed improved NoC architecture

Reduction in communication load

For each packet, a header is indispensable and payload number is decided by active neurons. The

communication load of three real applications are measured by using the proposed iNoC-ANN and

compared with the former NoC-ANN architecture and general point-to-point (P2P) structure [2] as

shown in Table 6.4. As far as we know, the traditional general P2P architecture does not aggregate

some neurons in one PE. Without the NoC architecture and a packet switched transmission method,

aggregating some neurons in one PE compulsively may reduce the communication load, but it will

degrade the performance of the whole system, and hardware design will be more complicated and

the communication time becomes larger. We assume each neuron in the same layer needs to transmit

1 packet/pattern to each neuron of the next layer.

The first application of ANN has 5, 7, 3, 7 and 5 neurons in each layer. With the P2P architec-

ture, the number of packet is 112 (=5x7+7x3+3x7+7x5) and each packet has the same bit size of 16.

Thus the total communication load is 1792 bits/pattern. If we use the former NoC architecture for

transmission, the packet number and packet size are decided by the number of PEs and the number

of neurons in each PE. Each PE of an input layer need transmit 2 packets to the next hidden layer

and the packets size are 90 bits/pattern (=18 bits x (1 header + 4 payloads)) and 36 bits/pattern (=18

bits x (1 header + 1 payloads)). The other layers follow the same rule. Besides the header size of

the packet, iNoC-ANN has the same data transmission method as NoC-ANN. The header size is 8

bits which consist of 1 bit for VC, 2 bits for FT, 2 bits for x-axis and 3 bits for y-axis.
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Table 6.5 Comparison of CPS and CPSPW
Name Structure Precision Neurons CPS CPSPW

MD-1220 FF 1-16b 8 9M 1.1M
NLX-420 FF 1-16b 16 300 18.75
Lneuro-1 FF 1-16b 16PE 26M 1.625M
N6400 SIMD 1-16b 64PE 870M 13.6M
HNC 100 SIMD 32b 100PE 250M 2.5M
MA-16 Matrix 16b 16PE 400M 1.56M
MT19003 FF 12b 8 32M 4M
WSI NAP SIMD 9b×8b 576 138M 0.24M
NoC-ANN NoC 1-16b 18PE,72 1351M 18.76M
iNoC-ANN iNoC 1-16b 20PE,80 1710M 21.38M

With this proposed iNoC-ANN, communication load of total bit/pattern can be reduced by

54.6%∼66.2% compared with the existing P2P architecture, and by 12.6%∼13.8% compared with

the former NoC-ANN. This reduction is mainly caused by the proposed absolute address based

method which can reduce the header size of the packet.

System performance of Connection-Per-Second (CPS)

The most common performance rating is the Connection-Per-Second (CPS), which is defined as

the rate of multiplication and accumulation operations. The value of CPS is normalized by the

number of weights obtained from the connection per second per weight (CPSPW), which suggests

the rating of performance for each solution. From the view point of the value of CPS and CPSPW,

the proposed iNoC-ANN is compared with the former NoC-ANN and other existing hardware ANN

[28][1] as shown in Table 6.5. The simulation CPU time for iNoC-ANN is 9.9s.

The proposed iNoC-ANN has a highest CPS and CPSPW. Compared with the former NoC-

ANN, it could increase CPS and CPSPW by 26.6% and 13.97%, respectively. Compared with other

existing hardware ANN, it could increase CPS and CPSPW at least 96.6% and 14.0%, respectively.

Thus, the proposed iNoC-ANN is superior in system performance to other NoC-ANN.

6.5 Conclusions

In this chapter, an NoC architecture with absolute address based routing strategy method is pro-

posed for high performance hardware FF-ANN. An absolute address method based router model

was developed. It can reduce the header size of the packet compared with the router model in the
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former NoC and can implement different routing algorithms with a little hardware change. Sim-

ulation results show that it can reduce communication load about 54.6%∼66.2% compared with

the existing P2P architecture and 12.6%∼13.8% compared with the former NoC architecture. It

can also increase CPS by 96.6% and CPSPW by 14.0% compared with other hardware ANNs, and

increase CPS 26.6% and CPSPW 13.97% compared with the former NoC-ANN. Consequently,

the FF-ANN with the proposed NoC architecture is effective in reducing communication load and

increasing performance.
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Chapter 7

A High-performance Neural Processor
Based on Network-on-Chip Architecture

This chapter describes a high-performance neural processor based on a novel Network on Chip

(NoC) architecture to increase the computing speed and solve the reconfigurability and intercon-

nection problems of general neural system. The proposed NoC-based neural processor is composed

of 20 tiles in a 4x5 2-D array, and each tile includes a Process Element (PE) and a packet-switched

router. In each PE, four neurons are aggregated to achieve low communication load. The network is

2-D torus topology, and it has a 32 G/s bandwidth and asynchronous clocking system. Our proposed

neural processor is designed using 90-nm CMOS technology with one poly and nine metals. It can

achieve over 3.1 Giga Connection Per Second (CPS) of computing speed while power dissipation

is 1.1317 W at 1.2 V supply, and its chip size is 25 mm2. Compared with the other existing digital

neural networks, the proposed processor is reconfigurable and extendable, and can achieve lower

communication load, lower system running time and higher computing speed.

7.1 Introduction

Artificial Neural Networks (ANN) have been proposed as one of well-known parallel computing

systems to solve various problems. Especially the digital hardware ANNs are more popular due to

the high precision and good expansibility [2]. However, digital architectures of ANN have major

implementation issues such as higher cost due to large chip area and lower computing speed com-

pared to analog systems [26]. Furthermore, the digital ANNs are usually not reconfigurable, that

is, the digital ANN for some application can not be applied for other applications [28], and a heavy

communication load is caused by its complex data transmission method.
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In this chapter, the NoC architecture is described to structure a new type of neural processor

named NoCNN. In the proposed NoCNN, four neurons are integrated in one PE (Processing Ele-

ment) and connected with one 1-GHz 5-port wormhole-switched router to compose a tile. Twenty

such tiles are integrated in a 4x5 2-D array as the whole NoCNN. Twenty tiles are enough to imple-

ment various applications and a torus topology is adopted for its simplicity. The proposed processor

can overcome the above-mentioned problems of general digital ANN such as low computing speed,

a lack of reconfigurability and heavy communication load.

The contribution of this chapter are as follows: (1) The neural processor by NoC architecture

can work asynchronously in different tiles and work in parallel in the same tile to make the system

computing speed of Connection-Per-Second (CPS) higher. (2) The proposed processor is recon-

figurable, because weight value, activation function and implementation information can be easily

changed by sending new packets. It is also expandable, because the tiles can be easily added or

removed. Thus, it can overcome problems of various applications. (3) The packet transmission

method of NoC is more efficient and intelligent than a general digital ANN, thus it can reduce com-

munication load. We also design our proposed NoCNN using 90-nm CMOS technology to evaluate

the performance.

The remainder of this chapter is organized as follows. Section 7.2 gives an overview of the

related works and our design motivation. Section 7.3 describes the key building blocks of neural

processor with NoC architecture. Section 7.4 presents performance evaluation and implementation

results. Section 7.5 concludes by summarizing the NoCNN processor.

7.2 Related Works

The architecture of digital ANN has good expansibility, high precision and a lot of EDA tools which

support the digital hardware implementation [125]. Different kinds of architectures were proposed

for digital ANN, such as slice architecture [155], systolic array devices [49], single instruction mul-

tiple data (SIMD) [147], and so on. These architectures make hardware ANN develop quickly, but

they have some drawbacks. For example, the performance of computing speed of the slice architec-

ture and the reconfigurability of systolic array architecture are not good. The SIMD architecture has

a little improvement in performance, whereas the complex mapping method limits it [26]. Further-

more, most of these architectures are suffer from the interconnection problem because of the global

point-to-point shared buses.
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(Processing Element)
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Figure 7.1 20 tiles NoCNN processor

These years, a lot of research groups contributed their effort to improve the digital ANN. How-

ever, the design method is still based on the existing architectures. A new design method with new

architecture is required to overcome the problems of interconnection, computing speed, reconfig-

urability. NoC is such an architecture that can solve the communication problem and support high

computing speed for large size SoC design [75][68], such as Intel 80-tile NoC chip [156]. There-

fore, we focuses on proposing NoC architecture to build a new type of digital ANN to overcome the

drawbacks in the traditional ANNs.

7.3 NoC Architecture for Building Neural Computing Processor

The proposed NoCNN processor contains 20 tiles arranged in a 4x5 2-D torus network. The

overview of the architecture is shown in Fig. 7.1. In this section, the key building blocks for whole

processor are described in detail. One neuron is designed and then four neurons are integrated in

one PE (Processing Element), and the router is designed to connect with PE as one tile. Also the

packet format of NoC is described. Finally, such 20 tiles are connected with each other as 2-D torus

topology to build the NoCNN processor.

7.3.1 PE Architecture

The most common ANN is a multi-layer perceptron as shown in Fig. 7.2. It has one input layer,

several hidden layers and one output layer. Neurons need to transmit the computation results to
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Figure 7.2 Structure of a multi-layer perceptron

every neurons in the next layer. The computation can be described by the the Eqs.(7.3.1) and (7.3.2)

same as [58]

H
(s)
k =

Ns−1∑
j=1

w
(s)
kj o

(s−1)
j . (7.3.1)

o
(s)
k = f(H

(s)
k ) . (7.3.2)

H
(s)
k is a weighted sum of the kth neuron in the sth layer; o(s−1)

j is an output of the jth neuron

in the (s − 1)th layer, Ns−1 denotes the total number of neurons in the (s − 1)th layer which

connect with this kth neuron. f(H
(s)
k ) is an activation function computed on the weighted sum

H
(s)
k . Logarithmic sigmoid function Eq.(7.3.3) and hyperbolic tangent sigmoid function Eq.(7.3.4)

are typical activation functions.

f(x) = 1/(1 + e−x) . (7.3.3)

f(x) = (ex − e−x)/(ex + e−x) . (7.3.4)

From these equations, we know that one hardware neuron requires a high performance and

high precision multiplication block for computation and memory block for holding weight value.

Besides, an adder block and an activation function block are also required [1]. Block diagram of a

single neuron is shown in Fig. 7.3. RAM is used to store weight values of this neuron and controlled
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Figure 7.3 A single neuron architecture

via the weight address. The input data are selected by MUX (multiplexer) and then multiplied with

weight value by the multiplier. When all the products have been added, this sum will be used for

searching output via the activation function. The activation function is implemented by means of a

lookup table (LUT) which is stored in RAM. 32-bit fixed-point architecture is used for our design

to suit the requirement of higher precision compared with 16-bit fixed point. One sign bit, six

integer bits, and twenty-five fraction bits can cover the range of [-64,64) with a quantization error

of 2.98023224E-8.

In our design, four neurons in one layer are integrated in one Processing Element (PE) for

reducing total transmission packet and communication load. These four neurons share one LUT to

reduce design cost. The PE also requires a decoder, an encoder, a controller and a weight address

generator as shown in Fig. 7.4. When the input packet arrived at the PE, a decoder decodes the

neuron address to get the number of the neuron to be used and transmits the decoded input to each

neuron in this PE. When the Controller receives the decoded address information from the decoder,

it controls the weight address generator to generate the virtual address and transmit to each neuron.

Then the generated address will control the RAM which stores the weight values. When all neurons

in this PE complete their calculation and LUT task, the outputs of them are transmitted to the

encoder. It holds outputs as one single packet. In this packet, each payload part comes from each

neuron and header part comes from one RAM which is loaded in advance of design.

If more than four neurons are designed in one PE, it could reduce the communication load more,

whereas the system performance may be low. Also we observe that the total number of neurons of a

general digital ANN [1] is always every fourth such as 4, 8, 12, and so on. Therefore, 4 neurons in

one PE could achieve the better trade-off between performance and communication load. We will

explain the reduction of communication load in Sect. 7.4.
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Figure 7.4 Architecture of a PE

7.3.2 Router Architecture and Packet Format

An 1GHz 5-port wormhole packet-switched router of 32 GB/s bandwidth is designed. Each port

has two links for dead-lock free routing and reducing the latency. The block diagram of this 4-

stage pipeline router and pipelining are shown in Fig. 7.5. Five input ports and output ports are

connected with four directions of west, south, east and north and one PE. Each header flit needs

to be processed through the steps of Routing Computation (RC), Virtual-channel Allocation (VA),

Switch Allocation (SA) and Switch Traversal (ST). RC and VA steps will not be processed for

payload flits. Assume that a header flit arrives at an input port, and it needs to be decoded and

buffered according to the flit information by RC block in the first stage. The header flit then chooses

a channel by VA block in the second stage. The flit travels through the selected virtual-channel and

chooses a proper output port by SA block in the third stage. In this stage, each SA block will get

5-bit input from each input port and send 5-bit output signal to switch crossbar to control the output

port. Flit travels through the crossbar switch in the fourth stage.

The schematic diagram of the switch allocator is shown in Fig. 7.6. It consists of three parts:

decoder, arbiter and hold logic. In the decoder, 5-bit from header of the input packet is decoded,

where 2-bit is used for partitioning the type of the flit, and 3-bit for output choice. The second part
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Figure 7.5 Block diagram of router and pipeline processing

is a fixed-priority arbiter. The port-s04 which connects with PE will get a high priority, because the

data processing time in PE is longer than that in router transmission. The hold logic part is designed

to hold the selected port for the payload.

The NoC packet format and routing protocol are shown in Fig. 7.7. Each packet contains one

header and some payloads, and the number of payload depends on the number of neurons that are

used in this PE connecting with this router. Thus the number of payload is always one, two, three or

four. The header information contains 1 bit for VCN (Virtual Channel Number), 2 bits for FT (Flit

Type), 4 bits for UN (Used Neuron), 15 bits for PCI (PE Control Information), and 3 bits for each

DA (Destination Address). One packet can store four DAs. The payload contains 2 bits for FT and

32 bits for DFN (Data from the Former Neuron).

7.3.3 Architecture of 4x5 NoCNN processor

The proposed 4x5 NoCNN processor consists of the key building blocks of PE and a router ar-

ranged in a 4x5 2D torus topology. We investigated real applications of ANNs in various fields and
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implemented five of them [116, 143, 119, 144, 157] as shown in Fig. 7.8.

In Fig. 7.8, three colors means different states of tiles, respectively. Blue means Whole-Work

tile where all neurons in the PE of this tile work, yellow means Partly-Work tile where some of

neurons work, and white means Sleep tile where no neurons work. Fig. 7.8(a) shows how to

implement an ANN with 3, 20, 20, 1 neurons in each layer: One PE in first column of the network

is used as input layer (three neurons in this PE work, the rest one neuron does not work); five PEs

in the second column of the network are used as the first hidden layer; five PEs in the third column

of the network are used as the second hidden layer; one PE in the fourth column of the network is

used as an output layer (one neuron in this PE work, other three neurons need not work). The other

four applications use the same implementation method as shown in Fig. 7.8(b), (c), (d) and (e). The

4x5 NoCNN processor can implement different applications with at most 20-20-20-20 architecture.

If more neurons are required for another application, the network topology can be easily extended

by adding the tiles. And packet information of address control may be a little different. But, the
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6 signal bits 25 fraction bits

Figure 7.7 NoC Packet Format and its information

implementation method is universal.

7.4 Implementation and Performance Evaluation

The 4x5 NoCNN processor is designed using the tools of Synopsys Design Compiler and IC Com-

piler in 90-nm CMOS process technology with one Poly and nine metals [158]. The functional

blocks of the chip and individual tile are layouted as shown in Fig. 7.9. The chip size is 25 mm2,

and it contains about 61 million 2NAND cells. Each 1.152 mm2 tile contains about 3 million cells

and dissipating 1.1317 W power at 1.2 V supply.

The features and the performance of the proposed NoCNN processor are as follows.

7.4.1 Reconfigurability and Extensibility

The proposed NoCNN processor is reconfigurable. We know that the information which stored in

RAM could be easily changed according to the character of RAM. The weight value and activa-

tion function are stored in RAMs in our proposed system, thus they can be changed for different

ANN applications by reloading the data into RAMs. Also, different topology of the ANN can be
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Figure 7.8 4x5 NoCNN processor for five ANN applications
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implemented on the same processor which is controlled by sending new packets.

The NoCNN processor is extendable. We use a hierarchical design flow in a building block

style. The key block of PE and a router are designed separately to compose the tile. This tile is

added into the ASIC design library as a hardcore. In this work, 4x5 NoCNN processor is structured

by such 20 hardcores and arranged as 4x5 torus topology. We could easily add or delete any tile of

NoCNN to meet the size of a target ANN.

These features of reconfigurability and extensibility make NoCNN implementation possible for

different applications in the same processor without any hardware change, while the other existing

hardware ANNs must be changed for each application.

7.4.2 Communication Load Evaluation

Traditional digital ANNs use bus-based point to point (P2P) architecture for the data transmission.

However, the proposed NoCNN processor uses NoC architecture to transmit the data by routers.

We assume each neuron in the same layer needs to transmit 1 packet/pattern to each neuron of the
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Table 7.1 Comparison of communication load
Topology Type Packet number Packet size (bit) Total size (bit/pattern)

3-20-20-1
P2P 480 32 15360

NoC 35 136,170 5780

4-12-1
P2P 60 32 1920

NoC 6 170 1020

4-7-13-1
P2P 132 32 4224

NoC 14 68,136,170 2108

4-5-5-1
P2P 50 32 1600

NoC 8 68,170 1054

5-20-10-2
P2P 320 32 10240

NoC 35 68,101,170 4182

next layer. The communication load of five real applications (see Sect. 7.3.3) is evaluated by using

the proposed NoC methodology and compared with a general P2P bus architecture, as shown in

Table 7.1. For example, the first application of ANN has 3, 20, 20 and 1 neurons in each layer.

With the P2P architecture, the number of packets is 480 (3x20+20x20+20x1) and each packet has

the same bit size of 32. Thus the total communication load is 15360 bits/pattern. If we use the

NoC architecture for transmission, the packet number and packet size are decided by the number

of tiles and the number of neurons in each tile. From Fig. 7.8(a), the tile for input layer needs to

transmit 5 packets to the next hidden layer and the packet size is 136 bits/pattern (34 bits x (1 header

+ 3 payloads)). The other layers follow the same rule. Thus the total communication load is 5780

bits/pattern (136 bits x 5 + 170 bits x 30).

As shown in Table 7.1, the communication load of total packet size per pattern can be reduced by

34.4%∼62.4% with the proposed NoC architecture. This reduction is caused by the smart packet-

based data transmission mechanism.

7.4.3 Performance Evaluation

Performance is evaluated for these five applications by NIRGAM NoC simulator [135]. The latency

of each application is shown in Fig. 7.10, where the red bar means the amount of communication

on the southward channel of the router, the blue bar that on the northward channel, the green bar

that on the eastward channel and the yellow bar that on the westward channel.

The three of the five applications are chosen for analysis and comparison between our design,
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Figure 7.10 Average latency per flit of three applications



100

and the others. The critical path of the first application is appeared in the date transmission from

the first hidden layer to the second hidden layer. It costs 37.06ns. The system running time of

the second and the third applications are 7.664ns and 22.163ns, respectively. From the result, we

surmise that the latency depends on the topology, especially the number of the neurons of an input

and a hidden layers. The CPU time of using NIRGAM NoC simulator for three applications are

11.2s, 7.8s, 8.6s, respectively.

The performance is evaluated by the Connection-Per-Second (CPS), which is defined as the

rate of multiplication and accumulation operations. However, some systems could get a high per-

formance of computing speed according to the large number of neurons. So the value of CPS is

normalized by dividing it by the number of weights, that is, the connection per second per weight

number (CPSPW). CPS and CPSPW for first three applications are compared between our pro-

posed NoCNN processor and other existing digital ANNs [28][1][107] as shown in Table 7.2. For

the detailed information of the other ANNs listed here, please refer to references.

In Table 7.2, MD-1220 was one of the first implementations of slice architecture for ANN, but

it could not implement three applications. WSI is a digital ANN with SIMD architecture, but it

could not implement three applications for the low precision. MA-16 is a digital ANN with systolic

array architecture, it could not implement three applications due to the limit number of neurons.

Comparing with other digital ANNs, the proposed NoCNN processor has the highest performance

of CPS and CPSPW for different applications. Compared with the existing hardware ANNs with

Max CPS and CPS of application-1, application-2 and application-3, the proposed NoCNN proces-

sor can increases CPS by 158%, 268%, 63.8% and 189%, respectively. And compared with the

existing hardware ANNs with CPSPW of application-1, application-2 and application-3, the pro-

posed NoCNN processor can increases them by 266%, 61.3% and 189%, respectively. We analyze

this result as follows: compared with the slice architecture (e.g. Lneuro-2.3) which used a bus con-

trol, the NoC control mechanism is more suited for the Multi-Processor SoC; the digital ANN with

SIMD architecture (e.g. N64000, NC3001 and NM6403) can just implement ANN layer by layer,

whereas the NoCNN processor could implement different layers’ neurons at the same time.

The proposed NoCNN processor is also discussed comparing the system running time for three

different applications with existing digital ANN as shown in Fig. 7.11, where system running time

means average time per pattern to finish all transmission. From Fig. 7.11, the proposed NoCNN

processor has the lowest system running time compared with other four digital ANNs.
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Table 7.2 Comparison of CPS and CPSPW

Name (year) Architecture Precision Neurons
CPS CPSPW

Maxa App1b App2 App3 App1 App2 App3

Micro devices
Slice 1x16b 8 8.9M nac na na na na na

MD-1220(94)

Philips
Slice 16, 32b 12PE 720M 440M 340M 300M 0.92M 5.76M 2.27M

Lneuro-2.3(04)

Inova
SIMD 1-16b 64PE 870M 149M 76.9M 70.31M 0.31M 1.28M 0.53M

N64000(02)

Hitachi
SIMD 9x8b 144 300M na na na na na na

WSI(02)

Neuricam
SIMD 32b 1, 32 1G 344M 177M 195.31M 0.72M 2.95M 1.48M

NC3001(04)

RC Module
SIMD 64x64b 1, 64 1.2G 206M 106M 116.97M 0.43M 1.77M 0.89M

NM6403(04)

Siemens
Systolic array 16b 16PE 400M na na na na na na

MA-16(94)

NoC ANN
NoC 1-32b 25PE 3.1G 1.62G 557M 867M 3.37M 9.29M 6.57M

4x5 NoCNN

aMax: the highest CPS of the neural processor or chip which can be find in reference.
bApp1: Application 1
cna: not available
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Figure 7.11 Comparison of system running time

7.5 Conclusion

This chapter presents an NoC design for a 20-tile reconfigurable and high performance NoCNN pro-

cessor in a 90-nm CMOS technology. It could achieve 3.1G CPS, while power dissipation is 1.1317

W at 1.2 V supply and 25 mm2 chip area. The simulation results indicate that the proposed NoCNN

processor is effective in increasing performance of computing speed and reducing communication

load. From these results, our proposed architecture is promising for higher performance and lower

communication load of a digital ANN.



Chapter 8

Conclusions

Artificial Neural Networks (ANN) have been proposed as one of well-known parallel computing

systems to solve various problems and researched more than half of the century. Hardware im-

plementation of ANN was researched very actively in the 1990’s, while its development remains

stagnant in these years according to the design cost and interconnection problems. This thesis fo-

cuses on improving the existing FPGA-based ANN and building a new NoC architecture for ANN.

• In Chapter 1 and 2, a historical review, research motivation and preliminaries were explained.

• In Chapter 3, an FPGA-based general architecture for the implementation of a multilayer

ANN was proposed. The circuit for each application can be easily generated by setting the

parameter values to match the particular network size and running the synthesis. Similarly to

a particular network, the best solution of the architecture design of pipeline and layer mul-

tiplexing is calculated by MATLAB procedure, by returning the optimal pipeline depth and

the control signal value in each state of the control block (FSM). We exploited the capabil-

ity of a given FPGA board by assigning the proper pipeline depth, so that a higher resource

utilization rate, global forwarding speed and high performance were achieved. Our proposed

architecture makes an FPGA implementation easy for a given ANN at a short time by varying

the data path. It also provides the feasibility to perform a larger neural network in a popular

FPGA board at a relatively higher speed by using the partly pipeline method. So it is possible

to develop a neural device for commercial or industrial application by our method.

• In Chapter 4, a sophisticated NoC architecture with off-chip learning was proposed to satisfy

various applications of the complex feedforward neural network. We designed this system

aiming at low latency, high throughput and low power consumption. This system is reconfig-

urable, because the weight values and activation functions can be changed as desired. We can
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also change the topology and routing algorithms of the NoCs by sending new data to meet

different kinds of feedforward neural networks, so this system is easily extended. We can

design this system in the style of cell by cell and can easily add or remove any cell to comply

with different applications. The proposed NoC system can reduce the communication load of

total packet size and improve the system performance of CPS. This proposed NoC mapping

method can make the digital ANN more efficient.

• In Chapter 5, a multiple NoC models are designed for low power and implemented for hard-

ware ANN. This NoC architecture can implement both the small size ANN and the large

size ANN. The proposed architecture is reconfigurable to suit for different applications of

FF-ANN, by changing the weight value, activation function, and the number of neurons and

layers. The hardware of it is reparable which the faulty neurons and channels can be replaced

by good one. Compared to the traditional P2P data transmission method, it can reduce the

communication load about 30.25%-58.4%, and it can increase system performance of CPS

about 25%-47.1% compared with the existing hardware ANN. The number of PE in the pro-

posed multiple NoC model is 16, but it can be changed arbitrarily.

• In Chapter 6, an NoC architecture with absolute address based routing strategy method is

proposed for high performance hardware FF-ANN. An absolute address method based router

model was developed. It can reduce the header size of the packet compared with the router

model in the former NoC and can implement different routing algorithms with a little hard-

ware change. Simulation results show that it can reduce communication load about 54.6%∼66.2%

compared with the existing P2P architecture and 12.6%∼13.8% compared with the former

NoC architecture. It can also increase CPS by 96.6% and CPSPW by 14.0% compared with

other hardware ANNs, and increase CPS 26.6% and CPSPW 13.97% compared with the for-

mer NoC-ANN. Consequently, the FF-ANN with the proposed NoC architecture is effective

in reducing communication load and increasing performance.

• In Chapter 7, an NoC design for a 20-tile reconfigurable and high performance NoCNN pro-

cessor in a 90-nm CMOS technology. It could achieve 3.1G CPS, while power dissipation

is 1.1317 W at 1.2 V supply and 25 mm2 chip area. The simulation results indicate that the

proposed NoCNN processor is effective in increasing performance of computing speed and

reducing communication load. From these results, our proposed architecture is promising for

higher performance and lower communication load of a digital ANN.
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In conclusion, our proposed hardware design for ANN could solve the performance problem of

FPGA-based ANN and it could suit for the real applications which need high performance. Fur-

thermore, NoC architecture was proposed instead of the traditional bus-based P2P hardware ANN

to solve the problems of performance, communication load and reconfigurability.

Finally, we list some future work about NoC-ANN as follows:

• Application specific NoC (ASNoC) for ANN. Different from the regular NoC architecture,

the topology of ASNoC is designed according to the application, which results in high per-

formance and low power consumption. But the design complexity of ASNoC is much higher

than the regular NoC, and the ASNoC architecture could used for neural network.

• Other developments for NoC-ANN. Such as new routing algorithm, a new floorplan, re-

designed neuron, and so on.

In the long history, ANN ebbed and flowed. The new technology always leads its progress.

Looking into the future, with the development of NoC and other new technology, the ANN will

have another flow.



106



Publication List

Journal Paper

1. Y. Dong, C. Li, Z. Lin, and T. Watanabe, “A Hybrid Layer-multiplexing and Pipeline Architecture

for Efficient FPGA-based Multilayer Neural Network,” IEICE NOLTA, 2011. (to be published)

2. Y. Dong, C. Li, Z. Lin, H. Zhang, and T. Watanabe, “High performance feedforward neural net-

work mapped by noc architecture with a new routing strategy implementation method,” Journal of

Signal Processing (JSP), vol. 15, no. 3, pp. 113–122, Mar. 2011.

3. Y. Dong, C. Li, Z. Lin, and T. Watanabe, “Multiple network-on-chip model for high performance

neural network,” IEEK trans. Journal of Semiconductor Technology and Science (JSTS), vol. 10,

no. 2, pp. 28–36, May 2010.

4. Y. Dong, C. Li, K. Kumai, Y. H. Li, Y. Wang, and T. Watanabe, “A new flexible network on

chip architecture for mapping complex feedforward neural network,” Journal of Signal Processing

(JSP), vol. 13, no. 6, pp. 453–462, Nov. 2009.

Conference Paper with Review

5. C. Li, Y. Dong, and T. Watanabe, “Region based Placement Algorithm for Low-power FPGA

Architecture,” in Proc. ISLPED’11, Aug. 2011. (accepted)

6. C. Li, Y. Dong, and T. Watanabe, “New Power-Efficient FPGA Design Combining with Region-

Constrained Placement and Multiple Power Domains,” in Proc. NEWCAS’11, Jun. 2011. (ac-

cepted)

107



108

7. Y. Dong, C. Li, H. Liu, and T. Watanabe, “A high performance digital neural processor design by

network on chip architecture,” in Proc. VLSI-DAT’11, Apr. 2011, pp. 243–246.

8. Z. Lin, Y. Dong, Y. Li, and T. Watanabe, “A hybrid architecture for efficient fpga-based imple-

mentation of multilayer neural network,” in Proc. APCCAS’10, Dec. 2010, pp. 616–619.

9. Y. Dong, Z. Lin, and T. Watanabe, “An efficient hardware routing algorithms for noc,” in Proc.

TENCON’10, Nov. 2010, pp. 1525–1530.

10. C. Li, Y. Dong, and T. Watanabe, “A novel low power fpga architecture,” in Proc. FIT’10, Sep.

2010, pp. 65–68.

11. Y. Dong, Z. Lin, Y.Li, and T. Watanabe, “High performance implementation of neural networks

by networks on chip with 5-port 2-virtual channels,” in Proc. ISCAS’10, May 2010, pp. 381–384.

12. Y. Dong, Z. Lin, and T. Watanabe, “High performance autoassociative neural network using

network on chip,” in Proc. ICISE’09, Dec. 2009, pp. 4015–4018.

13. Y. Dong, K. Kumai, Z. Lin, Y. H. Li, and T. Watanabe, “High dependable implementation of

neural networks with networks on chip architecture and a backtracking routing algorithm,” in Proc.

PrimeAsia’09, Nov. 2009, pp. 404–407.

14. Y. Dong, Y. Wang, Z. Lin, and T. Watanabe, “High performance and low latency mapping for

neural network into network on chip architecture,” in Proc. IEEE ASICON’09, Oct. 2009, pp.

891–894.

15. Y. Dong and T. Watanabe, “Mixed noc architecture for mapping complex feedforward neural

network,” in Proc. NCSP’09, Mar. 2009, pp. 609–612.

16. Y. Dong and T. Watanabe, “High performance noc architecture for two hidden layers bp neural

network,” in Proc. ISOCC’08, Nov. 2008, pp. 269–272.



Bibliography

[1] B. Muller, J. Reinhardt, and M. Strickland, Neural Networks: An Introduction (Physics of

Neural Networks), Springer, 2002.

[2] D. Graupe, Principles of Artificial Neural Networks, Advanced Series in Circuits and Sys-

tems, World Scientific, 2007.

[3] T. Shima and M. Tukada, Neural Network and Neural device, Morikita publisher, 1997.

[4] W.S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”

Bulletin of Mathematical Biology, vol.5, no.4, pp.115–133, Dec. 1943.

[5] F. Rosenblatt, Principles of neurodynamics, Spartan Books, 1962.

[6] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry, MIT,

1969.

[7] W.A. Little, “The existence of persistent states in the brain,” Bulletin of Mathematical Biol-

ogy, vol.19, no.1-2, pp.101–120, Feb. 1974.

[8] J. Hopfield, “Neural networks and physical systems with emergent collective computational

abilities,” Proc. National Academy of Sciences, p.2554C2558, 1982.

[9] P.J. Werbos, “Generalization of backpropagation with application to a recurrent gas market

model,” Neural Networks, vol.1, pp.339–356, 1988.

[10] P.J. Werbos, “Backpropagation: Past and future,” IJCNN88, pp.343–353, 1988.

[11] P.J. Werbos, “Backpropagation through time: what it does and how to do it,” Proceedings of

the IEEE, vol.78, pp.1550–1560, 1990.

109



110

[12] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning representations by back-

propagating errors,” Nature, vol.323, pp.533–536, Oct. 1986.

[13] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Learning internal representations by error

propagation, Chapter 1, MIT Press, 1986.

[14] B. Denby, “The use of neural networks in high energy physics,” MIT, vol.5, no.4, pp.505–

549, Jul. 1993.

[15] A. Singera, “Implementations of artificial neural networks on the connection machine,” Par-

allel Computing, vol.14, no.3, pp.305–315, Aug. 1990.

[16] D.A. Pomerleau, “Neural network simulation at warp speed: How we got 17 million connec-

tions per second,” Proc. IJCNN’88, pp.143–150, 1988.

[17] G. Chinn, K. Grasjki, C. Chen, C. Kuszmaul, and S. Tomboulian, “Systolic array implemen-

tation of neural nets on the MasPar MP-1 massively parallel processor,” Proc. IJCNN’90,

pp.169–173, 1990.

[18] S. Shams and J. Gaudiot, “Massively parallel implementations of neural networks: a com-

perative analysis,” IEEE Trans. Computer, vol.14, no.3, pp.305–315, Aug. 1990.

[19] M. Witbrock and M. Zagha, “An implementation of back-propagation learning on gf11, a

large simd parallel computer,” Parallel Computing, vol.14, pp.329–346, 1990.

[20] T. Watanabe, Y. Sugiyama, T. Kondo, and Y. Kitamura, “Neural network simulation on a

massively parallel cellular array processor: Aap-2,” Proc. IJCNN’89, pp.155–161, 1989.

[21] L. Vuurpijl, “Using transputer systems for neural network simulations,” Proc. SNN Sympo-

sium on Neural Networks, pp.27–28, 1992.

[22] C. Leung and R. Setiono, “Efficient neural network training algorithm for the Cray Y-MP

supercomputer,” Proc. IJCNN’93, pp.1943–1946, 1993.

[23] M. Yasunaga, N. Masuda, M. Yagyu, M. Asai, M. Yamada, and A. Masaki, “Design, fabri-

cation and evaluation of a 5-inch wafer scale neural network LSI composed of 576 digital

neurons,” Proc. IJCNN’90, pp.527–535, Jun. 1990.



111

[24] N. Mauduit, M. Duranton, and J. Gobert, “Lneuro 1.0: A piece of hardware lego for building

neural network systems,” IEEE Trans. Neural Networks, vol.3, no.3, pp.414–422, May 1992.

[25] A.R. Omondi, J.C. Rajapakse, and M. Bajger, FPGA Implementations of Neural Networks,

Springer, 2006.

[26] C.S. Lindsey, “Neural networks in hardware: Architectures, products and applications,” lec-

ture notes of Neural Networks, Aug. 2002.

[27] J.N.H. Heemskerk, “Overview of neural hardware. neurocomputers for brain-style process-

ing. design, implementation and application,” Draft version of PhD Thesis, 1995.

[28] C.S. Lindsey and T. Lindblad, “Review of hardware neural networks: a user’s perspective,”

Plenary talk given at 3rd Workshop on Neural Networks, 1994.

[29] M. Holler, “VLSI implementation of learning and memory systems: a review,” Advances in

Neural Information Processing Systems, vol.3, 1991.

[30] E.V. Keulan, S. Colak, H. Withagen, and H. Hegt, “Neural networks hardware performance

criteria,” Proc. IJCNN’94, pp.1885–1888, 1994.

[31] C.S. Lindsey and B. Denby, “A study of the intel etann VLSI neural network for an electron

isolation trigger,” Fermi National Accelerator Laboratory, Oct. 1992.

[32] M. Duranton, “L-neuro 2.3: a VLSI for image processing by neural networks,” Proc. Micro-

electronics for Neural Networks, pp.157–160, 1996.

[33] D. Hammerstrom, “A VLSI architecture for high-performance, low-cost, onchip learning,”

Proc. Neural Networks, pp.537–544, 1990.

[34] M. Yasunaga, N. Masuda, M. Yagyu, M. Asai, K. Shibata, M. Ooyama, and M. Yamada,

“A self-learning neural network composed of 1152 digital neurons in wafer-scale lsis,” Proc.

IJCNN’91, pp.1844–1849, 1991.

[35] P. Ienne, I. f Ecublens, and G. Kuhn, “Digital systems for neural networks,” Digital Signal

Processing Technology, volume CR57 of Critical Reviews Series, pp.314–345, 1995.



112

[36] A. Mano, “A processor approach to build an artificial neural network,” Proc. ICCA’03,

pp.147–154, 2003.

[37] S. McBader, L. Clementel, A. Sartori, A. Boni, and P. Lee, “Softtotem: An fpga imple-

mentation of the totem parallel processor,” Lecture Notes in Computer Science, vol.2438,

pp.63–70, 2002.

[38] P.A. Chevtchenko, D.V. Fomine, V.M. Tchernikov, and P.E. Vixne, “Using of microprocessor

nm6403 for neural net emulation,” Proc. Virtual Intelligence or Dynamic Neural Networks,

pp.242–252, Mar. 1999.

[39] J. Beichter, N. Bruels, E. Meister, U. Ramacher, and H. Klar, “Design of general-purpose

neural signal processor,” Proc. Microelectronics for Neural Networks, pp.311–315, 1991.

[40] J.P. LeBouquin, “Ibm microelectronics zisc, zero instruction set computer,” Proc. World

Congress on Neural Networks, pp.5–9, 1994.

[41] ZISC78 Datasheet, Silicon Recognition, Inc., May 2002.

[42] B.E. Boser, E. Sackinger, J. Bromley, Y. leCun, and L.D. Jackel, “Hardware requirements for

neural network pattern classifiers: A case study and implementation,” IEEE Micro, vol.12,

no.1, pp.32–40, 1992.

[43] J. Alspector, A. Jayakumar, and S. Luma, “Experimental evaluation of learning in a neural

microsystem,” Proc. NIPS’91, pp.871–878, 1992.

[44] P. Masa, K. Hoen, and H. Wallinga, “70 input, 20 nanosecond pattern classifier,” Proc.

IJCNN’94, pp.1854–1859, 1994.

[45] H. Eguchi, T. Furuta, H. Horiguchi, S. Oteki, and T. Kitaguchi, “Neural network LSI chip

with on-chip learning,” Proc. IJCNN’91, pp.453–456, 1991.

[46] A. Kramer, “Array-based analog computation: principles, advantages and limitations,” Proc.

MicroNeuro, pp.68–79, 1996.

[47] Y. Choi, K. Ahn, and S. Lee, “Effects of multiplier output offsets on on-chip learning for

analog neuro-chips,” Neural Processing Letters, vol.4, pp.1–8, 1996.



113

[48] C. Lehmann, M. Viredaz, and F. Blayo, “A generic systolic array building block for neural

networks with onchip learning,” IEEE Trans. Neural Network, vol.4, no.3, pp.400–407, May

1993.

[49] S. Mahapatra and R.N. Mahapatra, “Mapping of neural network models onto systolic arrays,”

Journal of Parallel and Distributed Computing, vol.60, no.6, pp.677–689, Jun. 2000.

[50] Q. Wang, A. Li, Z.C. Li, and Y. Wan, “A design and implementation of reconfigurable archi-

tecture for neural networks based on systolic arrays,” Advances in Neural Networks, no.3973,

pp.1328–1333, 2006.

[51] U. Muller, A. Gunzinger, and W. Guggenbuhl, “Fast neural net simulation with a dsp proces-

sor array,” IEEE Trans. Neural Networks, vol.6, no.1, pp.203–213, 1995.

[52] I. Milosavlevich, B. Flower, and M.J. PANNE, “a parallel computing engine for connectionist

simulation,” Proc. MicroNeuro, pp.363–368, 1996.

[53] J. Kennedy and J. Austin, “A parallel architecture for binary neural networks,” Proc. Mi-

croNeuro, pp.225–231, 1997.

[54] M. Schaefer, T. Schoenauer, C. Wolff, G. Hartmann, H. Klar, and U. Ruckert, “Simulation

of spiking neural networks - architectures and implementations,” Neurocomputing, vol.48,

no.1-4, pp.647–679, 2002.

[55] B. Girau, “Building a 2d-compatible multilayer neural network,” Proc. IJCNN’00, pp.59–64,

2000.

[56] B. Girau, “Fpna: interaction between fpga and neural computation,” Journal on Neural Sys-

tems, vol.10, no.3, pp.243–259, 2002.

[57] B. Girau, “On-chip learning of fpga-inspired neural nets,” Proc. IJCNN’01, pp.222–227,

2001.

[58] A. Omondi and J. Rajapakse, FPGA Implementations of Neural Networks, Springer, 2006.



114

[59] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, , and D. Burger, “Clock rate versus ipc: the end

of the road for conventional microarchitectures,” Proc. Annual International Symposium on

Computer Architecture, pp.248–259, 2000.

[60] A. Iyer and D. Marculescu, “Power and performance evaluation of globally asynchronous

locally synchronous processors,” Proc. Annual International Symposium on Computer Ar-

chitecture, pp.158–168, 2002.

[61] M. Krstic, E. Grass, F.K. Guerkaynak, and P. Vivet, “Globally asynchronous, locally syn-

chronous circuits: Overview and outlook,” IEEE Design & Test of Computers, vol.24, no.5,

pp.430–441, 2007.

[62] L. Benini and G.D. Micheli, “Networks on chips: A new soc paradigm,” IEEE Computer,

vol.35, no.1, pp.70–78, 2002.

[63] T. Claasen, “An industry perspective on current and future state-of-the-art in system-on-chip

(soc) technology,” Proceedings of the IEEE, vol.94, no.6, pp.1121–1137, 2006.

[64] R.X. Gu and M.I. Elmasry, “Power dissipation analysis and optimization of deep submi-

cron cmos digital circuits,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol.31, no.5,

pp.707–713, May 1996.

[65] Q.T. Huang, F. Piazza, P. Orsatti, and T. Ohguro, “The impact of scaling down to deep sub-

micron on cmos rf circuits,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol.33, no.7,

pp.1023–1036, Jul. 1998.

[66] D. Sylvester and K. Keutzer, “A global wiring paradigm for deep submicron design,” IEEE

Trans. COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,

vol.19, no.2, pp.242–252, Feb. 2000.

[67] J.W. Mcpherson, “Reliability challenges for 45nm and beyond,” Proc. DAC’06, pp.176–181,

Jul. 2006.

[68] L. Benini and G.D. Micheli, Networks On Chips: Technology and tools, Morgan Kaufmann,

2005.



115

[69] T. Mudge, “Power: A first-class architectural design constraint,” IEEE Computer, vol.34,

no.4, pp.52–58, Apr. 2001.

[70] V. Raghunathan, M.B. Srivastava, and R.K. Gupta, “A survey of techniques for energy effi-

cient on-chip communication,” Proc. DAC’03, pp.900–905, Jun. 2003.

[71] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-Chip Verification - Methodology and

Techniques, Kluwer Academic, 2001.

[72] W. Yang, M.K. Chung, and C.M. Kyung, “Current status and challenges of soc verification

for embedded systems market,” Proc. SOC’03, pp.213–216, Sep. 2003.

[73] A. Allan, D. Edenfeld, J.W. Joyner, A.B. Kahng, M. Rodgers, , and Y. Zorian, “2001 tech-

nology roadmap for semiconductors,” IEEE Computer, vol.35, no.1, pp.42–53, 2002.

[74] T. Schattkowsky, “Uml 2.0 - overview and perspectives in soc design,” Proc. DATE’05,

pp.822–833, 2005.

[75] A. Jantsch and H. Tenhunen, Networks on Chip, Kluwer Academic Publishers, 2003.

[76] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Öberg, M. Millberg, and D. Lindqvist, “Net-
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[89] C. Ciordas, T. Basten, A. Rădulescu, K. Goossens, and J. van Meerbergen, “An event-based

network-on-chip monitoring service,” ACM Trans. Design Automation of Electronic Sys-

tems, vol.10, no.4, pp.702–723, Oct. 2005. HLDVT’04 Special Issue on Validation of Large

Systems.

[90] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “Qnoc: Qos architecture and design process

for network on chip,” Journal of Systems Architecture, vol.50, no.2-3, pp.105–128, Feb.

2004.



117

[91] K. Lee, S.J. Lee, and H.J. Yoo, “A distributed crossbar switch scheduler for on-chip net-

works,” Proc. Custom Integrated Circuits Conference, pp.671–674, Sep. 2003.

[92] K. Lee, S.J. Lee, and H.J. Yoo, “A high-speed and lightweight on-chip crossbar switch

scheduler for on-chip interconnection networks,” Proc. International Conference on Euro-

pean Solid-State Circuits, pp.453–456, Sep. 2003.

[93] K. Goossens, J. Dielissen, O.P. Gangwal, S.G. Pestana, A. Rbdulescu, and E. Rijpkema,

“A design flow for application-specific networks on chip with guaranteed performance to

accelerate soc design and verification,” Proc. DATE’05, pp.1182–1187, 2005.

[94] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed bandwidth using looped con-

tainers in temporally disjoint networks within the nostrum network on chip,” Proc. DATE’04,

pp.890–895, Feb. 2004.

[95] P. Guemer and A. Greiner, “A generic architecture for on-chip packet-switched intercon-

nections,” Proc. International Conference on European Solid-State Circuits, pp.250–256,

DATE’00.

[96] U.Y. Ogras, J. Hu, and R. Marculescu, “Key research problems in noc design: A holistic per-

spective,” Proc. Hardward/Software Codesign and System Synthesis, pp.69–74, Sep. 2005.

[97] L. Shang, L.S. Peh, and N.K. Jha, “Dynamic voltage scaling with links for power opti-

mization of interconnection networks,” Proc. IEEE Computer Society, HPCA’03, pp.91–102,

2003.

[98] L. Jain, “Fusion of neural nets, fuzzy systems and genetic algorithms in industrial applica-

tions,” IEEE Trans. Industrial Electronics, vol.46, no.6, pp.1049–1136, 1999.

[99] D.S. Kim and J.S. Park, “Modeling network intrusion detection system using feature selec-

tion and parameters optimization,” IEICE Trans. Information and Systems, vol.E91-D, no.4,

pp.1050–1057, Apr. 2008.

[100] J.F. Wang, J.C. Wang, A.N. Suen, C.H. Wu, and F.M. Li, “VLSI architecture and implemen-

tation for speech recognizer based on discriminative bayesian neural network,” IEICE Trans.

Fundamentals, vol.E85-A, no.8, pp.1861–1869, Aug. 2002.



118

[101] G. Dede and M.H. Sazli, “Speech recognition with artificial neural networks,” Digital Signal

Processing, vol.20, no.3, pp.763–768, May 2010.

[102] R. Coggins, M. Jabri, B. Flower, and S. Pickard, “A hybrid analog and digital VLSI neural

network for intracardiac morphology classification,” IEEE Journal of Solid-state Circuits,

vol.30, no.5, pp.542–550, May 1995.

[103] Y. Maeda and M. Wakamura, “Simultaneous perturbation learning rule for recurrent neural

networks and its fpga implementation,” IEEE Trans. Neural Network, vol.16, no.6, pp.1664–

1672, 2005.

[104] S.P. Johnston, G. Prasad, L. Maguire, and T.M. Mcginnity, “An fpga hardware/software co-

design towards evolvable spiking neural networks for robotics application,” International

Journal of Neural Systems, vol.20, no.6, pp.447–461, Dec. 2010.

[105] F.J. Lin, J.C. Hwang, P.H. Chou, and Y.C. Hung, “Fpga-based intelligent-complementary

sliding-mode control for pmlsm servo-drive system,” IEEE Trans. Power Electronics, vol.25,

no.10, pp.2573–2587, Oct. 2010.

[106] A. Mellit, H. Mekki, A. Messai, and H. Salhi, “Fpga-based implementation of an intelligent

simulator for stand-alone photovoltaic system,” Expert Systems with Applications, vol.37,

no.8, pp.6036–6051, Aug. 2010.

[107] F.M. Dias, A. Antunes, and A.M. Mota, “Artificial neural networks: a review of commer-

cial hardware,” Engineering Applications of Artificial Intelligence, vol.17, no.8, pp.945–952,

Aug. 2004.

[108] J. Zhu and P. Sutton, “Fpga implementations of neural networks - a survey of a decade of

progress,” Proc. FPL’03, pp.1062–1066, Sep. 2003.

[109] L.M. Reyneri, “Implementation issues of neurofuzzy hardware: Going toward hw/sw code-

sign,” IEEE Trans. Neural Network, vol.14, no.1, pp.176–194, 2003.

[110] H. Li and S. D. Zhang, “A stochastic digital implementation of a neural network controller

for small wind turbine systems,” IEEE Trans. Power Electronics, vol.21, no.5, pp.1502–1507,

2006.



119

[111] D. Ferrer and R. Gonzalez, “Neurofpga - implementing artificial neural networks on pro-

grammable logic devices,” Proc. DATE’04, pp.218–223, Feb. 2004.

[112] S. Himavathi, “Feedforward neural network implementation in fpga using layer multiplexing

for effective resource utilization,” IEEE Trans. Neural Networks, vol.18, no.3, pp.880–888,

2007.

[113] I.A. Basheer and M. Hajmeer, “Artificial neural networks: Fundamentals, computing, design,

and application,” Journal of Microbiological Methods, vol.43, pp.3–31, 2000.

[114] Xilinx, http://www.xilinx.com/.

[115] A.K. Jain, R.P.W. Duin, and J.C. Mao, “Statistical pattern recognition: A review,” IEEE

Trans. Pattern Analysis and Machine Intelligence, vol.22, no.1, pp.4–37, Jan. 2000.

[116] A. Ouchar, R. Aksas, and H. Baudrand, “Artificial neural network for computing the resonant

frequency of circular patch antennas,” Microwave and optical technology letters, vol.47, no.6,

pp.564–566, Oct. 2005.

[117] G.V. Puskorius and L.A. Feldkamp, “Neurocontrol of nonlinear dynamical systems with

kalman filter trained recurrent networks,” IEEE Trans. Neural Network, vol.5, no.2, pp.279–

297, Mar. 1994.

[118] M.A. Kramer, “Nonlinear principal component analysis using autoassociative neural net-

works,” Journal of AICHE, vol.37, no.2, pp.233–243, 1991.

[119] M. Rajendra, P. Jena, and H. Raheman, “Prediction of optimized pretreatment process pa-

rameters for biodiesel production using ann and ga,” Fuel, vol.88, no.5, pp.868–875, 2009.

[120] S. Chen, C.F.N. Cowan, and P.M. Grant, “Orthogonal least squares learning algorithm for

radial basis function networks,” IEEE Trans. Neural Network, vol.2, no.2, pp.302–309, NoV.

1991.

[121] I. Akitoshi, Y. Hiroshi, T. Ichi, and H. Masayasu, “Multi-layer neural network for anomalous

signal detection from elf band electromagnetic wave,” Signal Processing, vol.13, no.1, pp.55–

65, Jan. 2009.



120

[122] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol.20, no.3,

pp.273–297, Sep. 1995.

[123] K.J. Hunta, D. Sbarbaroa, R. bikowskia, and P. Gawthrop, “Neural networks for control

systemsła survey,” Automatica, vol.28, no.6, pp.1083–1112, Nov. 1992.

[124] M. Kolehmainen, H. Martikainen, and J. Ruuskanen, “Neural networks and periodic compo-

nents used in air quality forecasting,” Atmospheric Environment, vol.35, no.5, pp.815–825,

2001.

[125] L. Gatet, H. Tap-Beteille, and F. Bony, “Comparison between analog and digital neural net-

work implementations for range-finding applications,” IEEE Trans. Neural Network, vol.20,

no.2, pp.460–470, Mar. 2009.

[126] D. Kim, H. Kim, H. Kim, G. Han, and D.J. Chung, “A simd neural network processor for

image processing,” Proc. ISNN’05, May 2005.

[127] Y. Fan and M. Paindavoine, “Implementation of an rbf neural network on embedded systems:

real-time face tracking and identity verification,” IEEE Trans. Neural Network, vol.14, no.5,

pp.1162–1175, Sep. 2003.

[128] J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, Interconnect-Centric Design for Advanced

SOC and NOC, Kluwer Academic Publisher, 2004.

[129] Y. Dong and T. Watanabe, “Network on chip architecture for bp neural network,” Proc. IEEE

ICCCAS’08, pp.1083–1087, May 2008.

[130] Y. Dong and T. Watanabe, “Network on chips structure for mapping two hidden layers bp-

anns,” Proc. 23rd ITC-CSCC’08, pp.601–604, Jul. 2008.

[131] Y. Dong and T. Watanabe, “Mixed noc architecture for mapping complex feedforward neural

network,” Proc. NCSP’09, pp.609–612, Mar. 2009.

[132] A.K. Jain, J.C. Mao, and K.M. Mohiuddin, “Artificial neural networks: a tutorial,” Computer,

vol.29, no.3, pp.31–44, 1996.



121

[133] L.H. Jordan and E.B. Thomas, “Backpropagation simulations using limited precision calcu-

lations,” Proc. PIJCNN, pp.121–126, 1991.

[134] F. Fazzino, M. Palesi, and D. Patti, “Noxim noc simulator,”

http://sourceforge.net/projects/nox.

[135] L. Jain, “Nirgam,” University of Southampton UK, http://www. nirgam.ecs.soton.ac.uk.

[136] J. Dvorak, “Brain maker,” http://www.calsci.com/BrainIndex.html.

[137] AlteraInc., Stratix Device Handbook, Jan. 2006.

[138] L. Smith, “Implementing neural models in silicon,” Handbook of Nature-Inspired and Inno-

vative Computing Section 11, 2006.

[139] S. Vitabile, A. Gentile, G.B. Dammone, and F. Sorbello, “Mlp neural network implementa-

tion on a simd architecture,” Neural Nets, vol.2486, 2002.

[140] C. Ciordas, K. Goossens, T. Basten, A. Radulescu, and A. Boon, “Transaction monitoring in

networks on chip: The on-chip run-time perspective,” Proc. IES’06, pp.1–10, Oct. 2006.

[141] Y. Dong, C. Li, K. Kumai, Y.H. Li, Y. Wang, and T. Watanabe, “A new flexible network

on chip architecture for mapping complex feedforward neural network,” Journal of Signal

Processing (JSP), vol.13, no.6, pp.453–462, Nov. 2009.

[142] Y. Dong, Y.H. Li, Y. Wang, and T. Watanabe, “Low power and high speed network on chip

architecture for bp neural network,” Proc. ITC-CSCC’09, pp.298–301, Jul. 2009.

[143] H.M. Yao, H.B. Vuthaluru, M.O. Tade, and D. Djukanovic, “Artificial neural network-based

prediction of hydrogen content of coal in power station boilers,” Fuel, vol.84, no.12–13,

pp.1535–1542, Sep. 2005.

[144] X.M. Chen and D.Z. Chen, “Measuring average particle size for fluidized bed reactors by

employing acoustic emission signals and neural networks,” Chemical engineering and tech-

nology, vol.31, no.1, pp.95–102, Dec. 2007.



122

[145] S. Murali, D. Atienza, P. Meloni, S. Carta, L. Benini, G. Micheli, and L. Raffo, “Synthesis

of predictable networks-on-chip-based interconnect architectures for chip multiprocessors,”

IEEE Trans. VLSI Systems, vol.15, no.8, pp.869–880, Aug. 2007.

[146] Y. Dong, H. Zhang, Z. Lin, and T. Watanabe, “A novel hardware method to implement a

routing algorithm onto network on chip,” Proc. ICCCAS’10, pp.852–856, Jul. 2010.

[147] D.C. Hendry, A.A. Duncan, and N. Lightowler, “Ip core implementation of a self-organizing

neural network,” IEEE Trans. neural networks, vol.14, no.5, pp.1085–1096, Sep. 2003.

[148] A. Jahnke, U. Roth, and H. Klar, “a simd/dataflow architecture for a neurocomputer for spike-

processing neural networks (nespinn),” MicroNeuro’96, pp.232–237, Feb. 1996.

[149] W. Dally and B. Towles, Principles and Practices of Interconnection Networks, Morgan Kauf-

mann Publishers, 2004.

[150] S. Vangal and et al., “An 80-tile sub-100-w teraflops processor in 65-nm cmos,” IEEE Journal

of Solid-State Circuits, vol.43, no.1, pp.29–41, 2008.

[151] K. Petersen and J. Oberg, “Toward a scalable test methodology for 2d-mesh network-on-

chips,” Proc. DATE’07, pp.367–372, Apr. 2007.

[152] R. Ricardo, M. Vincent, and H. Paul, VLSI-SoC: Advanced Topics on Systems on a Chip: A

Selection of Extended Versions of the Best Papers of the Fourteenth International Conference

on Very Large Scale Integration of System on Chip (VLSI-SoC2007), Springer, 2007.

[153] Z. Lu, A. Jantsch, and I. Sander, “Feasibility analysis of messages for on-chip networks using

wormhole routing,” Proceedings of the Asian Pacific Design Automation Conference, 2005.

[154] Z. Lu and A. Jantsch, “Flit ejection in on-chip wormhole-switched networks with virtual

channels,” Proceedings of the IEEE NorChip Conference, Nov. 2004.

[155] N. Mauduit, M. Duranton, J. Gobert, and J. Sirat, “Fuzzy artmap: a neural network archi-

tecture for incremental supervised learning of analog multidimensional maps,” IEEE Trans.

Neural Networks, vol.3, no.3, pp.414–422, May 1992.



123

[156] S. Vangal and et al., “An 80-tile 1.28tflops network-on-chip in 65nm cmos,” Proc. ISSCC’07,

pp.5–7, Feb 2007.

[157] M. Chakraborty, C. Bhattacharya, and S. Dutta, “Studies on the applicability of artificial

neural network (ann) in emulsion liquid membranes,” Journal of Membrane Science, vol.220,

no.1-2, pp.155–164, Aug. 2003.

[158] Synopsys Inc., www.synopsys.com/Community/UniversityProgram.


